首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Previously we reported that moderate calorie restriction or diet restriction (DR, calories reduced by 35% for 21 days) in male Sprague-Dawley rats protects from a lethal dose of thioacetamide (TA). DR rats had 70% survival compared with 10% in rats fed ad libitum (AL) because of timely and adequate compensatory liver cell division and tissue repair in the DR rats. Further investigation of the mechanisms indicate that enhanced promitogenic signaling plays a critical role in this stimulated tissue repair. Expression of stimulators of promitogenic signaling interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), hepatocyte growth factor (HGF), transforming growth factor-alpha (TGF-alpha), and epidermal growth factor receptor (EGFR) were studied during liver tissue repair after TA-induced liver injury. Plasma IL-6 was significantly higher in the DR rats, with 6-fold higher expression at 48 h after TA administration. Immunohistochemical localization revealed significantly higher expression of IL-6 in the hepatic sinusoidal endothelium of DR rats. Expression of TGF-alpha and HGF was consistently higher in the livers of DR rats from 36 to 72 h. EGFR, which serves as a receptor for TGF-alpha, was higher in DR rats before TA administration and remained higher till 48 h after TA intoxication. DR-induced 2-fold increase in hepatic iNOS activity is consistent with early cell division in DR rats after TA challenge. These data suggest that the reason behind the higher liver tissue repair after TA-induced hepatotoxicity in DR rats is timely and higher expression of the growth stimulatory cytokines and growth factors. It appears that the physiological effects of DR make the liver cells vigilant and prime the liver tissue promptly for liver regeneration through promitogenic signaling upon toxic challenge.  相似文献   

2.
Although, diet restriction (DR) has been shown to substantiallyincrease longevity while reducing or delaying the onset of agerelateddiseases, little is known about the mechanisms underlying thebeneficial effects of DR on acute toxic outcomes. An earlierstudy (S. K. Ramaiah et al., 1998, Toxicol. Appl. Pharmacol.150, 12–21) revealed that a 35% DR compared to ad libitum(AL) feeding leads to a substantial increase in liver injuryof thioacetamide (TA) at a low dose (50 mg/kg, ip). Higher liverinjury was accompanied by enhanced survival. A prompt and enhancedtissue repair response in DR rats at the low dose (sixfold higherliver injury) occurred, whereas at equitoxic doses (50 mg/kgin DR and 600 mg/kg in AL rats) tissue repair in AL rats wassubstantially diminished and delayed. The extent of liver injurydid not appear to be closely related to the extent of stimulatedtissue repair response. The purpose of the present study wasto investigate the time course (0–120 h) of liver injuryand liver tissue repair at the high dose (600 mg TA/kg, ip,lethal in AL rats) in AL and DR rats. Male Sprague-Dawley rats(225–275 g) were 35% diet restricted compared to theirAL cohorts for 21 days and on day 22 they received a singledose of TA (600 mg/kg, ip). Liver injury was assessed by plasmaALT and by histopathological examination of liver sections.Tissue repair was assessed by [3H]thymidine incorporation intohepatonuclear DNA and proliferating cell nuclear antigen (PCNA)immunohistochemistry during 0–120 h after TA injection.In AL-fed rats hepatic necrosis was evident at 12 h, peakedat 60 h, and persisted thereafter until mortality (3 to 6 days).Peak liver injury was approximately twofold higher in DR ratscompared to that seen in AL rats. Hepatic necrosis was evidentat 36 h, peaked at 48 h, persisted until 96 h, and returnedto normal by 120 h. Light microscopy of liver sections revealedprogression of hepatic injury in AL rats whereas injury regressedcompletely leading to recovery of DR rats by 120 h. Progressionof injury led to 90% mortality in AL rats vs 30% mortality inDR group. In the surviving AL rats, S-phase DNA synthesis wasevident at 60 h, peaked at 72 h, and declined to base levelby 120 h, whereas in DR rats S-phase DNA synthesis was evidentat 36 h and was consistently higher until 96 h reaching controllevels by 120 h. PCNA studies showed a corresponding increasein cells in S and M phase in the AL and DR groups. DR resultedin abolition of the delay in tissue repair associated with thelethal dose of TA in ad libitum rats. Temporal changes and highertissue repair response in DR rats (earlier and prolonged) arethe conduits that allow a significant number of diet restrictedrats to escape lethal consequence.  相似文献   

3.
Thioacetamide (TA) undergoes saturation toxicokinetics in ad libitum (AL) fed rats. Diet restriction (DR) protects rats from lethal dose of TA despite increased bioactivation-mediated liver injury via CYP2E1 induction. While a low dose (50 mg TA/kg) produces 6-fold higher initial injury, a 12-fold higher dose produces delayed and mere 2.5-fold higher injury. The primary objective was to determine if this less-than-expected increase in injury is due to saturation toxicokinetics. Rats on AL and DR for 21 days received either 50 or 600 mg TA/kg i.p. T(1/2) and AUCs for TA and TA-S-oxide were consistent with saturable kinetics. Covalent binding of (14)C-TA-derived-radiolabel to liver macromolecules after low dose was 2-fold higher in DR than AL rats. However, following lethal dose, no differences were found between AL and DR. This lack of dose-dependent response appears to be due to saturation of bioactivation at the higher dose. The second objective was to investigate the effect of phenobarbital pretreatment (PB) on TA-initiated injury following a sub-lethal dose (500 mg/kg). PB induced CYP2B1/2 approximately 350-fold, but did not increase covalent binding of (14)C-TA, TA-induced liver injury and mortality, suggesting that CYP2B1/2 has no major role in TA bioactivation. The third objective was to investigate the role of CYP2E1 using cyp2e1 knockout mice (KO). Injury was assessed over time (0-48 h) in wild type (WT) and KO mice after LD(100) dose (500 mg/kg) in WT. While WT mice exhibited robust injury which progressed to death, KO mice exhibited neither initiation nor progression of injury. These findings confirm that CYP2E1 is responsible for TA bioactivation.  相似文献   

4.
Diabetes is known to potentiate thioacetamide (TA)-induced liver injury via enhanced bioactivation. Little attention has been given to the role of compensatory tissue repair on ultimate outcome of hepatic injury in diabetes. The objective of this study was to investigate the effect of diabetes on TA-induced liver injury and lethality and to investigate the underlying mechanisms. We hypothesized that hepatotoxicity of TA in diabetic rats would increase due to enhanced bioactivation-mediated liver injury and also due to compromised compensatory tissue repair, consequently making a nonlethal dose of TA lethal. On day 0, male Sprague-Dawley rats (250-300 g) were injected with streptozotocin (STZ, 60 mg/kg ip) to induce diabetes. On day 10 the STZ-induced diabetic rats and the nondiabetic rats received a single dose of TA (300 mg/kg ip). This normally nonlethal dose of TA caused 90% mortality in the STZ-induced diabetic rats. At various times (0-60 h) after TA administration, liver injury was assessed by plasma alanine aminotransferase (ALT), sorbitol dehydrogenase (SDH), and liver histopathology. Liver function was evaluated by plasma bilirubin. Cell proliferation and tissue repair were evaluated by [(3)H]thymidine ((3)H-T) incorporation and proliferating cell nuclear antigen (PCNA) assays. In the nondiabetic rat, liver necrosis peaked at 24 h and declined thereafter toward normal by 60 h. In the STZ-induced diabetic rat, however, liver necrosis was significantly increased from 12 h onward and progressed, culminating in liver failure and death. Liver tissue repair studies showed that, in the liver of nondiabetic rats, S-phase DNA synthesis was increased at 36 h and peaked at 48 h following TA administration. However, DNA synthesis was approximately 50% inhibited in the liver of diabetic rats. PCNA study showed a corresponding decrease of cell-cycle progression, indicating that the compensatory tissue repair was sluggish in the diabetic rats. Further investigation of tissue repair by employing equitoxic doses (300 mg TA/kg in the non-diabetic rats; 30 mg TA/kg in the diabetic rats) revealed that, despite equal injury up to 24 h following injection, the tissue repair response in the diabetic rats was much delayed. The compromised tissue repair prolonged liver injury in the diabetic rats. These studies suggest that the increased TA hepatotoxicity in the diabetic rat is due to combined effects of increased bioactivation-mediated liver injury of TA and compromised compensatory tissue repair.  相似文献   

5.
Previously, we reported that an ordinarily non-lethal dose of thioacetamide (TA, 300 mg/kg) causes 90% mortality in type 1 diabetic rats due to inhibited liver tissue repair, whereas 30 mg TA/kg allows 100% survival due to stimulated although delayed tissue repair. Objective of this investigation was to test whether prior administration of a low dose of TA (30 mg/kg) would lead to sustainable stimulation of liver tissue repair in type 1 diabetic rats sufficient to protect from a subsequently administered lethal dose of TA. Therefore, in the present study, the hypothesis that preplacement of tissue repair by a low dose of TA (30 mg TA/kg, ip) can reverse the hepatotoxicant sensitivity (autoprotection) in type 1 diabetic rats was tested. Preliminary studies revealed that a single intraperitoneal (ip) administration of TA causes 90% mortality in diabetic rats with as low as 75 mg/kg. To establish an autoprotection model in diabetic condition, diabetic rats were treated with 30 mg TA/kg (priming dose). Administration of priming dose stimulated tissue repair that peaked at 72h, at which time these rats were treated with a single ip dose of 75 mg TA/kg. Our results show that tissue repair stimulated by the priming dose enabled diabetic rats to overexpress, calpastatin, endogenous inhibitor of calpain, to inhibit calpain-mediated progression of liver injury induced by the subsequent administration of lethal dose, resulting in 100% survival. Further investigation revealed that protection observed in these rats is not due to decreased bioactivation. These studies underscore the importance of stimulation of tissue repair in the final outcome of liver injury (survival/death) after hepatotoxicant challenge. Furthermore, these results also suggest that it is possible to stimulate tissue repair in diabetics to overcome the enhanced sensitivity of hepatotoxicants.  相似文献   

6.
Earlier studies have shown highly exaggerated mechanism-based liver injury of thioacetamide (TA) in rats following moderate diet restriction (DR) and in diabetes. The objective of the present study was to investigate the mechanism of higher liver injury of TA in DR rats. Since both DR and diabetes induce CYP2E1, we hypothesized that hepatic CYP2E1 plays a major role in the bioactivation-based liver injury of TA. When male Sprague-Dawley rats (250-275 g) were maintained on diet restriction (DR, 35% of ad libitum fed rats, 21 days) the total hepatic microsomal cytochrome P450 (CYP450) was increased 2-fold along with a 4.6-fold increase in CYP2E1 protein, which corresponded with a 3-fold increase in CYP2E1 activity as measured by chlorzoxazone hydroxylation. To further test the involvement of CYP2E1, 24 and 18 h after pretreatment with pyridine (PYR) and isoniazid (INZ), specific inducers of CYP2E1, male Sprague-Dawley rats received a single administration of 50 mg of TA/kg (i.p.). TA liver injury was >2.5- and >3-fold higher at 24 h in PYR + TA and INZ + TA groups, respectively, compared with the rats receiving TA alone. Pyridine pretreatment resulted in significantly increased total CYP450 content accompanied by a 2.2-fold increase in CYP2E1 protein and 2-fold increase in enzyme activity concordant with increased liver injury of TA, suggesting mechanism-based bioactivation of TA by CYP2E1. Hepatic injury of TA in DR rats pretreated with diallyl sulfide (DAS), a well known irreversible in vivo inhibitor of CYP2E1, was significantly decreased (60%) at 24 h. CCl(4) (4 ml/kg i.p.), a known substrate of CYP2E1, caused lower liver injury and higher animal survival confirming inhibition of CYP2E1 by DAS pretreatment. The role of flavin-containing monooxygenase (FMO) in TA bioactivation implicated by previous in vitro studies, and consequent increased TA-induced liver injury in DR rats was tested in vivo with a relatively selective inhibitor of FMO, indole-3-carbinol, and then treated with 50 mg of TA/kg. FMO activity and alanine aminotransferase levels measured at different time points revealed that TA liver injury was not decreased although FMO activity was significantly decreased, suggesting that hepatic FMO is unlikely to bioactivate TA. These findings suggest induction of CYP2E1 as the primary mechanism of increased bioactivation-based liver injury of TA in DR rats.  相似文献   

7.
It is well known that diabetes imparts high sensitivity to numerous hepatotoxicants. Previously, we have shown that a normally non-lethal dose of thioacetamide (TA, 300 mg/kg) causes 90% mortality in type 1 diabetic (DB) rats due to inhibited tissue repair allowing progression of liver injury. On the other hand, DB rats exposed to 30 mg TA/kg exhibit delayed tissue repair and delayed recovery from injury. The objective of this study was to investigate the mechanism of impaired tissue repair and progression of liver injury in TA-treated DB rats by using cDNA microarray. Gene expression pattern was examined at 0, 6, and 12 h after TA challenge, and selected mechanistic leads from microarray experiments were confirmed by real-time RT-PCR and further investigated at protein level over the time course of 0 to 36 h after TA treatment. Diabetic condition itself increased gene expression of proteases and decreased gene expression of protease inhibitors. Administration of 300 mg TA/kg to DB rats further elevated gene expression of proteases and suppressed gene expression of protease inhibitors, explaining progression of liver injury in DB rats after TA treatment. Inhibited expression of genes involved in cell division cycle (cyclin D1, IGFBP-1, ras, E2F) was observed after exposure of DB rats to 300 mg TA/kg, explaining inhibited tissue repair in these rats. On the other hand, DB rats receiving 30 mg TA/kg exhibit delayed expression of genes involved in cell division cycle, explaining delayed tissue repair in these rats. In conclusion, impaired cyclin D1 signaling along with increased proteases and decreased protease inhibitors may explain impaired tissue repair that leads to progression of liver injury initiated by TA in DB rats.  相似文献   

8.
Previously we reported that a nonlethal dose of thioacetamide (TA, 300 mg/kg) causes 90% mortality in type 1 diabetic (DB) rats because of irreversible acute liver injury owing to inhibited hepatic tissue repair, primarily due to blockage of G(0) to S phase progression of cell division cycle. On the other hand, DB rats receiving 30 mg TA/kg exhibited equal initial liver injury and delayed tissue repair compared to nondiabetic (NDB) rats receiving 300 mg TA/kg, resulting in a delay in recovery from liver injury and survival. The objective of the present study was to test the hypothesis that impaired cyclin-regulated progression of G(1) to S phase of the cell cycle may explain inhibited liver tissue repair, hepatic failure, and death, contrasted with delayed liver tissue repair but survival observed in the DB rats receiving 300 in contrast to 30 mg TA/kg. In the TA-treated NDB rats sustained MAPKs and cyclin expression resulted in higher phosphorylation of retinoblastoma (pRb), explaining prompt tissue repair and survival. In contrast, DB rats receiving the same dose of TA (300 mg/kg) exhibited suppressed MAPKs and cyclin expression that led to inhibition of pRb, inhibited tissue repair, and death. On the other hand, DB rats receiving 30 mg TA/kg exhibited delayed up regulation of MAPK signaling that delayed the expression of CD1 and pRb, explaining delayed stimulation of tissue repair observed in this group. In conclusion, the hepatotoxicant TA has a dose-dependent adverse effect on cyclin-regulated pRb signaling: the lower dose causes a recoverable delay, whereas the higher dose inhibits it with corresponding effect on the ultimate outcomes on hepatic tissue repair; this dose-dependent adverse effect is substantially shifted to the left of the dose response curve in diabetes.  相似文献   

9.
The objective of this study was to evaluate the interaction profile of chloroform (CHCl(3))+allyl alcohol (AA) binary mixture (BM)-induced acute hepatotoxic response. Plasma alanine aminotransferase (ALT) was measured to assess liver injury, and 3H-thymidine (3H-T) incorporation into hepatonuclear DNA was measured as an index of liver regeneration over a time course of 0-72 h. Male Sprague-Dawley (S-D) rats received single ip injection of 5-fold dose range of CHCl(3) (74, 185 and 370 mg/kg) in corn oil (maximum 0.5 ml/kg) and 7-fold dose range of AA (5, 20 and 35 mg/kg) in distilled water simultaneously. The doses for BM were selected from individual toxicity studies of CHCl(3) alone [Int. J. Toxicol. 22 (2003) 25], and AA alone [Reg. Pharmacol. Toxicol. 19 (1999) 165]. Since the highest dose of each treatment (CHCl(3)- 740 and AA- 50 mg/kg) yielded mortality due to the suppressed tissue repair followed by liver failure, this dose was omitted for BM. The levels of CHCl(3) (30-360 min) and AA (5-60 min) were quantified in blood and liver by gas chromatography (GC). The liver injury was more than additive after BM compared to CHCl(3) alone or AA alone at highest dose combination (370+35 mg/kg), which peaked at 24 h. The augmented liver injury observed with BM was consistent with the quantitation data. Though the liver injury was higher, the greater stimulation of tissue repair kept injury from progressing, and rescued the rats from hepatic failure and death. At lower dose combinations, the liver injury was no more than additive. Results of the present study suggest that liver tissue repair, in which liver tissue lost to injury is promptly replaced, plays a pivotal role in the final outcome of liver injury after exposure to BM of CHCl(3) and AA.  相似文献   

10.
Previously, we reported high hepatotoxic sensitivity of type 2 diabetic (DB) rats to three dissimilar hepatotoxicants. Additional work revealed that a normally nonlethal dose of CCl4 was lethal in DB rats due to inhibited compensatory tissue repair. The present study was conducted to investigate the importance of compensatory tissue repair in determining the final outcome of hepatotoxicity in diabetes, using another structurally and mechanistically dissimilar hepatotoxicant, thioacetamide (TA), to initiate liver injury. A normally nonlethal dose of TA (300 mg/kg, ip), caused 100% mortality in DB rats. Time course studies (0 to 96 h) showed that in the non-DB rats, liver injury initiated by TA as assessed by plasma alanine or aspartate aminotransferase and hepatic necrosis progressed up to 48 h and regressed to normal at 96 h resulting in 100% survival. In the DB rats, liver injury rapidly progressed resulting in progressively deteriorating liver due to rapidly expanding injury, hepatic failure, and 100% mortality between 24 and 48 h post-TA treatment. Covalent binding of 14C-TA-derived radiolabel to liver tissue did not differ from that observed in the non-DB rats, indicating similar bioactivation-based initiation of hepatotoxicity. S-phase DNA synthesis measured by [3H]-thymidine incorporation, and advancement of cells through the cell division cycle measured by PCNA immunohistochemistry, were substantially inhibited in the DB rats compared to the non-DB rats challenged with TA. Thus, inhibited cell division and compromised tissue repair in the DB rats resulted in progressive expansion of liver injury culminating in mortality. In conclusion, it appears that similar to type 1 diabetes, type 2 diabetes also increases sensitivity to dissimilar hepatotoxicants due to inhibited compensatory tissue repair, suggesting that sensitivity to hepatotoxicity in diabetes occurs in the absence as well as presence of insulin.  相似文献   

11.
As a part of mixture toxicity studies, the objective of the present investigation was to validate the hypothesis that the rate and extent of liver tissue repair response to a given dose determines the end result of toxicity (death or recovery), regardless of the mechanisms by which injury is inflicted, using a well-known environmental pollutant, chloroform (CHCl(3)). In future, the data will be used to compare with the results of mixtures containing CHCl(3) to aid in characterizing the safety of chemical mixtures and to construct a physiologically based pharmacokinetic (PBPK) model for dose, route, and species extrapolation. Hepatotoxicity and tissue repair were measured in male Sprague-Dawley rats (S-D) receiving a 10-fold dose range of CHCl(3) (74, 185, 370, and 740 mg/kg, IP) during a time course of 0 to 96 hours. Liver injury, as assessed by plasma alanine aminotransferase (ALT) and sorbitol dehydrogenase (SDH) elevation, increased with dose over the 10-fold dose range. Because CHCl(3) is also known to cause kidney damage, blood urea nitrogen (BUN) and creatinine were measured to evaluate the kidney injury. With doses up to 370 mg/kg, liver injury increased in a dose-related fashion, which peaked at 24 hours and returned to normal after 48 hours, whereas at highest dose (740 mg/kg), the injury was progressive resulting in 90% mortality. Blood and liver CHCl(3) levels were quantified using gas chromatography (GC) over a time course of 30 to 360 minutes. The dose-related increase in the blood and liver CHCl(3) levels were consistent with dose-dependent liver injury. Tissue regeneration response, as measured by [(3)H]-thymidine incorporation into hepatocellular nuclear DNA peaked at 36 hours in rats treated with the lower two doses of CHCl(3) (74 and 185 mg/kg). Further increase in CHCl(3) dose to 370 mg/kg resulted in an earlier increase in [(3)H]-thymidine incorporation at 24 hours, which peaked at 36 hours. However, at the highest dose of CHCl(3) (740 mg/kg), tissue repair was delayed and attenuated, allowing for unrestrained progression of liver injury. The kidney injury markers after CHCl(3) administration were not different from controls. These results support the concept that in addition to the magnitude of tissue repair response, the time at which this response occurs is critical in restraining the progression of injury. Measuring tissue repair and injury as simultaneous biological responses to toxic agents might increase the usefulness of dose-response paradigms in predictive toxicology and risk assessment. Although the dosimetry of the present study was well beyond the environmental exposure levels of CHCl(3), a PBPK model will be developed in future based upon these data to evaluate the effects at environmental levels.  相似文献   

12.
Trichloroethylene (TCE), a widely used organic solvent and degreasingagent, is regarded as a hepatotoxicant. The objective of thepresent studies was to investigate whether the extent and timelinessof tissue repair has a determining influence on the ultimateoutcome of hepatotoxicity. Male Sprague-Dawley rats (200–250g) were injected with a 10-fold dose range of TCE and hepatotoxicityand tissue repair were studied during a time course of 0 to96 h. Light microscopic changes as evaluated by H&E-stainedliver sections revealed a dose-dependent necrosis of hepaticcells. Maximum liver cell necrosis was observed at 48 h afterthe TCE administration. However, liver injury as assessed byplasma sorbitol dehydrogenase (SDH) showed a dose response overa 10-fold dose range only at 6 h, whereas alanine aminotrans-ferase(ALT) did not show a dose response at any of the time pointsstudied. A low dose of TCE (250 mg/kg) showed an increase inSDH at all time points up to 96 h without peak levels, whereashigher doses showed peak only at 6 h. At later time points SDHdeclined but remained above normal. In vitro addition of trichloroaceticacid, a metabolite of TCE to plasma, decreased the activitiesof SDH and ALT indicating that metabolites formed during TCEtoxicity may interfere with plasma enzyme activities in vivo.This indicates that the lack of dose-related increase in SDHand ALT activities may be because of interference by the TCEmetabolite. Tissue regeneration response as measured by [3H]thymidineincorporation into hepatocellular nuclear DNA was stimulatedmaximally at 24 h after 500 mg/kg TCE administration. A higherdose of TCE led to a delay and diminishment in [3H]thymidineincorporation. At a low dose of TCE (250 mg/kg) [3H]thymidineincorporation peaked at 48 h and this could be attributed tovery low or minimal injury caused by this dose. With higherdoses tissue repair was delayed and attenuated allowing forunrestrained progression of liver injury. These results supportthe concept that the toxicity and repair are opposing responsesand that a dose-related increase in tissue repair representsa dynamic, quantifiable compensatory mechanism.  相似文献   

13.
The effect of Type 1 diabetes on the toxicity of thioacetamide was investigated in a murine model. In streptozotocin-induced diabetic C57BL6 mice a LD90 dose of thioacetamide (1000 mg/kg, ip in saline) caused only 10% mortality. Alanine aminotransferase activity revealed approximately 2.7-fold less liver injury in the diabetic (DB) mice compared to the non-DB controls, at 36 h after thioacetamide (TA) administration, which was confirmed via histopathological analysis. HPLC analyses revealed lower plasma t(1/2) of TA in the DB mice. Covalent binding of [(14)C]TA to liver tissue was lower in the DB mice, suggesting lower bioactivation of TA. Compensatory hepatic S-phase stimulation as assessed by [(3)H]thymidine incorporation occurred much earlier and was substantially higher in the DB mice compared to the non-DB cohorts. Morphometric analysis of cells in various phases of cell division assessed via immunohistochemical staining for proliferating cell nuclear antigen revealed more cells in G(1), S, G(2), and M phases in the DB mice, indicating robust tissue repair in concordance with the findings of [(3)H]thymidine pulse labeling studies. The importance of tissue repair in the resistance of DB mice was further investigated by blocking cell division in the DB mice by colchicine (1 mg/kg, ip) at 40 h after TA administration, well after the bioactivation of TA. Antimitotic action of colchicine, confirmed by decreased S-phase stimulation, led to progression of liver injury and increased mortality in DB mice. These findings suggest that lower bioactivation of TA and early onset of liver tissue repair are the pivotal underpinnings for the resistance of DB mice.  相似文献   

14.
Thioacetamide (TA) is bioactivated by CYP2E1 to TA sulfoxide (TASO), and to the highly reactive sulfdioxide (TASO2), which initiates hepatic necrosis by covalent binding. Previously, we have established that TA exhibits saturation toxicokinetics over a 12-fold dose range, which explains the lack of dose–response for bioactivation-based liver injury. In vivo and in vitro studies indicated that the second step (TASO → TASO2) of TA bioactivation is less efficient than the first one (TA → TASO). The objective of the present study was to specifically test the saturation of the second step of TA bioactivation by directly administering TASO, which obviates the contribution from first step, i.e. TA → TASO. Male SD rats were injected with low (50 mg/kg, ip), medium (100 mg/kg) and high (LD70, 200 mg/kg) doses of TASO. Bioactivation-mediated liver injury that occurs in the initial time points (6 and 12 h), estimated by plasma ALT, AST and liver histopathology over a time course, was not dose-proportional. Escalation of liver injury thereafter was dose dependent: low dose injury subsided; medium dose injury escalated upto 36 h before declining; high dose injury escalated from 24 h leading to 70% mortality. TASO was quantified in plasma by HPLC at various time points after administration of the three doses. With increasing dose (i.e., from 50 to 200 mg/kg), area under the curve (AUC) and Cmax increased more than dose proportionately, indicating that TASO bioactivation exhibits saturable kinetics. Toxicokinetics and initiation of liver injury of TASO are similar to that of TA, although TASO-initiated injury occurs at lower doses. These findings indicate that bioactivation of TASO to its reactive metabolite is saturable in the rat as suggested by previous studies with TA.  相似文献   

15.
Previously we reported that an ordinarily nonlethal dose of thioacetamide (300 mg/kg) causes liver failure and 90% mortality in type 1 diabetic rats, primarily because of inhibited tissue repair. On the other hand, the diabetic rats receiving 30 mg thioacetamide/kg exhibited equal initial liver injury and delayed tissue repair compared to nondiabetic rats receiving 300 mg thioacetamide/kg, resulting in a delay in recovery from that liver injury and survival. These data indicate that impaired tissue repair in diabetes is a dose-dependent function of diabetes. The objective of the present study was to test the hypothesis that disrupted nuclear factor-kappaB (NF-kappaB)-regulated cyclin D1 signaling may explain dose-dependent impaired tissue repair in the thioacetamide-treated diabetic rats. Administration of 300 mg thioacetamide/kg to nondiabetic rats led to sustained NF-kappaB-regulated cyclin D1 signaling, explaining prompt compensatory tissue repair and survival. For the first time, we report that NF-kappaB-DNA binding is dependent on the dose of thioacetamide in the liver tissue of the diabetic rats. Administration of 300 mg thioacetamide/kg to diabetic rats inhibited NF-kappaB-regulated cyclin D1 signaling, explaining inhibited tissue repair, liver failure and death, whereas remarkably higher NF-kappaB-DNA binding but transient down regulation of cyclin D1 expression explains delayed tissue repair in the diabetic rats receiving 30 mg thioacetamide/kg. These data suggest that dose-dependent NF-kappaB-regulated cyclin D1 signaling explains inhibited versus delayed tissue repair observed in the diabetic rats receiving 300 and 30 mg thioacetamide/kg, respectively.  相似文献   

16.
Thioacetamide (TA), a potent centrilobular hepatotoxicant, undergoes a two-step bioactivation mediated by microsomal CYP2E1 to TA sulfoxide (TASO), and further to TA-S,S-dioxide (TASO2), a reactive metabolite that initiates cellular necrosis. Our earlier studies showed that bioactivation-mediated liver injury of TA is not dose-proportional. The objective of this study was to examine whether increasing doses of TA lead to enzyme saturation, thereby resulting in lack of dose-response for injury: bioactivation of TA --> TASO --> TASO2 may follow zero-order kinetics. A 12-fold dose range of TA (50, 300, and 600 mg/kg i.p.) was injected into male Sprague-Dawley rats. TA and TASO were quantified in plasma, liver, and urine by high-performance liquid chromatography. With increasing doses, the apparent elimination half-lives of TA and TASO increased linearly, indicating that TA bioactivation exhibits saturation kinetics. Increasing TA dose resulted in greater-than-proportional increases in plasma TA and TASO levels. The TASO/TA ratio was inversely proportional to the dose of TA. Covalent binding of 14C-TA-derived radiolabel to liver macromolecules showed a less-than-dose-proportionate increase with a 12-fold higher dose. Less than dose-proportional covalent binding was confirmed in liver microsomal incubations with 14C-TA. Three-fold higher excretion of TASO was seen in urine at the highest dose (600 mg/kg) compared with the lowest dose (50 mg TA/kg). Incubation of TA with rat liver microsomes and purified baculovirus-expressed rat and human CYP2E1 Supersomes, over a concentration range of 0.01 to 10 mM, revealed saturation of TA conversion to TASO at and above 0.05 mM TA concentration, comparable to in vivo plasma and liver levels achieved upon administration of higher doses. Calculated K(m) values for TA (0.1 mM) and TASO (0.6 mM) suggest that the second step of TA bioactivation is 6-fold less efficient. Collectively, the findings indicate saturation of CYP2E1 at the first (TA to TASO) and second (TASO to TASO2) steps of TA bioactivation.  相似文献   

17.
Neurotoxicity secondary to oil-soluble artemisinins has been reported in various animal species. The onset of neurotoxicity and toxicokinetics of oral artelinic acid (AL), a water-soluble artemisinin, were investigated. After dose range study, rats were dosed at either 160 mg/kg daily for 9 consecutive days or at 288 mg/kg once every other day for five doses, so that the total dose (1440 mg/kg) and duration (9 days) were identical. Neuronal damage of varying severity was identified beginning as early as 1 day after completing dosing and continued for up to 10 days post dosing. Neuronal injury was most severe 7 days after the last treatment in each of the two dosing regimens. The rats dosed with 160 mg/kg of AL daily showed moderate neurotoxicity and lost 22% of their body weight during treatment. Compared with the first dose, the toxicokinetic profile of this regimen changed significantly, with the elimination half-life increasing 3.82-fold and the volume of distribution increasing 5.23-fold on the last day of dosing. In the animals treated with AL at 288 mg/kg every other day for 5 doses, minimal neuronal degeneration (severity score 1.17) was identified and the body weight was only 8% loss. Furthermore, there were no obvious differences in the pharmacokinetic parameters between first and last dosing days with this regimen. Additionally, a progressively drug retention in stomach and drug accretion in blood were only found in rats treated with 160 mg/kg daily for 9 days. These results imply that delayed gastric emptying resulted in AL accumulation in blood and prolonged a neurotoxic exposure time (186 h) in 160 mg/kg rats when compared to that (75 h) in 288 mg/kg animals. Therefore, the drug exposure time is a key factor in the neurotoxicity induced by AL.  相似文献   

18.
S-(1,2-dichlorovinyl)-L-cysteine (DCVC), a metabolite of a common environmental contaminant, trichloroethylene, is a selective proximal tubular nephrotoxicant. The objective of our study was to examine the dose-response relationship of renal injury and repair following DCVC administration. Male Swiss-Webster mice were injected with DCVC [15, 30, or 75 mg/kg ip in distilled water (10 ml/kg)] and the extent of nephrotoxicity and tissue repair was assessed over a 14-day period. The renal injury due to the low and medium doses of DCVC peaked at 36 and 72 h after dosing, respectively, and then regressed over time due to a timely and adequate tissue repair response. At the highest dose tissue repair was inhibited, thereby causing progression of renal injury, which led to acute renal failure and death of the mice. The possibility that compromised tissue repair was a result of the extensive nephrotoxic injury attendant to the high dose of DCVC was investigated via an equinephrotoxicity study in which separate groups of mice received 40 (LD40) and 75 (LD90) mg DCVC/kg, respectively. Bioactivation-based renal proximal tubular injury measured in these two groups over a time course was identical but there was a marked difference in mortality due to an early and robust tissue repair in the first group relative to the second group. These results support the concept that quantitative evaluation of renal tissue repair in parallel with injury is useful in the assessment of the likely toxic outcome associated with exposure to nephrotoxic drugs and toxicants.  相似文献   

19.
 Fischer 344 (F344) rats are reportedly 75-fold more sensitive than Sprague Dawley (S-D) rats to 1,2-dichlorobenzene (o-DCB) hepatotoxicity. Lethality studies were conducted since no information was available regarding the ultimate consequence of this sensitivity in terms of animal survival in the two strains. LD50s for o-DCB (1.66 ml/kg and 1.76 ml/kg in male F344 and S-D rats, respectively) did not differ. Several studies have shown the importance of tissue repair on animal survival following exposure to toxic chemicals. The objective of this study was to investigate if differential rates of cell division and tissue repair might explain the lack of difference in LD50 dose between the two strains despite higher hepatotoxic injury in F344 rats. Age-matched male S-D and F344 rats were administered o-DCB (0.2, 0.6, 1.2 ml/kg, i.p.); injury and tissue repair occurring as two dynamic but opposing events were measured over time. Liver injury was assessed by measuring plasma alanine aminotransferase (ALT) and sorbitol dehydrogenase (SDH) activities and by liver histopathology. Higher plasma ALT elevations were observed in F344 rats following administration of 0.2 and 0.6 ml o-DCB/kg. Using SDH as a marker of liver injury, the strain difference was evident only at 0.2 ml o-DCB/kg. Liver regeneration was estimated by 3H-thymidine incorporation into hepatonuclear DNA and via proliferating cell nuclear antigen (PCNA) assay. Prompt and significantly higher hepatocellular regeneration beginning at 36 h was evident in F344 rats following administration of 0.2 and 0.6 ml o-DCB/kg. The significantly higher depletion of hepatic glycogen observed in F344 rats following administration of 0.2 and 0.6 ml o-DCB/kg occurred without significant changes in plasma glucose and is consistent with highly stimulated tissue repair seen in these rats at the corresponding doses. However, increasing the dose further to 1.2 ml o-DCB/kg results in a delayed (S-phase synthesis begins at 48 h) and diminished response to o-DCB. These findings suggest that a significantly higher rate of tissue repair in F344 rats helps them overcome higher liver injury inflicted by o-DCB. This differential in tissue repair in the two strains may play a vital role in equalizing the ultimate outcome of toxicity in the two strains. Received: 10 January 1996/Accepted: 19 March 1996  相似文献   

20.

Aim:

α-Naphthylisothiocyanate (ANIT) is a well-characterized cholestatic agent for rats. The aim of this study was to examine whether resveratrol could attenuate ANIT-induced acute cholestasis and liver injury in rats.

Methods:

SD rats were treated with resveratrol (15 or 30 mg/kg, ip) or a positive control drug ursodeoxycholic acid (100 mg/kg, po) for 5 consecutive days followed by a single dose of ANIT (60 mg/kg, po). Bile flow, and serum biochemical markers and bile constituents were measured 48 h after ANIT administration. Hepatic levels of oxidative repair enzymes (glutathione peroxidase, catalase and MnSOD), myeloperoxidase activity, TNF-α, IL-6 and ATP content, as well as the expression of liver transporter genes and proteins were assayed.

Results:

ANIT exposure resulted in serious cholestasis and liver injury, as shown by marked neutrophil infiltration in liver, dramatically increased serum levels of ALT, AST, GGT, ALP, TBA, TBIL, IBIL and DBIL, and significantly decreased bile excretion and biliary output of GSH and HCO3. ANIT significantly increased TNF-α and IL-6 release and myeloperoxidase activity, decreased mitochondrial biogenesis in liver, but had little effect on hepatic oxidative repair enzymes and ATP content. Furthermore, ANIT significantly decreased the expression of Mrp2, FXR and Cyp7a1, markedly increased Mrp3 expression in liver. Pretreatment with resveratrol attenuated ANIT-induced acute cholestasis and liver injury, and other pathological changes. Pretreatment with ursodeoxycholic acid was less effective.

Conclusion:

Resveratrol effectively attenuates ANIT-induced acute cholestasis and liver injury in rats, possibly through suppression of neutrophil infiltration, as well as upregulation of expression of hepatic transporters and enzymes, thus decreasing accumulation of bile acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号