首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: To investigate the role of intercellular potassium in tachyplesin-induced HL-60 cells apoptosis. METHODS: The concentration of intercellular potassium, cell volume and mitochondrial membrane potential were examined by flow cytometry. RESULTS: The concentration of intercellular potassium reduced in a time-dependent manner in tachyplesin-treated HL-60 cells. In addition, the loss of mitochondrial membrane potential was tightly coupled with the shrinkage of cell volume. Different caspase inhibitors protected against DNA degradation but did not prevent the loss of HL-60 cell viability induced by tachyplesin. Ba2+, which was a kind of blocker of volume-regulatory K+ channels, increased the viability of tachyplesin-treated HL-60 cells and maintained mitochondrial membrane potential and cell volume. CONCLUSION: Efflux of K+ was an important reason for apoptosis in tachyplesin-treated HL-60 cells. Efflux of K+ affected the viability of tachyplesin-treated HL-60 cells independent of the process of caspase activation.  相似文献   

2.
Cardiotoxin (CTX) III, a basic polypeptide with 60 amino acid residues isolated from Naja naja atra venom, has been reported to have anticancer activity. In the present study, we investigated the mechanisms underlying the anticancer activity of CTX III in human leukaemia (HL-60 cells). Cardiotoxin III activated the endoplasmic reticulum (ER) pathway of apoptosis in HL-60 cells, as indicated by increased levels of calcium and glucose-related protein 78 (Grp78), and triggered the subsequent activation of micro-calpain and caspase 12. In addition, CTX III initiated the mitochondrial apoptotic pathway in HL-60 cells, as evidenced by an increased Bax/Bcl-2 ratio, the release of cytochrome c and activation of caspase 9. In the presence of 50 micromol/L Z-ATAD-FMK (a caspase 12 inhibitor) and 100 micromol/L Z-LEHD-FMK (a caspase 9 inhibitor), the CTX III-mediated activation of caspase 9 and caspase 3 was significantly reduced. There was no significant effect of the caspase 12 inhibitor Z-ATAD-FMK on mitochondrial cytochrome c release. Cardiotoxin III-mediated activation of caspase 12 was not abrogated in the presence of the caspase 9 inhibitor Z-LEHD-FMK, indicating that caspase 12 activation was not downstream of caspase 9. These results indicate that CTX III induces cell apoptosis via both ER stress and a mitochondrial death pathway.  相似文献   

3.
In a previous study, we showed that tartary buckwheat flavonoid (TBF) induced HL-60 leukemic cell apoptosis, most likely via a caspase 3 activating pathway. The aim of this study was to further investigate the molecular mechanisms involved in TBF-induced apoptosis of HL-60 cells. Thus, death receptor Fas expression on HL-60 cells was detected by flow cytometry (FCM). We also studied the effect of TBF on intranuclear DNA binding activity of NF-kappaB, as well as release of mitochondrial cytochrome c into the cytosol in HL-60 cells by FCM. The results suggest that TBF-induced apoptosis of HL-60 cells may be stimulated by the release of cytochrome c to the cytosol, upregulation of Fas expression on the cell surface, and through a caspase-3-dependent mechanism. Furthermore, TBF-induced apoptosis may be partly regulated through the inactivation of NF-kappaB in HL-60 cells. The induction of apoptosis by TBF may be attributed to its cancer chemopreventive activity.  相似文献   

4.
To identify potential anti-tumour agents, we screened five furanone-coumarins isolated from Murraya siamensis Craib (Rutaceae) for their ability to inhibit the growth of human leukaemia HL-60 cells. Among the furanone-coumarins tested, murrayacoumarin B (compound 2) showed significant cytotoxicity against HL-60 cells. Fluorescence microscopy with Hoechst 33342 staining revealed that the percentage of apoptotic cells with fragmented nuclei and condensed chromatin increased in a time-dependent manner after treatment with murrayacoumarin B. Interestingly, this furanone-coumarin induced the loss of the mitochondrial membrane potential. In addition, treatment with murrayacoumarin B stimulated the activities of caspase-9 and caspase-3, and caspase-9 and caspase-3 inhibitors suppressed the apoptosis induced by murrayacoumarin B. These results suggest that murrayacoumarin B induced apoptosis in HL-60 cells through activation of the caspase9/caspase-3 pathway triggered by mitochondrial dysfunction.  相似文献   

5.
2,3,5-tris(Glutathion-S-yl)hydroquinone (TGHQ), a metabolite of benzene, induces apoptosis in human promyelocytic leukemia (HL-60) cells. However, the mechanisms by which TGHQ induces apoptosis are unclear, and they were the focus of the present investigation. TGHQ stimulated the rapid formation (30 min) of reactive oxygen species (ROS) in HL-60 cells, and co-treatment with catalase or the antioxidant N-acetylcysteine (NAC) completely blocked TGHQ-induced apoptosis, implicating a causative role for ROS in HL-60 cell death. Western blot analysis revealed the complete disappearance of pro-caspase 9 between 1 and 2 hours after exposure of HL-60 cells to TGHQ, concomitant with the appearance of cleaved caspase 9 and increases in caspase 9 activity. The appearance of two cleaved forms of caspase 3 occurred subsequent to increases in caspase 9 activity. Levels of the anti-apoptotic Bcl-2 protein remained constant during TGHQ-induced apoptosis of HL-60 cells, but Bcl-2 S70 phosphorylation decreased. In contrast, changes in the subcellular localization of the pro-apoptotic molecule Bax were observed, with a rapid (15-60 min) increase in the ratio of cytosolic to mitochondrial Bax. Cytochrome c release from mitochondria to the cytosol occurred after Bax translocation and the dephosphorylation of pS70 Bcl-2. However the mitochondrial inner transmembrane potential (deltapsi(m)) was maintained, even after cytochrome c was released from the mitochondria. Cyclosporin A, an inhibitor of the mitochondrial membrane permeability transition pore (PTP), did not completely rescue HL-60 cells from apoptosis. Taken together, we conclude that TGHQ facilitates ROS production, alters the post-translational modification of Bcl-2 and subcellular localization of Bax, culminating in the release of cytochrome c and caspase activation.  相似文献   

6.
It has been proposed that flavonoids may have potential as anticancer agents. In this study, we showed that tartary buckwheat flavonoid (TBF) obviously inhibits the growth of human acute myelogenous leukemia (AML) HL-60 cells by MTT assay. The inhibitory effect of TBF on the proliferation of HL-60 cells is related to the induction of apoptosis, which is confirmed by DNA ladder formation on gel electrophoresis and apoptosis morphological changes under light microscope. Furthermore, HL-60 cells undergo rapid apoptosis upon treatment with TBF, as indicated by increased annexin V binding capacity and caspase 3 activation with flow cytometric analysis. Thus, our data provide a potential mechanism for the chemopreventive activity of tartary buckwheat flavonoid and suggest that it may have a potentially therapeutic role for human leukemia.  相似文献   

7.
δ-Elemene, an antitumor component, is a chemical compound isolated from Curcuma wenyujin, a Chinese traditional herb. We examined whether δ-elemene could inhibit cell growth and cell cycle progression and induce apoptosis in human leukemia HL-60 cells. The results demonstrated that δ-elemene induces significant apoptosis of HL-60 cells, as shown by MTT assay, annexin V (AnV) binding of externalized phosphatidylserine (PS), and the mitochondrial probe JC-1 using flow cytometry. HL-60 cells treated with δ-elemene showed high percentages in the early apoptotic and late apoptoctic/necrotic stages, as well as caspase-3 activation of HL-60 cells. By monitoring the changes in cell cycle profiles, we confirmed that δ-elemene could interfere with the cell cycle in the G2/M phase and induce apoptosis in HL-60 cells in a time-dependent manner. Caspase-3 plays a direct role in proteolytic cleavage of the cellular proteins responsible for progression to apoptosis. Therefore we examined apoptosis in HL-60 cells after exposure to δ-elemene and measured caspase-3 activities with or without Z-Val-Ala-Asp-fluoromethylketone (z-VAD-fmk, a broad-spectrum caspase inhibitor) pretreatment using flow cytometric analysis. The results showed that δ-elemene could induce caspase-3 activation as detected by the decrease in δ-elemene-induced caspase-3 activities after treatment with z-VAD-fmk. In the present study, δ-elemene activated typical caspase-dependent apoptosis in HL-60 cells, as demonstrated by an inhibitory effect of z-VAD-fmk on this cell death. During δ-elemene-induced apoptosis, cytochrome c and apoptosis-inducing factor were released into the cytosol and BAX was translocated from the cytosol to mitochondria. However, these were not prevented by z-VAD-fmk. In conclusion, our study demonstrated that δ-elemene could induce G2/M cell cycle transition and trigger apoptosis through a caspase-3-dependent pathway.  相似文献   

8.
Lovastatin, an HMG-CoA reductase inhibitor, was found to suppress growth and induce apoptosis in culture human promyelocytic leukaemic cell, HL-60. However, the mechanisms of lovastatin-induced apoptosis are still unclear. In this study, we attempted to elucidate the signal transduction pathway for lovastatin-induced apoptosis in HL-60 cells in a dose- and time-dependent manner. The features of this apoptosis were attenuated by the presence of mevalonate, a metabolic intermediate of cholesterol synthesis. Treatment of lovastatin caused a rapid release of mitochondrial cytochrome c into cytosol and subsequent induction of caspase-3, but not caspase-1 activity. Lovastatin also stimulated proteolytic cleavage of poly-(ADP-ribose) polymerase (PARP), and followed by the appearance of caspase activity and DNA fragmentation. Pretreatment with caspase-3 inhibitors, Ac-DEVD-CHO and Z-VAD-FMK, inhibited lovastatin induced caspase-3 activity and DNA fragmentation. Furthermore, we demonstrated that DNase II was involved in the DNA fragmentation induced by lovastatin. These results suggested that the mechanism of lovastatin induced HL-60 cells apoptosis through activation of caspase-3 and DNase II activities.  相似文献   

9.
The benzene metabolite hydroquinone (HQ) is postulated to exert its myelotoxicity by bioactivation to reactive quinone derivatives in myeloperoxidase (MPO)-containing cells. In this study, the role of caspases in hydroquinone-induced apoptosis in MPO-rich HL-60 promyelocytic leukemia and MPO-deficient Jurkat T-lymphoblastic leukemia cells was investigated. HQ-induced apoptosis in both cell types was accompanied by phosphatidylserine (PS) exposure, caspases-3/-7 activation, PARP cleavage, DNA fragmentation, and ultrastructural changes as assessed by electron microscopy. In HL-60 cells, the general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD.FMK) blocked activation of caspases-3/-7, cleavage of PARP, and DNA, but PS externalization and cytoplasmic changes were not significantly affected. In marked contrast, all features of apoptosis were completely inhibited by Z-VAD.FMK in HQ-treated Jurkat cells. These data provide evidence for Z-VAD.FMK-insensitive and caspases-3/-7-independent pathway(s) in the externalization of PS and cytoplasmic changes during HQ-induced apoptosis in HL-60 cells. In contrast, in Jurkat cells, all of these changes required caspase activation. The ability of HQ to induce equivalent apoptosis in both MPO-deficient Jurkat cells and MPO-rich HL-60 cells demonstrates that MPO-catalyzed bioactivation of HQ is not a prerequisite for toxicity. The differential mechanisms of apoptosis in HL-60 and Jurkat T cells may reflect the MPO activity of these cells and, as a result, the amount of reactive BQ and other metabolites that are generated.  相似文献   

10.
Mercurial compounds modulate immunologic functions by inducing cytotoxicity. Although mercury chloride (HgCl(2)) is known to induce apoptosis in various immune system cells, the mechanism of the induction of apoptosis is poorly understood. In this study, we examined the activation of caspase-3, an important cysteine aspartic protease, during HgCl(2)-induced apoptosis in a human leukemia cell line (HL-60 cells). Both DNA fragmentation, a characteristic of apoptotic cells, and proteolysis of poly(ADP-ribose) polymerase (PARP), a substrate of caspase-3, occurred at 6 h after HgCl(2) treatment in HL-60 cells. These results suggest that the activation of caspase-3 was involved in HgCl(2)-induced apoptosis. The release of cytochrome c (Cyt c) from mitochondria into the cytosol, which is an initiator of the activation of caspase cascades, was also observed in HgCl(2)-treated HL-60 cells. Moreover, the release of Cyt c from mitochondria was observed in HgCl(2)-treated mitochondria isolated from mice liver, and this was followed by mitochondrial permeability transition (PT). The PT was inhibited by cyclosporin A (CsA), a potent inhibitor of PT. CsA also suppressed the occurrence of DNA fragmentation induced by HgCl(2) treatment in HL-60 cells. Taken together, these findings indicate that HgCl(2) is a potent inducer of apoptosis via Cyt c release from the mitochondria in HL-60 cells.  相似文献   

11.
In this study, we evaluated the potential apoptosis effects of baicalein on human promyelocytic leukemia HL-60 cells in vitro. Apoptosis induction, cell viability, morphology and caspase-3 activity were then performed to determine by flow cytometric assay, DNA gel electrophoresis, anti-ADP-ribose stain and determination of caspase-3 activity. There is a significant difference in cell death of HL-60 cells that was detected between baicalein-treated and untreated groups. Furthermore, there was a further significant increase in apoptosis induction when cells were treated with baicalein compared to without baicalein treated groups. Flow cytometric assays and DNA fragmentation gel electrophoresis also confirmed baicalein induced apoptosis in HL-60 cells. Baicalein also promoted caspase-3 activity then leading to cleavage of poly-ADP-ribose polymerase finally leading to DNA fragmentation occurrence. Furthermore, the baicalein-induced apoptosis was markedly blocked by the broad-spectrum caspase inhibitor, z-VAD-fmk. Taken together, these results suggest that treatment of human leukemia HL-60 cells with baicalein induced apoptosis through activation of caspase-3 activity.  相似文献   

12.
The biochemical properties and specificity of n-3 and n-6 polyunsaturated fatty acids (PUFAs) are not well known. Because PUFAs induce apoptosis of different cells, we studied the effect of various PUFAs, such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosapentaenoic acid (DPA), on the fate of cultured human promyelocytic leukemia cells (HL-60) to elucidate the mechanism of apoptosis and the difference in action between n-3 and n-6 PUFAs. Fairly low concentrations of PUFAs inhibited the growth of HL-60 cells and induced their apoptosis by a mechanism that is sensitive to DMSO, an antioxidant, and z-Val-Ala-Asp(OMe)-fluoromethylketone (z-VAD-fmk), a pan-caspase inhibitor. PUFAs stimulated the generation of reactive oxygen species (ROS) and activated various types of caspase-like proteases, such as caspase-3, -6, -8, and -9, but not caspase-1. In addition, PUFAs triggered the reaction leading to the cleavage of Bid, a death agonist member of the Bcl-2 family, and also released cytochrome c from mitochondria into the cytosol. PUFAs also decreased the mitochondrial membrane potential of intact HL-60 cells. All of these actions of n-3 PUFAs were stronger than those of AA, an n-6 PUFA, although the mechanism is not known. PUFAs stimulate swelling and membrane depolarization of isolated mitochondria in a cyclosporin A-sensitive manner. The results indicated that PUFA-induced apoptosis of HL-60 cells may be caused, in part, by direct action on the cells and by activation of the caspase cascade through cytochrome c release coupled with mitochondrial membrane depolarization.  相似文献   

13.
Tanghinigenin, a cardiac glycoside, is isolated from the seeds of Cerbera manghas L. In this study, we demonstrated that tanghinigenin reduced the viability of human promyelocytic leukemia HL-60 cells in a time- and dose-dependent manner, and efficiently induced apoptosis in HL-60 cells as evidenced by the Annexin V/PI binding assay, DNA fragmentation and AO/EB staining studies. In addition, stimulation of HL-60 cells with tanghinigenin induced a series of intracellular events including the activation of caspase-3, -8, and -9, as well as up-regulation of Fas and FasL protein level. Taken together, caspase activation and Fas/FasL interaction was found to be involved in tanghinigenin-induced HL-60 cell apoptosis.  相似文献   

14.
15.
Isolancifolide is a compound extracted and isolated from Actinodaphne lancifolia, which is a traditional oriental medicine. To determine whether isolancifolide has therapeutic potential as an anticancer molecule, we assessed its apoptotic effects on HL-60 cells, a human leukemia cell line. Apoptotic activities were investigated using DNA fragmentation assay, immunoblotting, and flow cytometry. We found that the inhibitory concentration 50% of isolancifolide was approximately 20 M. The time- and dose-dependent effects of isolancifolide on apoptosis were determined by DNA fragmentation and propidium iodide staining, and the involvement of caspases and the Bcl-2 family in isolancifolide-induced apoptosis was assessed by Western blotting. During exposure to isolancifolide, the pro-forms or full length of caspases-8, -3, and Bid were decreased, as assessed by Western blotting, while the levels of cleaved forms of caspases-8, -3, and PARP were increased. We observed that the release of cytochrome c and Smac/DIABLO from the mitochondria to the cytosol was accompanied by the loss of mitochondrial membrane potential. The caspase specific inhibitors, z-IETD-fmk and z-LEHD-fmk, blocked the accumulation of sub-G1 cells and the release of cytochrome c, but not that of Smac/DIABLO. These results indicate that isolancifolide induces apoptosis of HL-60 cells through both death receptor and mitochondria pathways, in caspase-8-dependent and -independent manners, suggesting that isolancifolide may be useful in anticancer strategies.  相似文献   

16.
1, 6-Bis[4-(4-amino-3-hydroxyphenoxy)phenyl]diamantine (DPD), a new cytostatic and differentiation inducing agent, was found to inhibit the growth of several cancer cell lines in the National Cancer Institute (NCI) Anticancer Drug Screen system. Previously, we demonstrated that DPD inhibited the growth of human colon cancer cell lines both in vitro and in vivo. In this study, we examined the anticancer effects of DPD on two human leukemia cells lines. DPD exerted growth inhibitory activities in vitro against two human leukemia cell lines, the promyeloid line HL-60 and the lymphoblastic line Molt-3. The in vivo effect of tumor growth suppression by DPD was also observed in mouse xenografts. No acute toxicity was observed after an intra-peritoneal challenge of DPD in "severe combined immune-deficiency" (SCID) mice twice a week. The in vitro study showed HL-60 was more sensitive to DPD than Molt-3 through induction of G(0)/G(1) cell-cycle arrest with the appearance of a hypodiploid DNA fraction. The increased superoxide (O(2)(-)), dissipation of the mitochondrial membrane potential, activation of caspase 3, and increase in annexin V binding were evident before apoptosis in DPD-treated cells. The superoxide dismutase 1 (SOD1) mRNA expression was also decreased in DPD-treated HL-60 and Molt-3 cells. Thus, it appeared that inhibition of SOD might be the major cause for the production of cellular superoxide with concomitant decrease of H(2)O(2) in DPD-treated cells. Addition of antioxidant can reduce DPD-induced mitochondrial damage, caspase activation, and annexin V binding in HL-60 cells. The results suggest that the cellular generation of O(2)(-) plays a role in initiating and coordinating DPD-mediated growth arrest and apoptosis of HL-60 cells. Importantly, addition of arsenic trioxide, a compound capable of reactive oxygen species (ROS) generation, significantly enhanced the in vitro activity of DPD. These results suggest that DPD appears to be a potential new modality in human leukemia therapy.  相似文献   

17.
Wu TS  Liao YC  Yu FY  Chang CH  Liu BH 《Toxicology letters》2008,183(1-3):105-111
Patulin (PAT) is a fungal secondary metabolite that exhibits potential cellular and animal toxicities. In this study, human promyelocytic leukemia (HL-60) cells were used to elucidate the mechanism and death mode associated with PAT. Morphological evidence of apoptosis, including membrane blebbing, nuclei fragmentation and DNA laddering formation was clearly observed 6h after exposure to PAT. The results of Western blotting indicated that PAT activated various processed caspases, and cleaved DFF45 and poly (ADP-ribose) polymerase (PARP) in a dose-dependent manner; it also induced a time-dependent increase in caspase 3 and 9 catalytic activities. The apoptosis mediated by PAT in HL-60 was accompanied with cytochrome c release from mitochondria and Bcl-2 expression decrease. The presence of thiol-containing compounds with PAT dramatically reduced the caspase 3 activity that was triggered by PAT; the addition of antioxidants, including mannitol and Tiron, had a similar effect. However, the suppression of p53 protein expression by RNA interference (RNAi) in human embryonic kidney (HEK293) cells did not significantly modify PAT-elicited caspase 3 activity. These findings suggest that PAT-induced apoptosis is mediated through the mitochondrial pathway without the involvement of p53; the interaction with sulfhydryl groups of macromolecules by PAT and the subsequent generation of reactive oxygen species (ROS) plays a primary role in the apoptotic process.  相似文献   

18.
We previously demonstrated that beta-D-xylopyranosyl-(1-->3)-beta-D-glucuronopyranosyl echinocystic acid (codonoposide 1c), a biologically active compound isolated from the roots of Codonopsis lanceolata, is cytotoxic to cancer cells. In the present study, we investigated the effects of codonoposide 1c on the induction of apoptosis, and its putative action pathway in HL-60 human promyelocytic leukemia cells. Codonoposide 1c-treated HL-60 cells displayed several features of apoptosis, including DNA fragmentation, formation of DNA ladders by agarose gel electrophoresis, and externalization of annexin-V targeted phosphatidylserine (PS) residues. We observed that codonoposide 1c caused activation of caspase-8, caspase-9, and caspase-3. A broad caspase inhibitor (z-VAD-fmk), caspase-8 inhibitor (z-IETD-fmk), and caspase-3 inhibitor (z-DEVD-fmk) almost completely suppressed codonoposide 1c-induced DNA fragmentation. We further found that codonoposide 1c induces mitochondrial translocation of Bid from cytosol, reduction of cytosolic Bax, and cytochrome c release from mitochondria. Interestingly, codonoposide 1c also triggered the mitochondrial release of Smac/DIABLO (second mitochondria-derived activator of caspases/direct inhibitor of apoptosis-binding protein with a low isoelectric point) into cytosol, and a reduction in X-linked inhibitor of apoptosis protein (XIAP). Taken together, our data indicate that codonoposide 1c is a potent inducer of apoptosis and facilates its activity via Bid cleavage and translocation to mitochondria, Bax reduction in cytosol, release of cytochrome c and Smac/DIABLO into the cytosol, and subsequently caspase activation, providing a potential mechanism for the cytotoxic activity of codonoposide 1c.  相似文献   

19.
Fong WF  Zhang JX  Wu JY  Tse KW  Wang C  Cheung HY  Yang MS 《Planta medica》2004,70(6):489-495
The pyranocoumarin (+)-4'-O-acetyl-3 'O-angeloyl-cis-khellactone (PC) isolated from Radix Peucedani (root of Peucedanum praeruptorum Dunn) showed a dose-dependent effect at 10 -30 pg/mL on causing apoptotic DNA and nuclear fragmentations in HL-60 cells. After 24 h of PC treatment there were losses of mitochondrial membrane potential and cytochrome c. PC also increased total cellular and mitochondrial Bax protein, stimulated an increase in caspase-dependent Bcl-2 cleavage but showed no effect on Bcl-Xv. These observations strongly suggest activation of the mitochondria apoptotic pathway. The pan-specific caspase inhibitor, ZVAD-fmk, abolished the PC-induced apoptosis,whereas the caspase-8 inhibitor IETD-fmk showed no effect, implying the involvement of the caspase 9 pathway. PC caused a 2 to 12 hour transient increase in phospho-ERK, and a 72 h-long activation of JNK. Pre-treatment with the MEK inhibitor PD98059, which suppresses ERK activation, paradoxically promoted PC-induced mitochondrial cytochrome c release, procaspase-3 and -8 cleavage, and enhanced apoptosis. Our results show that PC triggers mitochondria-mediated apoptosis in HL-60 cells, and the involvement of ERK and JNK signal pathways in the process.  相似文献   

20.
Glaucocalyxin A (GLA) is a biologically active ent-kauranoid diterpenoid isolated from Rabdosia japonica var. glaucocalyx, a traditional Chinese medicinal herb, which has been shown to inhibit tumor cell proliferation. However, the mechanism underlying GLA-induced cytotoxicity remains unclear. In this study, we focused on the effect of GLA induction on apoptosis, the mitochondria-mediated death pathway and the accumulation of reactive oxygen species (ROS) in human leukemia cells (HL-60). GLA could induce a dose-dependent apoptosis in HL-60 cells as characterized by cell morphology, DNA fragmentation, activation of caspase-3, -9 and an increased expression ratio of Bax/Bcl-2. The mitochondrial membrane potential (Δψm) loss and cytochrome c release from mitochondria to cytosol were observed during the induction. Moreover, GLA caused a time- and dose-dependent elevation of intracellular ROS level in HL-60 cells, and N-acetyl-l-cysteine (NAC, a well-known antioxidant) could block GLA-induced ROS generation and apoptosis. These data suggest that GLA induces apoptosis in HL-60 cells through ROS-dependent mitochondrial dysfunction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号