首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have utilized immunofluorescence techniques to look for synaptic vesicle antigens on the plasma membrane of resting and active nerve terminals. Rabbit antiserum was raised against purified cholinergic synaptic vesicles from the electric organ of Narcine brasiliensis, a marine electric ray. Antibodies to synaptic vesicles were shown to bind selectively to nerve terminals in cryostat sections of frog nerve-muscle preparations. Binding was demonstrated indirectly by using fluorescein-labeled goat anti-rabbit antibodies. Structures in cross sections that bound antiserum were identified as nerve terminals because of their size, shape, and position and because they coincided with sites that bound rhodamine-conjugated alpha-bungarotoxin and had acetylcholine esterase activity. Presumably, sectioning gave antibodies access to binding sites within the nerve terminal. However, when antibodies to synaptic vesicles were added to the bathing medium of intact neuromuscular preparations prior to sectioning, antibody binding was marginal or undetectable, suggesting that few vesicle antigens were normally accessible on the outer surface of resting nerve terminals. When intact preparations were stimulated to release their vesicular acetylcholine by the addition of 1 mM LaCl3, antibody binding to the intact nerve terminals became striking. These findings suggest that the synaptic vesicle membrane and the synaptic terminal plasma membrane differ in composition. They also provide further support for the exocytotic hypothesis of neurotransmitter release, which predicts that vesicle markers should be exposed on the outside of nerve terminals when vesicles fuse with the plasma membrane during stimulation.  相似文献   

2.
The plasma membrane of electric organ nerve terminals has two domains that can be distinguished by monoclonal antibodies. A library of 111 mouse monoclonal antibodies raised to nerve terminals from Torpedo californica contains 4 antibodies that bind specifically to the outside of intact synaptosomes. The distribution of the binding sites of these monoclonal antibodies on the outside of intact nerve terminals was examined by immunofluorescence and immunoelectron microscopy. The binding sites of 3 (tor23, 25, and 132) are distributed uniformly over nerve trunks and fine terminal branches. The binding site of the fourth (tor70) is restricted to synaptic junctional regions. This antibody, but not the other 3, recognizes a major component of synaptic vesicles, a proteoglycan associated with the inner surface of the vesicle membrane. The difference in the pattern of binding of these monoclonal antibodies suggests that the region of the plasma membrane containing active zones is antigenically distinguishable from other nerve terminal plasma membrane. We suggest that the antigen recognized by tor70 is externalized by exocytosis of synaptic vesicles while other plasma antigens take a different route to the surface. The unexpected observation that the vesicle antigen remains on the surface after exocytosis and is prevented from diffusion from the synaptic junctional region would be consistent with an interaction between the vesicle proteoglycan and elements of the synaptic cleft.  相似文献   

3.
Brain contains two forms of synaptic vesicle protein 2.   总被引:12,自引:1,他引:11       下载免费PDF全文
Molecular cloning of a cDNA encoding synaptic vesicle protein 2 (SV2) revealed that it is homologous to a family of proton cotransporters from bacteria and fungi and to a related family of glucose transporters found in mammals. The similarity to proton cotransporters raised the possibility that SV2 might mediate the uptake of neurotransmitters into vesicles, an activity known to require a proton gradient. To determine whether SV2 is a member of a family of vesicular proteins, we used the SV2 clone to screen for similar cDNAs in rat brain. We characterized 42 clones, 25 of which encode SV2 and 4 of which encode a protein, SV2B, that is 65% identical and 78% similar to SV2. The protein encoded by SV2B cDNA is recognized by the monoclonal antibody that defines the SV2 protein. When SV2B is expressed in COS cells, antibody labeling is reticular in nature, suggesting that SV2B, like SV2 (hence, SV2A), is segregated to intracellular membranes. The expression of SV2B is limited to neural tissue. While both forms of SV2 are expressed in all brain regions, SV2B is expressed at highest levels in the cortex and hippocampus, whereas the highest level of expression of SV2A is in subcortical regions. Therefore, the SV2 proteins, like other characterized synaptic vesicle proteins, comprise a small gene family.  相似文献   

4.
Immunoglobulin G fractions from patients with Lambert-Eaton myasthenic syndrome (LEMS), an autoimmune disease of neuromuscular transmission, immunoprecipitate 125I-labeled omega-conotoxin GVIA-labeled calcium channels solubilized from rat brain. A 58-kDa antigen was detected by probing Western blots of partially purified calcium channels with LEMS plasma and IgG and was shown to be the relevant antigen in omega-conotoxin receptor immunoprecipitation. Monoclonal antibody 1D12, produced by immunizing mice with synaptic membranes, has properties similar to these autoimmune IgGs in both immunoprecipitation and Western blotting assays. 1D12 antigen was purified by immunoaffinity chromatography and shown to bind LEMS IgG. The antigen was identified by screening a rat brain cDNA library with 1D12 and was found to have strong homology to the synaptic vesicle membrane protein synaptotagmin. Our results indicate therefore that these antibodies immunoprecipitate omega-conotoxin receptors by binding to synaptotagmin that is associated with calcium channels. We suggest that the interaction between synaptotagmin and the voltage-gated calcium channel plays a role in docking synaptic vesicles at the plasma membrane prior to rapid neurotransmitter release and that autoantibody binding to a synaptotagmin-calcium-channel complex may be involved in the etiology of LEMS.  相似文献   

5.
Synaptotagmin (Syt) is an inositol high-polyphosphate series [IHPS inositol 1,3,4,5-tetrakisphosphate (IP4), inositol 1,3,4,5,6-pentakisphosphate, and inositol 1,2,3,4,5,6-hexakisphosphate] binding synaptic vesicle protein. A polyclonal antibody against the C2B domain (anti-Syt-C2B), an IHPS binding site, was produced. The specificity of this antibody to the C2B domain was determined by comparing its ability to inhibit IP4 binding to the C2B domain with that to inhibit the Ca2+/phospholipid binding to the C2A domain. Injection of the anti-Syt-C2B IgG into the squid giant presynapse did not block synaptic release. Coinjection of IP4 and anti-Syt-C2B IgG failed to block transmitter release, while IP4 itself was a powerful synpatic release blocker. Repetitive stimulation to presynaptic fiber injected with anti-Syt-C2B IgG demonstrated a rapid decline of the postsynaptic response amplitude probably due to its block of synaptic vesicle recycling. Electron microscopy of the anti-Syt-C2B-injected presynapse showed a 90% reduction of the numbers of synaptic vesicles. These results, taken together, indicate that the Syt molecule is central, in synaptic vesicle fusion by Ca2+ and its regulation by IHPS, as well as in the recycling of synaptic vesicles.  相似文献   

6.
Transport and storage of acetylcholine by purified Torpedo electric organ synaptic vesicles is blocked by the drug L-trans-2-(4-phenylpiperidino)cyclohexanol (AH-5183). This study sought evidence of a specific receptor for the drug. Highly tritiated L-trans-2-(4-phenyl [3,4-3H] piperidino)-cyclohexanol (L-[3H] AH5183) was synthesized. An excess of nonradioactive L-isomer competed with L-[3H]AH5183 for binding to purified Torpedo synaptic vesicles whereas nonradioactive D-isomer did so poorly. Dissociation of bound L-[3H]AH5183 was first order with a rate constant at 23 degrees C of 0.23 +/- 0.03 min-1, and association was too rapid to study. At equilibrium the amount of L-[3H]AH5183 bound at saturation varied in different vesicle preparations, but in one typical preparation specific binding of 181 +/- 15 pmol L-[3H]AH5183 per mg of synaptic vesicle protein was observed with a dissociation constant of 34 +/- 6 nM. Neither acetylcholine nor choline compete effectively with L-[3H]AH5183 for binding. The evidence suggests that about 3.7 +/- 0.3 enantioselective receptors for L-[3H]AH5183 are typically present in each cholinergic synaptic vesicle, and the L-AH5183 binding site does not recognize acetylcholine.  相似文献   

7.
Coated vesicles were isolated from rat liver by a modification of the procedure described by Nandi et al. for bovine brain (Proc. Natl. Acad. Sci. U.S.A. 1982; 79:5881-5885). The hepatic receptor for asialoglycoproteins was shown to be an integral constituent of these vesicles as evidenced by their ability to bind 125I-asialo-orosomucoid in a specific and saturable manner. The specific binding activity of the purified vesicles was 17-fold greater than that of the original liver homogenate based on a protein determination. Binding was 97% latent and was made fully manifest only after removal of the clathrin coat and disruption of the exposed smooth membrane vesicles by detergent. Based on this finding, it was concluded that the binding protein for asialoglycoproteins was oriented toward the inner surface of the vesicle. In addition, evidence is presented that purification procedures employing detergent may result in coated vesicles deficient in one or more integral membrane proteins.  相似文献   

8.
Synaptic vesicle protein 2 (SV2) is a membrane glycoprotein common to all synaptic and endocrine vesicles. Unlike many proteins involved in synaptic exocytosis, SV2 has no homolog in yeast, indicating that it performs a function unique to secretion in higher eukaryotes. Although the structure and protein interactions of SV2 suggest multiple possible functions, its role in synaptic events remains unknown. To explore the function of SV2 in an in vivo context, we generated mice that do not express the primary SV2 isoform, SV2A, by using targeted gene disruption. Animals homozygous for the SV2A gene disruption appear normal at birth. However, they fail to grow, experience severe seizures, and die within 3 weeks, suggesting multiple neural and endocrine deficits. Electrophysiological studies of spontaneous inhibitory neurotransmission in the CA3 region of the hippocampus revealed that loss of SV2A leads to a reduction in action potential-dependent gamma-aminobutyric acid (GABA)ergic neurotransmission. In contrast, action potential-independent neurotransmission was normal. Analyses of synapse ultrastructure suggest that altered neurotransmission is not caused by changes in synapse density or morphology. These findings demonstrate that SV2A is an essential protein and implicate it in the control of exocytosis.  相似文献   

9.
Actin is an abundant component of nerve terminals that has been implicated at multiple steps of the synaptic vesicle cycle, including reversible anchoring, exocytosis, and recycling of synaptic vesicles. In the present study we used the lamprey reticulospinal synapse to examine the role of actin at the site of synaptic vesicle recycling, the endocytic zone. Compounds interfering with actin function, including phalloidin, the catalytic subunit of Clostridium botulinum C2 toxin, and N-ethylmaleimide-treated myosin S1 fragments were microinjected into the axon. In unstimulated, phalloidin-injected axons actin filaments formed a thin cytomatrix adjacent to the plasma membrane around the synaptic vesicle cluster. The filaments proliferated after stimulation and extended toward the vesicle cluster. Synaptic vesicles were tethered along the filaments. Injection of N-ethylmaleimide-treated myosin S1 fragments caused accumulation of aggregates of synaptic vesicles between the endocytic zone and the vesicle cluster, suggesting that vesicle transport was inhibited. Phalloidin, as well as C2 toxin, also caused changes in the structure of clathrin-coated pits in stimulated synapses. Our data provide evidence for a critical role of actin in recycling of synaptic vesicles, which seems to involve functions both in endocytosis and in the transport of recycled vesicles to the synaptic vesicle cluster.  相似文献   

10.
The GTPase dynamin I is required for synaptic vesicle (SV) endocytosis. Our observation that dynamin binds to the SV protein synaptophysin in a Ca(2+)-dependent fashion suggested the possibility that a dynamin/synaptophysin complex functions in SV recycling. In this paper we show that disruption of the dynamin/synaptophysin interaction by peptide injection into the squid giant synapse preterminal results in a decrease in transmitter release during high-frequency stimulation, indicating an inhibition of SV recycling. Electron microscopy of these synapses reveals a depletion of SVs, demonstrating a block of vesicle retrieval after fusion. In addition, we observed an increase in clathrin-coated vesicles, indicating that the peptide does not block clathrin-dependent endocytosis. We conclude that the dynamin/synaptophysin complex functions in a clathrin-independent mechanism of SV endocytosis that is required for efficient synaptic transmission.  相似文献   

11.
Exocytosis of synaptic vesicles (SVs) during fast synaptic transmission is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly formed by the coil-coiling of three members of this protein family: vesicle SNARE protein, synaptobrevin 2 (syb2), and the presynaptic membrane SNAREs syntaxin-1A and SNAP-25. However, it is controversially debated how many SNARE complexes are minimally needed for SV priming and fusion. To quantify this effective number, we measured the fluorescence responses from single fusing vesicles expressing pHluorin (pHl), a pH-sensitive variant of GFP, fused to the luminal domain of the vesicular SNARE syb2 (spH) in cultured hippocampal neurons lacking endogenous syb2. Fluorescence responses were quantal, with the unitary signals precisely corresponding to single pHluorin molecules. Using this approach we found that two copies of spH per SV fully rescued evoked fusion whereas SVs expressing only one spH were unable to rapidly fuse upon stimulation. Thus, two syb2 molecules and likely two SNARE complexes are necessary and sufficient for SV fusion during fast synaptic transmission.  相似文献   

12.
In nonneuronal cells, several plasma membrane proteins such as exofacial enzymes, receptors, and ion channels recycle between their intracellular compartment(s) and the cell surface via an endosomal pathway. In neurons, however, this pathway has not been extensively characterized. In particular, it remains unclear whether or not it is related to the recycling of small synaptic vesicles, the major pathway of membrane traffic in nerve terminals. To approach this problem, we purified and studied a vesicular fraction from rat brain synaptosomes. Two distinct populations of vesicles with different buoyant densities and sedimentation coefficients were detected in this fraction by sucrose gradient centrifugation and Western blot analysis of the individual proteins. Both populations contain proteins that are markers of synaptic vesicles, namely, SV2, synaptotagmin, synaptophysin, secretory carrier membrane proteins (SCAMPs), synaptobrevin, and rab3a. A striking difference between the two populations is the presence of arginine aminopeptidase activity (a previously suggested marker for the regulated endosomal recycling pathway) exclusively in the lighter less-dense vesicles. The same two vesicular populations were also detected in the preparation of clathrin-coated vesicles isolated from whole rat brain or purified synaptosomes after removal of their clathrin coats by incubation at pH 8.5. We conclude, therefore, that both types of vesicles recycle in synaptosomes via a clathrin-mediated pathway. These data present experimental evidence for biochemical heterogeneity of synaptic-like vesicles in rat brain.  相似文献   

13.
Synapsin I is a synaptic vesicle-associated phosphoprotein that has been implicated in the formation of presynaptic specializations and in the regulation of neurotransmitter release. The nonreceptor tyrosine kinase c-Src is enriched on synaptic vesicles, where it accounts for most of the vesicle-associated tyrosine kinase activity. Using overlay, affinity chromatography, and coprecipitation assays, we have now shown that synapsin I is the major binding protein for the Src homology 3 (SH3) domain of c-Src in highly purified synaptic vesicle preparations. The interaction was mediated by the proline-rich domain D of synapsin I and was not significantly affected by stoichiometric phosphorylation of synapsin I at any of the known regulatory sites. The interaction of purified c-Src and synapsin I resulted in a severalfold stimulation of tyrosine kinase activity and was antagonized by the purified c-Src-SH3 domain. Depletion of synapsin I from purified synaptic vesicles resulted in a decrease of endogenous tyrosine kinase activity. Portions of the total cellular pools of synapsin I and Src were coprecipitated from detergent extracts of rat brain synaptosomal fractions using antibodies to either protein species. The interaction between synapsin I and c-Src, as well as the synapsin I-induced stimulation of tyrosine kinase activity, may be physiologically important in signal transduction and in the modulation of the function of axon terminals, both during synaptogenesis and at mature synapses.  相似文献   

14.
During the synaptic vesicle cycle, synaptic vesicles fuse with the plasma membrane and recycle for repeated exo/endocytic events. By using activity-dependent N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino) styryl) pyridinium dibromide dye uptake combined with fast (<1 s) microwave-assisted fixation followed by photoconversion and ultrastructural 3D analysis, we tracked endocytic vesicles over time, “frame by frame.” The first retrieved synaptic vesicles appeared 4 s after stimulation, and these endocytic vesicles were located just above the active zone. Second, the retrieved vesicles did not show any sign of a protein coat, and coated pits were not detected. Between 10 and 30 s, large labeled vesicles appeared that had up to 5 times the size of an individual synaptic vesicle. Starting at around 20 s, these large labeled vesicles decreased in number in favor of labeled synaptic vesicles, and after 30 s, labeled vesicles redocked at the active zone. The data suggest that readily releasable vesicles are retrieved as noncoated vesicles at the active zone.The mechanisms that govern synaptic vesicle (SV) retrieval have been debated since the discovery of the SV cycle (1, 2). Currently the two original mechanisms via coated vesicles and via “kiss and run” are proposed for mammalian excitatory central synapses (36). The proposed clathrin-mediated mechanism that retrieves the membrane via coated vesicles has comparable slow kinetics (7) (15–40 s until the endocytic vesicle separates from the plasma membrane) and a retrieval site outside the active zone (8, 9). First, the SV fully collapses into the release site and diffuses outside the active zone either as an entity or by its parts. At regions outside the active zone, coated pits form that sort SV proteins, and eventually a coated endocytic vesicle pinches off the plasma membrane. It is generally believed that coated vesicles shed their coat and fuse with early endosomes from which SVs bud off that join the SV cluster (8). This endosomal budding step is also believed to be mediated via coated vesicles. In contrast, SV retrieval via kiss and run has faster kinetics (10, 11) (<1 s), and SVs are retrieved at the active zone. During kiss and run, the SV is thought to maintain its identity and SVs are available for redocking and rapid reuse (1214). Because SVs maintain their identity, fusion steps with potential endosomal compartments after endocytosis are not believed to occur after kiss and run.There is overwhelming evidence that SV retrieval at mammalian central synapses depends on the major coat protein clathrin, but the visualization of coated vesicles shortly after physiological stimulation has only been shown for lower vertebrate synapses (8, 15, 16). Kiss and run, on the other hand, is not generally accepted as a retrieval mechanism at mammalian central synapses. Several fluorescent imaging techniques (e.g., pHluorin-based SV protein chimeras and nanoparticles) recently provided unique insights into kiss and run (6), but many open questions remain. The visualization of a labeled endocytic vesicle at or near the active zone right after a physiological stimulus would provide elegant additional proof for kiss and run. More so, if one could follow such a labeled vesicle until “redocking,” it would greatly facilitate the investigation of the various steps SVs pass through on their way through the SV cycle.Here, we introduce a technique that is based on activity-dependent labeling of SV retrieval with N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino) styryl) pyridinium dibromide (FM1-43) followed by photoconversion and electron microscopic 3D analysis. This technique is combined with fast microwave-assisted fixation, ensuring a high time resolution that allows tracking of endocytic vesicles “frame by frame”—that is, at distinct time points (0, 4, 10, 20, 30, and 40 s) after stimulation.  相似文献   

15.
In light of the rising prevalence of Alzheimer’s disease (AD), new strategies to prevent, halt, and reverse this condition are needed urgently. Perturbations of brain network activity are observed in AD patients and in conditions that increase the risk of developing AD, suggesting that aberrant network activity might contribute to AD-related cognitive decline. Human amyloid precursor protein (hAPP) transgenic mice simulate key aspects of AD, including pathologically elevated levels of amyloid-β peptides in brain, aberrant neural network activity, remodeling of hippocampal circuits, synaptic deficits, and behavioral abnormalities. Whether these alterations are linked in a causal chain remains unknown. To explore whether hAPP/amyloid-β–induced aberrant network activity contributes to synaptic and cognitive deficits, we treated hAPP mice with different antiepileptic drugs. Among the drugs tested, only levetiracetam (LEV) effectively reduced abnormal spike activity detected by electroencephalography. Chronic treatment with LEV also reversed hippocampal remodeling, behavioral abnormalities, synaptic dysfunction, and deficits in learning and memory in hAPP mice. Our findings support the hypothesis that aberrant network activity contributes causally to synaptic and cognitive deficits in hAPP mice. LEV might also help ameliorate related abnormalities in people who have or are at risk for AD.  相似文献   

16.
Neurotransmitters are stored in synaptic vesicles, where they have been assumed to be in free solution. Here we report that in Torpedo synaptic vesicles, only 5% of the total acetylcholine (ACh) or ATP content is free, and that the rest is adsorbed to an intravesicular proteoglycan matrix. This matrix, which controls ACh and ATP release by an ion-exchange mechanism, behaves like a smart gel. That is, it releases neurotransmitter and changes its volume when challenged with small ionic concentration change. Immunodetection analysis revealed that the synaptic vesicle proteoglycan SV2 is the core of the intravesicular matrix and is responsible for immobilization and release of ACh and ATP. We suggest that in the early steps of vesicle fusion, this internal matrix regulates the availability of free diffusible ACh and ATP, and thus serves to modulate the quantity of transmitter released.  相似文献   

17.
Synaptic vesicles have a Ca(2+)-dependent protein kinase system that may play a role in mediating Ca(2+)-stimulated neurotransmitter release and vesicle function. Calcium's ability to initiate norepinephrine release and protein phosphorylation in synaptic vesicle preparations was shown to be stimulated by the presence of an endogenous heat-stable vesicle protein fraction. The heat stability and characteristics of this endogenous vesicle fraction were similar to those of calmodulin (Ca(2+)-dependent regular protein) isolated from rat and bovine brain. Calmodulin, like endogenous heat-stable vesicle factor, restored calcium's ability to stimulate vesicle neurotransmitter release and protein kinase activity. Calmodulin-like vesicle protein and purified calmodulin were also equally effective in stimulating cyclic nucleotide-dependent phosphodiesterase, further indicating that these two proteins are functionally equivalent. Depolarization-dependent Ca(2+) uptake in intact synaptosomes simultaneously stimulated release of neurotransmitter and phosphorylation of particular synaptic vesicle proteins that were shown in the isolated vesicle preparation to be dependent on Ca(2+) and calmodulin. The results suggest that calcium's effects on neurotransmitter release and presynaptic nerve terminal protein phosphorylation may be mediated by endogenous calmodulin-like proteins.  相似文献   

18.
Since the demonstration that Ca2+ influx into the presynaptic terminal is essential for neurotransmitter release, there has been much speculation about the Ca2+ receptor responsible for initiating exocytosis. Numerous experiments have shown that the protein, or protein complex, binds multiple Ca2+ ions, resides near the site of Ca2+ influx, and has a relatively low affinity for Ca2+. Synaptotagmin is an integral membrane protein of synaptic vesicles that contains two copies of a domain known to be involved in Ca(2+)-dependent membrane interactions. Synaptotagmin has been shown to bind Ca2+ in vitro with a relatively low affinity. In addition, synaptotagmin has been shown to bind indirectly to Ca2+ channels, positioning the protein close to the site of Ca2+ influx. Recently, a negative regulatory role for synaptotagmin has been proposed, in which it functions as a clamp to prevent fusion of synaptic vesicles with the presynaptic membrane. Release of the clamp would allow exocytosis. Here we present genetic and electrophysiological evidence that synaptotagmin forms a multimeric complex that can function as a clamp in vivo. However, upon nerve stimulation and Ca2+ influx, all synaptotagmin mutations dramatically decrease the ability of Ca2+ to promote release, suggesting that synaptotagmin probably plays a key role in activation of synaptic vesicle fusion. This activity cannot simply be attributed to the removal of a barrier to secretion, as we can electrophysiologically separate the increase in rate of spontaneous vesicle fusion from the decrease in evoked response. We also find that some syt mutations, including those that lack the second Ca(2+)-binding domain, decrease the fourth-order dependence of release on Ca2+ by approximately half, consistent with the hypothesis that a synaptotagmin complex functions as a Ca2+ receptor for initiating exocytosis.  相似文献   

19.
rab3, a low molecular weight GTP-binding protein, is primarily expressed in brain, where it is present in soluble and membrane-bound forms. Membrane-bound rab3 in brain is exclusively localized on synaptic vesicles, the secretory organelles of the synapse that store and release neurotransmitters. rab3 is also expressed in endocrine tissues such as the adrenal medulla, where it is found together with other synaptic vesicle proteins on microvesicles distinct from chromaffin granules. The tight binding of rab3 to membranes correlates with hydrophobic modifications that are different in the membrane-bound and soluble forms of rab3. The results demonstrate the exclusive targeting of a small GTP-binding protein to secretory vesicles of a subset of the regulated pathway of secretion.  相似文献   

20.
Some cell types have cytoplasmic storage vesicles whose fusion with the cell surface is triggered by an extracellular signal. To explore the relationship between different classes of storage vesicles, we expressed, in the neuro-endocrine cell line PC12, the facilitative glucose transporter GLUT4, which is stored in small cytoplasmic vesicles in fat and muscle cells and mobilized to the cell surface when insulin is present. PC12 cells have two known types of storage vesicles, secretory granules and synaptic vesicles, but GLUT4 is targeted to neither. It is recovered, however, in a class of small vesicles that sediment approximately twice as fast as synaptic vesicles. Immunoelectron microscopy confirmed the presence of such small vesicles in transfected PC12 cells. By velocity sedimentation analysis, GLUT4 vesicles efficiently exclude the synaptic vesicle markers synaptophysin, SV2, and synaptobrevin; the transferrin receptor, a marker of conventional endocytosis; and the polymeric immunoglobulin receptor, a marker of transcytosis. The exclusion of synaptophysin and the transferrin receptor from most of the GLUT4-containing structures was confirmed by confocal immunofluorescence microscopy. Like synaptic vesicles, therefore, GLUT4 vesicles of PC12 cells appear to be a unique type of organelle. A GLUT4-containing organelle of identical sedimentation properties was found in transfected fibroblast cell lines and in rat adipocytes. On stimulation of the adipocytes with insulin, GLUT4 was translocated from the peak of small vesicles to faster sedimenting membranes. We propose that the class of vesicles described here is present in a wide range of cell types and is involved in transient modification of the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号