首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
The function of the rorf2 gene located on the locus of enterocyte effacement (LEE) pathogenicity island of enteropathogenic Escherichia coli (EPEC) has not been described. We report that rorf2 encodes a novel protein, named EspG, which is secreted by the type III secretory system and which is translocated into host epithelial cells. EspG is homologous with Shigella flexneri protein VirA, and the cloned espG (rorf2) gene can rescue invasion in a Shigella virA mutant, indicating that these proteins are functionally equivalent in Shigella. An EPEC espG mutant had no apparent defects in in vitro assays of virulence phenotypes, but a rabbit diarrheagenic E. coli strain carrying a mutant espG showed diminished intestinal colonization and yet diarrheal attack rates similar to those of the wild type. A second EspG homolog, Orf3, is encoded on the EspC pathogenicity islet. The cloned orf3 gene could also rescue invasion in a Shigella virA mutant, but an EPEC espG orf3 double mutant was not diminished in any tested in vitro assays for EPEC virulence factors. Our results indicate that EspG plays an accessory but as yet undefined role in EPEC virulence that may involve intestinal colonization.  相似文献   

4.
The family of attaching and effacing (A/E) bacterial pathogens, which includes diarrheagenic enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC), remains a significant threat to human and animal health. These bacteria intimately attach to host intestinal cells, causing the effacement of brush border microvilli. The genes responsible for this phenotype are encoded in a pathogenicity island called the locus of enterocyte effacement (LEE). Citrobacter rodentium is the only known murine A/E pathogen and serves as a small animal model for EPEC and EHEC infections. Here we report the full DNA sequence of C. rodentium LEE and provide a comparative analysis with the published LEEs from EPEC, EHEC, and the rabbit diarrheagenic E. coli strain RDEC-1. Although C. rodentium LEE shows high similarities throughout the entire sequence and shares all 41 open reading frames with the LEE from EPEC, EHEC, and RDEC-1, it is unique in its location of the rorf1 and rorf2/espG genes and the presence of several insertion sequences (IS) and IS remnants. The LEE of EPEC and EHEC is inserted into the selC tRNA gene. In contrast, the Citrobacter LEE is flanked on one side by an operon encoding an ABC transport system, and an IS element and sequences homologous to Shigella plasmid R100 and EHEC pO157 flank the other. The presence of plasmid sequences next to C. rodentium LEE suggests that the prototype LEE resided on a horizontally transferable plasmid. Additional sequence analysis reveals that the 3-kb plasmid in C. rodentium is nearly identical to p9705 in EHEC O157:H7, suggesting that horizontal plasmid transfer among A/E pathogens has occurred. Our results indicate that the LEE has been acquired by C. rodentium and A/E E. coli strains independently during evolution.  相似文献   

5.
BACKGROUND AND PURPOSE: The locus of enterocyte effacement (LEE) of enterohemorrhagic Escherichia coli (EHEC) O157:H7 encodes virulence factors that lead cooperatively to an attaching and effacing lesion on host large intestine cells. Global regulator of LEE activator (GrlA), encoded by the open reading frame 3 in the EHEC LEE, is known to serve as a positive regulator of LEE expression. However, how it functions to orchestrate gene expression remains unclear. METHODS: A grlA-deleted mutant strain was created, and the determinants needed for the LEE activation were addressed by complementation experiments. A DNA electrophoresis mobility-shifting assay was used to test a hypothesis that the activation occurs via a direct binding on the putative promoter region. RESULTS: Activation of the major LEE operons could be rescued by an over-expression of LEE-encoded regulator (Ler), except for the LEE1 operon, expression of which absolutely required GrlA. Consistent with the latter observation, GrlA bound specifically to the putative LEE1 promoter region. Furthermore, determinants critical for this activity have been mapped to the N-terminal region of GrlA. CONCLUSION: GrlA upregulates the expression of LEE through binding of the LEE1 promoter, which in turn increases the level of Ler allowing it to function as a downstream activator. The opposing effect of global regulator of LEE repressor (GrlR) is explainable by in vitro findings that GrlR interacts with GrlA, suppressing the specific binding of GrlA on the LEE1 promoter.  相似文献   

6.
The pathogenicity island termed the locus of enterocyte effacement (LEE) is found in diverse attaching and effacing pathogens associated with diarrhea in humans and other animal species. To explore the relation of variation in LEE sequences to host specificity and genetic lineage, we determined the nucleotide sequence of the LEE region from a rabbit diarrheagenic Escherichia coli strain RDEC-1 (O15:H-) and compared it with those from human enteropathogenic E. coli (EPEC, O127:H6) and enterohemorrhagic E. coli (EHEC, O157:H7) strains. Differing from EPEC and EHEC LEEs, the RDEC-1 LEE is not inserted at selC and is flanked by an IS2 element and the lifA toxin gene. The RDEC-1 LEE contains a core region of 40 open reading frames, all of which are shared with the LEE of EPEC and EHEC. orf3 and the ERIC (enteric repetitive intergenic consensus) sequence present in the LEEs of EHEC and EPEC are absent from the RDEC-1 LEE. The predicted promoters of LEE1, LEE2, LEE3, tir, and LEE4 operons are highly conserved among the LEEs, although the upstream regions varied considerably for tir and the crucial LEE1 promoter, suggesting differences in regulation. Among the shared genes, high homology (>95% identity) between the RDEC-1 and the EPEC and EHEC LEEs at the predicted amino acid level was observed for the components of the type III secretion apparatus, the Ces chaperones, and the Ler regulator. In contrast, more divergence (66 to 88% identity) was observed in genes encoding proteins involved in host interaction, such as intimin (Eae) and the secreted proteins (Tir and Esps). A comparison of the highly variable genes from RDEC-1 with those from a number of attaching and effacing pathogens infecting different species and of different evolutionary lineages was performed. Although RDEC-1 diverges from some human-infecting EPEC and EHEC, most of the variation observed appeared to be due to evolutionary lineage rather than host specificity. Therefore, much of the observed hypervariability in genes involved in pathogenesis may not represent specific adaptation to different host species.  相似文献   

7.
8.
9.
The locus of enterocyte effacement (LEE) pathogenicity island of enterohemorrhagic Escherichia coli (EHEC) O157:H7 possesses the same genes in identical order and orientation as the LEE of enteropathogenic E. coli (EPEC) O127:H6 but is unable to form attaching and effacing (A/E) lesions or to secrete Esp proteins when it is cloned in an E. coli K-12 background. The A/E phenotype could not be restored by trans complementation with a variety of cloned EPEC LEE fragments, suggesting functional and/or regulatory differences between the LEE pathogenicity islands of EPEC O127:H6 and EHEC O157:H7.  相似文献   

10.
11.
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are related attaching and effacing (A/E) pathogens. The genes responsible for the A/E pathology are carried on a chromosomal pathogenicity island termed the locus of enterocyte effacement (LEE). Both pathogens share a high degree of homology in the LEE and additional O islands. EHEC prevalence is much lower in areas where EPEC is endemic. This may be due to the development of antibodies against common EPEC and EHEC antigens. This study investigated the hypothesis that EPEC infections may protect against EHEC infections. We used a mouse model to inoculate BALB/c mice intragastrically, first with EPEC and then with EHEC (E. coli O157:H7). Four control groups received either a nonpathogenic E. coli (NPEC) strain followed by EHEC (NPEC/EHEC), phosphate-buffered saline (PBS) followed by EHEC (PBS/EHEC), EPEC/PBS, or PBS/PBS. Mice were monitored for weight loss and symptoms. EPEC colonized the intestine after challenge, and mice developed serum antibodies to intimin and E. coli secreted protein B (encoded in the LEE). Prechallenge with an EPEC strain had a protective effect after EHEC infection, as only a few mice developed mild symptoms, from which they recovered. These mice had an increase in body weight similar to that in control animals, and tissue morphology exhibited mild intestinal changes and normal renal histology. All mice that were not prechallenged with the EPEC strain developed mild to severe symptoms after EHEC infection, with weight loss as well as intestinal and renal histopathological changes. These data suggest that EPEC may protect against EHEC infection in this mouse model.  相似文献   

12.
Enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) are diarrheagenic pathogens that colonize the gut through the formation of attaching and effacing lesions, which depend on the translocation of effector proteins via a locus of enterocyte effacement-encoded type III secretion system. Recently, two effector proteins, EspJ and TccP, which are encoded by adjacent genes on prophage CP-933U in EHEC O157:H7, have been identified. TccP consists of a unique N-terminus region and several proline-rich domains. In this project we determined the distribution of tccP in O157:H7, in non-O157 EHEC, and in typical and atypical EPEC isolates. All the EHEC O157:H7 strains tested were tccP(+). Unexpectedly, tccP was also found in non-O157 EHEC, and in typical and atypical EPEC isolates, particularly in strains belonging to serogroups O26 (EHEC), O119 (typical EPEC), and O55 (atypical EPEC). We recorded some variation in the length of tccP, which reflects diversity in the number of the proline-rich repeats. These results show the existence of a class of "attaching and effacing" pathogens which express a combination of EPEC and EHEC virulence determinants.  相似文献   

13.
14.
15.
Disruption of the barrier properties of the enterocyte tight junction is believed to be important in the pathogenesis of diarrhea caused by enteropathogenic Escherichia coli (EPEC). This phenotype can be measured in vitro as the ability of EPEC to reduce transepithelial resistance (TER) across enterocyte monolayers and requires the products of the locus of enterocyte effacement (LEE) and, in particular, the type III secreted effector protein EspF. We report a second LEE-encoded gene that is also necessary for EPEC to fully reduce TER. rorf10 is not necessary for EPEC adherence, EspADB secretion, or formation of attaching and effacing lesions. However, rorf10 mutants have a diminished TER phenotype, reduced intracellular levels of EspF, and a reduced ability to translocate EspF into epithelial cells. The product of rorf10 is a 14-kDa intracellular protein rich in alpha-helices that specifically interacts with EspF but not with Tir or other EPEC secreted proteins. These properties are consistent with the hypothesis that rorf10 encodes a type III secretion chaperone for EspF, and we rename this protein CesF, the chaperone for EPEC secreted protein F.  相似文献   

16.
17.
18.
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) adhere to the intestinal mucosa and produce an attaching and effacing (AE) lesion in the brush border microvillous membrane; the AE lesion is characterized by localized destruction of microvilli and intimate attachment of bacteria to the apical enterocyte membrane. A similar lesion is seen when bacteria adhere in vitro to a variety of human tissue culture cell lines. In both cases, dense concentrations of microfilaments are present in the apical cytoplasm beneath attached bacteria. Using a fluorescein-labeled phallotoxin, we have shown that these microfilaments are composed of actin. Cells infected with EPEC and EHEC strains known from electron microscopic studies to produce the AE lesion all exhibited intense spots of fluorescence which corresponded in size and position with each adherent bacterium; cells infected with adherent E. coli strains known not to produce the AE lesion did not produce this striking pattern of fluorescence and were indistinguishable from uninfected control cells. These results indicate that such site-specific concentrations of cytoskeletal actin are characteristic of the AE membrane lesion and can form the basis of a simple, highly sensitive diagnostic test for EPEC and EHEC.  相似文献   

19.
20.
Intimate attachment to the host cell leading to the formation of attaching and effacing (A/E) lesions is an essential feature of enterohemorrhagic Escherichia coli (EHEC) O157:H7 pathogenesis. In a related pathogen, enteropathogenic E. coli (EPEC), this activity is dependent upon translocation of the intimin receptor, Tir, which becomes tyrosine phosphorylated within the host cell membrane. In contrast, the accumulation of tyrosine-phosphorylated proteins beneath adherent EHEC bacteria does not occur, leading to questions about whether EHEC uses a Tir-based mechanism for adherence and A/E lesion formation. In this report, we demonstrate that EHEC produces a functional Tir that is inserted into host cell membranes, where it serves as an intimin receptor. However, unlike in EPEC, in EHEC Tir is not tyrosine phosphorylated yet plays a key role in both bacterial adherence to epithelial cells and pedestal formation. EHEC, but not EPEC, was unable to synthesize Tir in Luria-Bertani medium but was able to secrete Tir into M9 medium, suggesting that Tir synthesis and secretion may be regulated differently in these two pathogens. EHEC Tir and EPEC Tir both bind intimin and focus cytoskeletal rearrangements, indicating that tyrosine phosphorylation is not needed for pedestal formation. EHEC and EPEC intimins are functionally interchangeable, but EHEC Tir shows a much greater affinity for EHEC intimin than for EPEC intimin. These findings highlight some of the differences and similarities between EHEC and EPEC virulence mechanisms, which can be exploited to further define the molecular basis of pedestal formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号