首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
BACKGROUND: Thymic irradiation (TI) or repeated administration of T cell-depleting monoclonal antibodies (TCD mAbs) is required in a previously described non-myeloablative regimen allowing allogeneic marrow engraftment with stable mixed chimerism and tolerance. As both treatments might be associated with toxicity in the clinical setting, we evaluated whether T-cell costimulatory blockade could be used to replace them. METHODS: C57BL/6 mice received depleting anti-CD4 and anti-CD8 mAbs on day -5, 3 Gy whole body irradiation (day 0), and 15x10(6) fully MHC-mismatched, B10.A bone marrow cells. In addition, hosts were injected with an anti-CD154 mAb (day 0) and/or CTLA4Ig (day +2). Chimerism in peripheral blood was followed by flow cytometric (FACS) analysis, and tolerance was assessed by skin grafting, and also by mixed lymphocyte reaction (MLR) and cell-mediated lympholysis (CML) assays. The frequency of certain Vbeta families was determined by FACS to assess deletion of donor-reactive T cells. RESULTS: Chimerism was transient and tolerance was not present in animals receiving TCD mAbs on day -5 without costimulatory blockade. The addition of anti-CD154 and CTLA4Ig, alone or in combination, reliably permitted induction of high levels of stable (>6 months) multi-lineage chimerism, with specific tolerance to skin grafts and donor antigens by MLR and CML assays. Long-term chimeras showed deletion of donor-reactive CD4+ peripheral blood lymphocytes, splenocytes, and mature thymocytes. Administration of TCD mAbs only 1 day before bone marrow transplantation plus anti-CD154 also allowed induction of permanent chimerism and tolerance. CONCLUSIONS: One injection of anti-CD154 or CTLA4Ig overcomes the need for TI or prolonged host TCD in a preclinical model for the induction of mixed chimerism and deletional tolerance and thus further decreases the toxicity of this protocol. Achievement of tolerance with conditioning given over 24 hr suggests applicability to cadaveric organ transplantation.  相似文献   

2.
We have previously shown that high levels of multiline-age mixed hematopoietic chimerism and systemic T-cell tolerance can be achieved in mice without myeloablation through the use of anti-CD40L and costimulatory blockade alone (plus CTLA4Ig) or with recipient CD8 depletion and allogeneic bone marrow transplantation. Chimeric mice permanently accept donor skin grafts (> 100 days), and rapidly reject third-party grafts. The mechanisms by which costimulatory blockade facilitates the engraftment of allogeneic hematopoietic cells have not been defined. To further understand the in vivo mechanisms by which the administration of anti-CD40L mAb facilitates the engraftment of donor bone marrow and rapidly tolerizes CD4+ T cells, we analyzed the establishment of chimerism and tolerance in CD40L -/- mice. We demonstrate here that anti-CD40L mAb treatment is required only to prevent CD40L/CD40 interactions, and that no signal to the T cell through CD40L is necessary for the induction of CD4+ tolerance. Peripheral deletion of donor-reactive CD4+ T cells occurs rapidly in CD40L -/- mice receiving bone marrow transplantation (BMT), indicating that this deletion in the presence of anti-CD40L is not due to targeting of activated CD4+ cells by the antibody. Complete CD4+ cell tolerance is observed by both skin graft acceptance and in vitro assays before deletion is complete, indicating that additional mechanisms play a role in inducing CD4+ T-cell tolerance as the result of BMT in the presence of CD40/CD40L blockade.  相似文献   

3.
T-cell costimulatory blockade as a constituent for recipient conditioning prior to bone marrow transplantation has led to the development of less toxic protocols for the establishment of donor cell chimerism. We therefore hypothesized that the addition of the hematopoietic growth factor, Flt3-ligand (Flt3-L), to the perioperative inhibition of the CD28/B7 and CD40/CD40 ligand costimulatory pathways would enhance the engraftment of allogeneic bone marrow. Recipient BALB/c ByJ (H-2(d), Mls(c), Vbeta6+/Vbeta8+ TCR) received a single sublethal dose of total body irradiation (300 rad) 6 h prior to transplantation IV with unfractionated donor CBA/J (H-2(k), Mls(d), Vbeta6-/Vbeta8+ TCR) bone marrow cells. CTLA4-Ig and/or MRI were administered at 500 microg IP on days 0, 2, 4, and 6 posttransplantation. Flt3-L was administered at 10 microg IP on days 0-6. Donor cell chimerism was determined on days 30-90 by flow cytometric analysis. Donor-specific tolerance was assessed by skin grafting. In vitro TCR cross-linking assays and flow cytometry were utilized to explore the deletion of donor-reactive T cells. Recipients receiving CTLA4-Ig and MRI engrafted allogeneic bone marrow cells in the peripheral blood (3/6; 50%) with chimerism being detected at 2-31%. Addition of Flt3-L to this preconditioning regimen enhanced the incidence of engraftment of donor bone marrow cells (10/13; 3-70%). Long-term survival of donor but not third-party-specific skin grafts demonstrated that donor-specific tolerance had been achieved in the chimeric recipients. Deletion of the donor-reactive T cells within the chimeric recipients was also observed. The addition of hematopoietic growth factors and cytokines to the nonmyeloablative regimen of sublethal irradiation and T-cell costimulatory blockade provides a novel strategy for the establishment of donor cell chimerism and for the induction of stable and robust donor-specific tolerance. The deletion of donor-reactive T cells using this protocol suggests the reliability and feasibility of this protocol for clinical transplantation.  相似文献   

4.
BACKGROUND: Induction of mixed chimerism and tolerance usually requires cytoreduction or transplantation of high numbers of bone marrow cells (BMC). However, such protocols have only a suboptimal success rate and, more importantly, equivalent numbers of BMC cannot be routinely obtained in the clinical setting. The authors therefore evaluated whether a short-course of immunosuppression (IS) given in addition to co-stimulation blockade would facilitate chimerism induction and allow reduction of the minimally required number of BMC without cytoreduction. METHODS: B6 mice received 200, 100, or 50 x 10 unseparated BMC from Balb/c donors plus an anti-CD40L monoclonal antibody (mAb) and CTLA4Ig (without irradiation or cytotoxic drugs). Some groups were treated additionally with IS (rapamycin, methylprednisolone, and mycophenolate mofetil for 4 weeks after bone marrow transplantation), donor-specific transfusion (DST), or anti-OX40L mAb, as indicated. RESULTS: IS led to long-term multilineage chimerism in 9 of 10 mice receiving 200 x 10 BMC (without IS, 1 of 4; P<0.05), in all mice (n=10) receiving 100 x 10 (without IS, 6 of 9; P<0.05), and notably in 9 of 10 mice treated with 50 x 10 BMC (without IS, 4 of 10; P<0.05). With transient IS, donor skin grafts were accepted longer than 170 days in 9 of 10 mice receiving 200 x 10 (without IS, 0 of 5 mice; P<0.05), all mice receiving 100 x 10 (without IS, 6 of 9; P<0.05), and 6 of 11 mice receiving 50 x 10 BMC (without IS, 4 of 10). The use of DST or anti-OX40L mAb had no beneficial effect. CONCLUSIONS: Transient IS significantly improves rates of chimerism and donor skin graft survival, and allows lasting mixed chimerism after transplantation of only 50 x 10 BMC. Thus, IS might help in the further development of noncytoreductive chimerism protocols.  相似文献   

5.
BACKGROUND: It has been hypothesized that regimens to induce transplantation tolerance and long-term hematopoietic chimerism require recipient conditioning with whole body irradiation or a cytoablative regimen to create space within the marrow microenvironment to permit pluripotent stem cell engraftment. The purpose of this study was to determine if transplantation of an intact bone marrow microenvironment in the form of a bone graft would permit stable hematopoietic stem cell engraftment, shape the repertoire of developing T cells, and induce donor-specific unresponsiveness in the absence of a conditioning regimen. METHODS: Fragments of femur were transplanted under the kidney capsule of recipient mice. At defined time points after bone graft transplantation recipients were assayed for chimerism, bone graft viability, and responses to donor and third party alloantigens in vitro and in vivo. RESULTS: In the absence of an immunological barrier, bone graft transplantation resulted in long-term multi-lineage hematopoietic chimerism in the peripheral blood. Nude bone graft transplantation into SCID recipients resulted in development of donor- derived T cells that underwent negative selection on bone graft derived I-E+ cells within the thymus. Across a fully allogeneic barrier in immunocompetent recipients treated with combined blockade of the CD40 and CD28 pathways bone graft transplantation resulted in long-term donor-specific hyporesponsiveness in vitro and acceptance of donor specific skin grafts. CONCLUSIONS: Transplantation of bone marrow in the form of a bone graft may facilitate the production of hematopoietic chimerism and lead to long-term donor-specific hyporesponsiveness in the absence of a cytoreductive conditioning regimen.  相似文献   

6.
BACKGROUND: Xenotransplantation holds great promise in clinical medicine, but is limited by the vigorous rejection response elicited against solid organs transplanted across species barriers. In this study, we investigated the role of anti-CD40L monoclonal antibody (mAb) in inducing xenogeneic mixed chimerism and donor-specific heart transplantation tolerance. METHODS: One day before heart transplantation, mice were injected intraperitoneally with anti-mouse CD8/NK1.1/Thy1.2 mAbs. On day 0, the mice received 3 Gy total body irradiation (TBI), an intravenous injection of unseparated bone marrow (BM) harvested from F344 rats, and an intraperitoneal injection of hamster antimouse CD40L mAb, MR1. Heart grafts from F344 rats were heterotopically transplanted into the abdomen of B6 mouse recipients. Using flow cytometric analysis of peripheral white blood cells, we assessed donor hematopoiesis at various times after bone marrow transplantation (BMT). RESULTS: Chimerism subsided gradually and disappeared completely 18 weeks after BMT. The cardiac graft survived permanently, even after the mixed chimerism disappeared. To determine if the mice acquired donor-specific tolerance, second rat heart grafts were transplanted 120 days after the first heart transplantation. The second transplanted hearts were also accepted over 60 days. Histological analysis revealed no remarkable vasculopathy in the coronary vessels at any stage. CONCLUSIONS: These findings clearly show that costimulatory blockade plays an important role in inducing xenochimerism, and that transient mixed chimerism can induce permanent acceptance of rat to mouse cardiac xenografts. Transplantation of xenogeneic bone marrow cells under costimulatory blockade at the time of heart transplantation may induce transplantation tolerance.  相似文献   

7.
Chen J  He Q  Xu H  Su L  Zhang J  Xiong S 《Transplant immunology》2004,13(4):283-288
Costimulatory blockade with CD28 peptidemimic (CD28PM, CD28 PM was synthesized by solid phase synthetic methods) prolongs cardiac allograft survival in mice, but has not reliably induced tolerance when used alone. In the current studies, we evaluated the effect of adding B7 blockade to a chimerism inducing nonmyeloablative regimen in mice and observed a significant improvement of donor bone marrow cells (BMC) engraftment, which had been associated with mixed chimerism and long-term survival of cardiac allografts. The mixed lymphocyte reaction (MLR) and the ear pinna cardiac transplantation model were performed to evaluate the effects of CD28PM in induction of specific immune hypo-response and extension of allograft survival. The expressed rates of B7.1 and B7.2 on the C57BL/6 splenocytes were 56.25% and 20.52%, respectively. The specific hypo-response status was established after immunization with CD28PM pre-treated donor splenocytes and the average inhibition rate was only 43% compared with normal control. Subsequently, a total number of 2 x 10(7) bone marrow cells per mouse were implanted to the recipients. The allogenic chimerism was obviously observed with the rate as high as 8.84% (mean) at the time point of day 14. During the first 50 days post bone marrow transfusion (BMT) the chimerism rate declined stepwise. But from 50 to 100 days, the chimerism rate sustained in a range of 3.35% to 4.6%. The results of transplantation experiments showed the survival of allgenic cardiac grafts were maintained over 100 days in recipients. Thus, donor BMC engraftment with mixed chimerism appears essential for induction of allograft tolerance using this conditioning regimen. Mixed chimerism approach, by the addition of CD28-B7 costimulatory blockade with CD28PM, has been shown to establish mixed chimerism and induce cardiac allograft tolerance in mice.  相似文献   

8.
Effective immunomodulation to induce tolerance to tissue/organ allografts is attained by infusion of donor lymphocytes endowed with killing capacity through ectopic expression of a short-lived Fas-ligand (FasL) protein. The same approach has proven effective in improving hematopoietic stem and progenitor cell engraftment. This study evaluates the possibility of substitution of immune cells for bone marrow cells (BMC) to induce FasL-mediated tolerance to solid organ grafts. Expression of FasL protein on BMC increased the survival of simultaneously grafted vascularized heterotopic cardiac grafts to 90%, as compared to 30% in recipients of naïve BMC. Similar results were obtained for skin allografts implanted into radiation chimeras at 1 week after bone marrow transplantation. Further reduction of preparative conditioning to busulfan resulted in acceptance of donor skin implanted at 2 weeks after transplantation of naïve and FasL-coated BMC, whereas third-party grafts were acutely rejected. The levels of donor chimerism were in the range of 0.7% to 12% at the time of skin grafting, with higher levels in recipients of FasL-coated BMC. It is concluded that FasL-mediated abrogation of alloimmune responses can be effectively attained with BMC. There is no threshold of donor chimerism, but tolerance to solid organs evolves during the process of donor-host mutual acceptance.  相似文献   

9.
BACKGROUND: The major impediment to success in solid organ transplantation is chronic rejection (CR). The characteristic lesion of CR is transplant vascular sclerosis (TVS). Although the mechanism of TVS is thought to have an immunologic basis, in humans immunosuppression does not prevent or reverse it. One possible therapy to prevent TVS is induction of donor-specific tolerance. Bone marrow chimerism has been successful in inducing tolerance in acute and chronic rejection heart and kidney transplant models. The highly immunogenic small bowel (SB) allograft provides a rigorous test of the efficacy of this tolerance regimen. We examined whether induction of tolerance by bone marrow chimerism could prevent TVS in a model of Fisher 344 (F344) to Lewis (LEW) rat SB transplantation. METHODS: Bone marrow chimeras (BMC) were created by transplantation of T-cell-depleted F344 bone marrow into irradiated LEW rats. Chimerism was assessed by flow cytometric method. F344 SB, heterotopically transplanted into the chimeras, was clinically and histologically assessed for CR. F344 SB grafts, transplanted into cyclosporine-A-treated LEW recipients, served as control grafts for CR. RESULTS: Cyclosporine-A-treated LEW rats chronically rejected F344 SB grafts. By contrast, the BMC group demonstrated tolerance and had long-term SB graft survival (>120 days) without TVS. The BMC demonstrated immunocompetence by prompt rejection of third party ACI (RT1av1) SB allografts. CONCLUSIONS: Bone marrow chimerism prevents chronic graft failure secondary to TVS in a model of chronic SB rejection. TVS fails to develop when tolerance is established, suggesting that the mechanisms involved in TVS are, in part, immunologically mediated.  相似文献   

10.
It was reported that the dose of self-antigens can determine the consequence of deletional tolerance and donor T cells are critical for tolerance induction in mixed chimeras. This study aimed at assessing the effect of cell doses and marrow T cells on engraftment and tolerance induction after prenatal bone marrow transplantation. Intraperitoneal cell transplantation was performed in FVB/N (H-2K(q)) mice at gestational day 14 with escalating doses of adult C57BL/6 (H-2K(b)) marrows. Peripheral chimerism was examined postnatally by flow cytometry and tolerance was tested by skin transplantation. Transplantation of light-density marrow cells showed a dose response. High-level chimerism emerged with a threshold dose of 5.0 x 10(6) and host leukocytes could be nearly replaced at a dose of 7.5-10.0 x 10(6). High-dose transplants conferred a steady long-lasting donor-specific tolerance but were accompanied by >50% incidence of graft-versus-host disease. Depletion of marrow T cells lessened graft-versus-host disease to the detriment of engraftment. With low-level chimerism, tolerance was a graded phenomenon dependent upon the level of chimerism. Durable chimerism within 6 months required a threshold of > or = 2% chimerism at 1 month of age and predicted a 50% chance of long-term tolerance, whereas transient chimerism (<2%) only caused hyporesponsiveness to the donor. Tolerance induction did not succeed without peripheral chimerism even if a large amount of injected donor cells persisted in the peritoneum. Neither did an increase in cell doses or donor T-cell contents benefit skin graft survivals unless it had substantially improved peripheral chimerism. Thus, peripheral chimerism level can be a simple and straightforward test to predict the degree of prenatal immune tolerance.  相似文献   

11.
Anti-CD40L mAb plus bone marrow transplantation (BMT) and recipient CD8 T-cell depletion permits long-term mixed hematopoietic chimerism and systemic donor-specific tolerance to be achieved across full MHC barriers. Initial tolerance is characterized by peripheral deletion of donor-reactive CD4 cells. In regimens using costimulatory blockade without BMT to achieve allograft survival, cyclosporine inhibited graft survival, suggesting that the combination may not be clinically applicable. We assessed the role of cyclosporine-sensitive mechanisms and the mechanisms of T-cell apoptosis involved in the induction of early peripheral CD4+ T-cell tolerance by BMT with anti-CD40L. Neither a short course of cyclosporine (14 days) nor the absence of FAS-mediated activation-induced cell death (AICD) blocked the induction or maintenance of donor-specific tolerance. IL-2 production was not associated with tolerance induction, consistent with the lack of a role for Fas-mediated AICD. Mice in which passive T-cell death was impaired because of constitutive expression of a Bcl-xL transgene did not develop tolerance with this protocol. These data confirm that deletion of donor-reactive T cells is critical for the induction of mixed chimerism and tolerance. However, the mechanisms involved may differ from those involved in costimulatory blockade regimens that do not include BMT.  相似文献   

12.
Bagley J  Tian C  Sachs DH  Iacomini J 《Transplantation》2002,74(10):1454-1460
BACKGROUND: In order for gene therapy to attain clinical relevance, efficient engraftment and long-term survival of cells that express transduced genes of interest must be achieved. In this study, we examined the extent to which host T cells affect engraftment of syngeneic bone marrow cells engineered to express a retrovirally transduced allogeneic major histocompatibility complex class-I gene. METHODS: B10.AKM mice were preconditioned with lethal irradiation or lethal irradiation plus transient CD4 and CD8 T-cell depletion in addition to CD40-CD154 costimulatory blockade and were then reconstituted with syngeneic bone marrow cells transduced with retroviruses that carried the gene that encoded H-2K(b) (K(b)). Expression of K(b) on bone marrow-derived cells was then analyzed, and induction of tolerance to K was evaluated. RESULTS: Mice conditioned using CD4 and CD8 T-cell depletion in addition to CD40-CD154 costimulatory blockade and lethal irradiation showed a significant increase in the frequency of bone marrow-derived cells that expressed K(b) when compared to animals that received lethal irradiation alone. Survival of allogeneic skin grafts that expressed K(b) was significantly prolonged in animals conditioned with anti-CD4, anti-CD8, and co-stimulatory blockade in addition to lethal irradiation (median survival time, 81 days) when compared to mice that received irradiation alone (mean survival time, 31 days; P=0.001). CONCLUSIONS: Radioresistant host T cells significantly affect the ability to induce tolerance by gene therapy by affecting engraftment of transduced cells that expressed allogeneic major histocompatibility complex class-I genes in the absence of host T-cell depletion and costimulatory blockade, even after lethal irradiation. Thus, radioresistant host T cells are a significant barrier to engraftment of transduced bone marrow progenitors and to the induction of tolerance by gene therapy.  相似文献   

13.
Umemura A  Monaco AP  Maki T 《Transplantation》2000,70(7):1005-1009
BACKGROUND: Postgraft infusion of donor bone marrow cells (BMC) effectively induces tolerance to skin allografts in antilymphocyte serum- and rapamycin-treated recipients in fully major histocompatibility complex-mismatched mouse strain combinations. We used various gene knockout mice to examine the role of donor T cells and B cells in BMC-induced allograft tolerance. METHODS: All recipient mice received ALS on days -1 and 2 and rapamycin (6 mg/kg) on day 7 relative to fully major histocompatibility complex-mismatched skin grafting on day 0. Donor BMC prepared either from mice lacking CD4- and/or CD8a-, or CD3epsilon-expressing cells or B cells, or from corresponding wildtype mice, were given on day 7. The level and phenotypes of chimerism was determined by flow cytometry. RESULTS: All T cell- and B cell-deficient BMC were as effective as wild-type BMC in inducing prolongation of skin graft survival. A low degree of chimerism without donor type T cells was detected in tolerant mice given T cell-deficient BMC or wild-type BMC 60 days after transplantation. Chimeric cells were composed of B cells and macrophages/monocytes. Low level chimerism without donor T or B cells was also present in tolerant mice given B cell-deficient BMC. CONCLUSION: Donor type T cells and T cell chimerism are not required for induction of allograft tolerance by the antilymphocyte serum/rapamycin/donor BMC-infusion protocol. Donor B cells also do not participate in tolerance induction. Thus, infusion of T cell-depleted BMC in conjunction with conventional immunosuppressive regimens will be a simple, safe, and effective way to induce allograft tolerance in clinical organ transplantation.  相似文献   

14.
Induction of hematopoietic chimerism and subsequent donor-specific immune tolerance via bone marrow transplantation is an ideal approach for islet transplantation to treat type-1 diabetes. We examined the potential of mesenchymal stem cells (MSCs) in the induction of chimerism and islet allograft tolerance without the incidence of graft-versus-host disease (GVHD). Streptozotocin-diabetic rats received a conditioning regimen consisting of antilymphocyte serum and 5 Gy total body irradiation, followed by an intraportal co-infusion of allogeneic MSCs, bone marrow cells (BMCs) and islets. Although all the recipients rejected the islets initially, half of them developed stable mixed chimerism and donor-specific immune tolerance, shown by the engraftment of donor skin and second-set islet transplants and acute rejection of a third-party skin. The engraftment of the primary islet allografts with stable chimerism was achieved by the addition of a 2-week peritransplant administration of 15-deoxyspergualin (DSG). Without MSCs, none of the recipients treated with DSG developed chimerism or reversal of diabetes. GVHD was not observed in any of the recipients infused with MSCs (0/15), whereas it occurred in 4/11 recipients without MSCs. These results indicate a potential use of MSCs for induction of hematopoietic chimerism and subsequent immune tolerance in clinical islet transplantation.  相似文献   

15.
PURPOSE: Hyperacute rejection (HAR) mediated by the natural antibody (nAb) against Galalpha1-3Galbeta-4-GlcNAc (alphaGal) is the major obstacle in xenogeneic organ transplantation. Previously, we reported the acceptance of donor heart grafts in anti-alphaGal nAb-producing galactosyltransferase knockout (GalT KO) mice after cyclophosphamide (CP)-induced tolerance conditioning. In the present study, we applied our tolerance induction conditioning in presensitized recipient mice. METHODS: GalT KO (alphaGal(-/-), H-2(b/d)) recipient mice were presensitized with alphaGal(+) rabbit red blood cells (RRBCs). Presensitized or nonsensitized recipient mice were treated with CP-induced tolerance conditioning, consisting of AKR (alphaGal(+/+), H-2(k)) spleen cells (SC), CP, busulfan (BU), and AKR bone marrow cells (BMC). We assessed the survival of donor hearts and skin grafts and analyzed the production of anti-alphaGal Abs by flow cytometry. RESULTS: Donor mixed chimerism was achieved in the presensitized GalT KO mice treated with CP-induced tolerance conditioning. In parallel with the disappearance of anti-alphaGal Abs, permanent acceptance of donor heart grafts and skin grafts was observed in presensitized and GalT KO mice treated with CP-induced tolerance conditioning. CONCLUSIONS: Both B-cell and T-cell tolerance was achieved in the presence of a higher titer of anti-alphaGal Abs after treatment with CP-induced tolerance conditioning.  相似文献   

16.
The establishment of immune tolerance to self antigen expressed exclusively in the periphery is a crucial yet incompletely understood feature of the immune system. A dominant concept of peripheral tolerance has been that exposure of T cells to signal one, the TCR-MHC interaction, in the absence of signal two, or costimulation, is a major mechanism of peripheral tolerance. This model suggests that any cell type that expresses MHC-peptide complexes, be they of self or foreign origin, should have the capacity to tolerize antigen-specific T cells when critical costimulatory interactions are interrupted. However, a spectrum of responses, from permanent engraftment to rapid rejection, has been observed in various transplantation models utilizing costimulatory blockade. Therefore we undertook a series experiments to directly assess the tolerogenic potential of donor hematopoietic and parenchymal cells. We find that allogeneic tissues differ profoundly in their ability to promote peripheral tolerance concurrent with combined blockade of B7-CD28 and CD40-CD40L pathways. Non-vascularized and vascularized parenchymal grafts as well as donor-specific transfusions promote varying degrees of donor-specific hyporesponsiveness, but fail to induce donor-reactive T-cell deletion; whereas establishment of stable hematopoietic chimerism promotes specific tolerance mediated by deletion of donor-reactive cells in the periphery.  相似文献   

17.
Tolerance through bone marrow transplantation with costimulation blockade   总被引:5,自引:0,他引:5  
The routine induction of tolerance in organ transplant recipients remains an unattained goal. The creation of a state of mixed chimerism through allogeneic bone marrow transplantation leads to robust donor-specific tolerance in several experimental models and this approach has several features making it attractive for clinical development. One of its major drawbacks, however, has been the toxicity of the required host conditioning. The use of costimulation blocking reagents (anti-CD 154 monoclonal antibodies and the fusion protein CTLA4Ig) has led to much less toxic models of mixed chimerism in which global T cell depletion of the host is no longer necessary and which has even allowed the elimination of all cytoreductive treatment when combined with the injection of very high doses of bone marrow cells. In this overview we will briefly discuss general features of tolerance induction through bone marrow transplantation, will then describe recent models using costimulation blockade to induce mixed chimerism and will review the mechanisms of tolerance found with these regimens. Finally we will attempt to identify issues related to the clinical introduction of bone marrow transplantation with costimulation blockade which remain unresolved.  相似文献   

18.
SUMMARY: Recent advances in the field of transplant immunology and reconstructive surgery have resulted in an increased interest in extremity allograft. Until now, more than 20 hand transplants have been performed in humans. Rejection is well controlled by currently available immunosuppressive drugs. The hand transplant, however, is not a life-supporting organ transplant and these drugs are unlikely to represent the final solution for hand transplantation due to serious adverse effects. The ultimate goal of extremity allograft is the induction of donor-specific immunotolerance. The major strategies for tolerance induction are: (1) T-cell costimulation blockade, (2) induction of mixed chimerism, (3) T-cell depletion, and (4) tolerance mediated by regulatory T cells. Amongst these, the establishment of a high level of chimerism may be the most stable strategy for donor-specific tolerance, and our laboratory has been investigating the induction of macrochimerism following extremity allotransplantation. Recently, some studies demonstrated that macrochimerism induces immunotolerance for extremity allograft in the rodent model. We made a new protocol using cyclophosphamide (CYP) and granulocyte colony-stimulation factor (G-CSF) to induce high-level chimerism following rat whole-limb allotransplantation. Limb allografting could function as a vascularised carrier for bone marrow transplantation, providing a continuous source of donor cells and contributing to a high level of chimerism in the recipient. Pretransplant CYP followed by G-CSF and FK506 treatment significantly prolong the survival of limb allografts, but frequently cause chronic graft-versus-host disease in the recipients. In this review, recent experimental chimerism studies are presented for tolerance induction and we review the prospect of clinical applicability in extremity allograft.  相似文献   

19.
The mixed chimerism approach achieves donor‐specific tolerance in organ transplantation, but clinical use is inhibited by the toxicities of current bone marrow (BM) transplantation (BMT) protocols. Blocking the CD40:CD154 pathway with anti‐CD154 monoclonal antibodies (mAbs) is exceptionally potent in inducing mixed chimerism, but these mAbs are clinically not available. Defining the roles of donor and recipient CD40 in a murine allogeneic BMT model, we show that CD4 or CD8 activation through an intact direct or CD4 T cell activation through the indirect pathway is sufficient to trigger BM rejection despite CTLA4Ig treatment. In the absence of CD4 T cells, CD8 T cell activation via the direct pathway, in contrast, leads to a state of split tolerance. Interruption of the CD40 signals in both the direct and indirect pathway of allorecognition or lack of recipient CD154 is required for the induction of chimerism and tolerance. We developed a novel BMT protocol that induces mixed chimerism and donor‐specific tolerance to fully mismatched cardiac allografts relying on CD28 costimulation blockade and mTOR inhibition without targeting the CD40 pathway. Notably, MHC‐mismatched/minor antigen‐matched skin grafts survive indefinitely whereas fully mismatched grafts are rejected, suggesting that non‐MHC antigens cause graft rejection and split tolerance.  相似文献   

20.
Transplant tolerance induction makes it possible to preserve functional grafts for a lifetime without immunosuppressants. One powerful method is to generate mixed hematopoietic chimeras in recipients by adoptive transfer of donor‐derived bone marrow cells (BMCs). In our murine transplantation model, we established a novel method for mixed chimera generation using sublethal irradiation, CD40‐CD40L blockade, and invariant natural killer T‐cell activation. However, numerous BMCs that are required to achieve stable chimerism makes it difficult to apply this model for human transplantation. Here, we show that donor‐derived splenic T cells could contribute to not only the reduction of BMC usage but also the establishment of complete chimerism in model mice. By cotransfer of T cells together even with one‐fourth of the BMCs used in our original method, the recipient mice yielded complete chimerism and could acquire donor‐specific skin‐allograft tolerance. The complete chimeric mice did not show any remarks of graft versus host reaction in vivo and in vitro. Inhibition of the apoptotic signal resulted in increase in host‐derived CD8+ T cells and chimerism brake. These results suggest that donor‐derived splenic T cells having veto activity play a role in the depletion of host‐derived CD8+ T cells and the facilitation of complete chimerism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号