首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe three lessons learned about how tissue optics affect the dosimetry of red to near-infrared treatment light during PDT, based on working with Dr. Tayyaba Hasan. Lesson 1-The optical fluence rate φ near the tissue surface exceeds the delivered irradiance (E). A broad beam penetrates into tissue to a depth (z) as φ=Eke(-μz), with an attenuation constant μ and a backscatter term k. In tissues, k is typically in the range 3-5, and 1∕μ equals δ, the 1∕e optical penetration depth. Lesson 2-Edge losses at the periphery of a uniform treatment beam extend about 3δ from the beam edge. If the beam diameter exceeds 6δ, then there is a central zone of uniform fluence rate in the tissue. Lesson 3-The depth of treatment is linearly proportional to δ (and the melanin content of pigmented epidermis in skin) while proportional to the logarithm of all other factors, such as irradiance, exposure time, or the photosensitizer properties (concentration, extinction coefficient, quantum yield for oxidizing species). The lessons illustrate how tissue optics play a dominant role in specifying the treatment zone during PDT.  相似文献   

2.
Utility of the F98 rat glioma model for photodynamic therapy.   总被引:1,自引:0,他引:1  
A syngeneic rat brain tumor model consisting of F98 glioma cells in Fischer rats was investigated for its utility in PDT studies. Results of in vitro studies demonstrated that the F98 cell line was sensitive to ALA-PDT, especially at low light irradiances. Histological examination revealed that F98 tumors share many fundamental characteristics with human GBMs, including rapid growth and infiltrative behavior. ALA-PDT in normal brain showed that high light fluences (26 J) delivered at relatively low powers (10 mW) are capable of causing significant edema. These findings suggest that light irradiation parameters should be chosen carefully when treating tumor-bearing animals. Rats inoculated with F98 cells preincubated in ALA showed a significant survival advantage following light exposure. Taken together, the results suggest that the F98 rat glioma model is appropriate for PDT studies of malignant gliomas.  相似文献   

3.
The prescribed radiant exposures for photodynamic therapy (PDT) of superficial skin cancers are chosen empirically to maximize the success of the treatment while minimizing adverse reactions for the majority of patients. They do not take into account the wide range of tissue optical properties for human skin, contributing to relatively low treatment success rates. Additionally, treatment times can be unnecessarily long for large treatment areas if the laser power is not sufficient. Both of these concerns can be addressed by the incorporation of an integrating sphere into the irradiation apparatus. The light fluence rate can be increased by as much as 100%, depending on the tissue optical properties. This improvement can be determined in advance of treatment by measuring the reflectance from the tissue through a side port on the integrating sphere, allowing for patient-specific treatment times. The sphere is also effective at improving beam flatness, and reducing the penumbra, creating a more uniform light field. The side port reflectance measurements are also related to the tissue transport albedo, enabling an approximation of the penetration depth, which is useful for real-time light dosimetry.  相似文献   

4.
This study investigated photobleaching of protoporphyrin IX (PpIX) induced by 5-aminolevulinic acid (ALA) and ALA-heptyl ester during superficial photodynamic therapy (PDT) in normal skin of the female BALB/c-nu/nu athymic mouse. We examined the effects of two light sources (laser and broadband lamp) and two different illumination schemes (fractionated light and continuous irradiation) on the kinetics of photobleaching. Our results show that light exposure (0-30 minutes, 10 mW/cm2) of wavelengths of approximately 420 nm (blue light) and 635 nm (red light) induced time-dependent PpIX photobleaching for mouse skin of 2% ALA and ALA-heptyl ester. Blue light (10 mW/cm2) caused more rapid PpIX photobleaching than did red light (100 mW/cm2), which is attributed to stronger absorption at 407 nm than at 632 nm for PpIX. In the case of light fractionation, fractionated light induced faster photobleaching compared with continuous light exposure after topical application of 2% ALA and ALA-heptyl ester in vivo. These have been suggested to allow reoxygenation of the irradiated tissue, with a consequent enhancement of singlet oxygen production in the second and subsequent fractions.  相似文献   

5.
Forty children 8 years of age were selected for either high (54%) or low (<53%) skin reflectance, a variable previously noted to be influenced by α-Melanocyte stimulating hormone (α-MSH). To control for apparent inherited type of melanin density, iris pigmentation was included as a second independent variable, and the design crossed to obtain eight groups of children, representing all combinations of both high and low skin reflectance, light and dark iris pigmentation and sex. Tests of attention reported as sensitive to the infusion of α-MSH in human adults were administered. Auditory Continuous Performance Tests indicated no differential performances between groups. In contrast, Visual Information Processing Tests elicited superior performances from groups with low skin reflectance and more consistently from sub-groups of these with light iris pigmentation, indicating the concurrence of facilitation of the skills with the pigmentary changes previously noted on administration of α-MSH.  相似文献   

6.
The role of photodynamic therapy (PDT) in the treatment of in situ neoplasias and tumors of the skin is steadily increasing. An intratumoral enriched photosensitizer and its activation by light are the principles of photodynamic action. Aminolevulinic acid (ALA) has been shown to be the drug with most experimental and clinical use in the past. The highest efficacy with most selectivity in topical PDT is postulated for methyl aminolevulinate or methyl aminooxopenoat (MAL, MAOP, Metvix). For solar keratoses, topical PDT using MAL is already considered to be the treatment of choice. Epithelial skin tumors such as basal cell carcinomas also respond very well, however, a debulking procedure of the exophytic tumor tissue is an absolute prerequisite to a successful cure. In addition to functioning as a novel therapeutic tool, photodynamic sensitization of skin cancer cells is increasingly used for fluorescence diagnosis (FD) (also known as photodynamic diagnosis or PDD). The fluorescence of induced porphyrins is effective in detecting and delineating neoplastic skin areas. Future approaches of FD and PDT are nontumoral applications, especially psoriasis, viral-induced diseases, or acne vulgaris. Topical PDT is well tolerated and leads to excellent aesthetic results with only minor side effects.  相似文献   

7.
Meso-tetra(hydroxyphenyl)chlorin (mTHPC) (INN: Temoporfin) is a potent photodynamically active substance in clinical use today. Usually, the substance is given systemically and a known drawback with this administration route is a prolonged skin light sensitization. For the first time to our knowledge, a liposomal Temoporfin gel formulation for topical application was studied in connection with photodynamic therapy (PDT) of nonpigmented skin malignancies in humans. Intervals of 4 hr between drug administration and light irradiation were used. Sensitizer distribution within tumor and surrounding normal skin was investigated by means of point monitoring and imaging fluorescence spectroscopy before, during, and after PDT, showing high tumor selectivity. Furthermore, the bleaching of Temoporfin was studied during the PDT procedure by monitoring the fluorescence following excitation by using a therapeutic light. A 30-35% light-induced photometabolization was shown. No pain occurred during or after treatment. It was also observed that the treated area did not show any swollen tissue or reddening, as is often seen in PDT using topical delta-aminolevulinic acid. On controlling the patients one week after treatment, healing progress was observed in several patients and no complications were registered.  相似文献   

8.
光动力疗法(PDT)是利用光动力效应对疾病进行诊断与治疗的一种非侵袭性技术,已被用于临床头颈部、乳腺、肺、前列腺及皮肤等部位肿瘤的治疗.与传统治疗方法相比,PDT具有创伤小、毒性低、选择性好、适用范围广及不易产生耐药等优势,因而受到肿瘤治疗领域的广泛关注.PDT的抗肿瘤机制复杂,光敏剂是发挥其光动力学效应的关键因素之一,提高光敏剂的靶向输送和携氧能力是改善光动力疗效的重要途径.对PDT的抗肿瘤机制及光敏剂的研究进展进行综述.  相似文献   

9.
The pigmentation of epidermis in areas of nevus-cell nevi is frequently not specially noted, but may be of considerable diagnostic value in particular cases. Two cases are demonstrated. Multiple tumors with the aspect of nevus Spitz in a 35-year old woman were histologically diagnosed by means of melanin impregnation methods as "amelanotic nevus-cell nevi with overlying vitiligo". A flat papillomatous nevus-cell nevus of the abdominal skin of a 38-year old man showed clinical signs of activity, but histologically only a total depigmentation of the epidermis and of the peripheral parts of the nevus was observed.  相似文献   

10.
The optoacoustic technique is a noninvasive imaging method with high spatial resolution. It potentially can be used to monitor anatomical and physiological changes. Photodynamic therapy (PDT)-induced vascular damage is one of the important mechanisms of tumor destruction, and real-time monitoring of vascular changes can have therapeutic significance. A unique optoacoustic system is developed for neovascular imaging during tumor phototherapy. In this system, a single-pulse laser beam is used as the light source for both PDT and for concurrently generating ultrasound signals for optoacoustic imaging. To demonstrate its feasibility, this system is used to observe vascular changes during PDT treatment of chicken chorioallantoic membrane (CAM) tumors. The photosensitizer used in this study is protoporphyrin IX (PpIX) and the laser wavelength is 532 nm. Neovascularization in tumor angiogenesis is visualized by a series of optoacoustic images at different stages of tumor growth. Damage of the vascular structures by PDT is imaged before, during, and after treatment. Rapid, real-time determination of the size of targeted tumor blood vessels is achieved, using the time difference of positive and negative ultrasound peaks during the PDT treatment. The vascular effects of different PDT doses are also studied. The experimental results show that a pulsed laser can be conveniently used to hybridize PDT treatment and optoacoustic imaging and that this integrated system is capable of quantitatively monitoring the structural change of blood vessels during PDT. This method could be potentially used to guide PDT and other phototherapies using vascular changes during treatment to optimize treatment protocols, by choosing appropriate types and doses of photosensitizers and doses of light.  相似文献   

11.
Many laser wavelengths have been used in photodynamic therapy (PDT) for port wine stains (PWS). However, how these wavelengths result in different PDT outcomes has not been clearly illuminated. This study is designed to analyze which wavelengths would be the most advantageous for use in PDT for PWS. The singlet oxygen yield in PDT-treated PWS skin under different wavelengths at the same photosensitizer dosage was simulated and the following three situations were simulated and compared: 1. PDT efficiency of 488, 532, 510, 578, and 630 nm laser irradiation at clinical dosage (100 mW∕cm(2), 40 min); 2. PDT efficiency of different wavelength for PWS with hyperpigmentation after previous PDT; 3. PDT efficiency of different wavelengths for PWS, in which only deeply located ectatic vessels remained. The results showed that singlet oxygen yield is the highest at 510 nm, it is similar at 532 nm and 488 nm, and very low at 578 nm and 630 nm. This result is identical to the state in clinic. According to this theoretical study, the optimal wavelength for PDT in the treatment of PWS should near the absorption peaks of photosensitizer and where absorption from native chromophores (haemoglobin and melanin) is diminished.  相似文献   

12.
Although 5-aminolevulinic acid, ALA, and its derivatives, have been widely studied and applied in clinical photodynamic therapy (PDT), there is still a lack of reliable and non-invasive methods and technologies to evaluate physiological parameters of relevance for the therapy, such as erythema, melanogenesis, and oxygen level. We have investigated the kinetics of these parameters in human skin in vivo during and after PDT with the hexyl ester of ALA, ALA-Hex. Furthermore, the depth of photosensitizer (protoporphyrin IX, PpIX) production after different application times was investigated. It was found that the depth increased with increasing application time of ALA-Hex. We also investigated the depth of PpIX before and after light exposure causing 50% photobleaching at 407 nm. The PpIX localized in superficial layers of the normal tissue was removed during the bleaching. Thus, after bleaching, the remaining PpIX was localized mainly in the deeper layers of normal tissue. We have applied fluorescence emission spectroscopy, fluorescence excitation spectroscopy, and reflectance spectroscopy in the study of the above-mentioned parameters. In conclusion, fluorescence excitation spectroscopy and reflectance spectroscopy are simple, useful, reliable, and noninvasive techniques in the evaluation of the processes taking place in human skin in vivo during and after PDT. Using these methods we were able to quantify melanogenesis, O2 level, erythema, vasoconstriction, and vasodilatation.  相似文献   

13.
The chromatic characteristics of skin color arise from the interactions of light (primarily absorption and scattering) with the epidermis and the dermis. The primary light absorbers in skin are hemoglobin and melanin. Most of scattering is attributed to collagen fibers and in pigmented skin to melanosomes. Traditionally skin redness is considered to arise due to locally elevated concentrations of hemoglobin, whereas skin pigmentation is attributed to melanin. In this study we attempt to understand better the contributions of these chromophores to the perceived skin color using spectral analysis of skin color reactions induced by ultraviolet (UV) irradiation or pressure. In the first experiment 12 individuals with skin phototypes III-IV were irradiated on the back using a solar simulator with doses ranging from 0.7 to 3 MED. The skin reactions were evaluated on days 1, 7, 14, and 21 after irradiation. Evaluations included diffuse reflectance spectroscopy (DRS) and clinical assessment of the erythema and the pigment reaction. Apparent concentrations of melanin, oxy-, and deoxy-hemoglobin were calculated from the absorption spectra. In the second experiment the levels of deoxy-hemoglobin of the volar forearm of ten volunteers were selectively altered by either application of a pressure cuff or by topical application of 3% H(2)O(2). Changes in skin color appearance were documented by photography, colorimetry, and DRS. In the UV exposure experiment all reactions were dose dependent. Oxy-hemoglobin values increased to a maximum on day 1, correlating well with the clinical evaluation of erythema, and then decreased exponentially to base line. Melanin showed a significant increase on day 7 and remained relatively constant for the next 3 weeks, correlating well with the clinical evaluation of pigmentation (tanning). Deoxy-hemoglobin increased slightly on day 1 and remained elevated for the next 2 weeks. Thus, deoxy-hemoglobin correlated moderately with the clinical erythema scoring on day 1 only, while it contributes significantly to what is clinically perceived as skin tanning on days 7 and 14. Application of pressure below the diastolic level increased deoxy-hemoglobin concentration as measured by DRS. This increase corresponded to a decrease of a "pigmentation" parameter (based on the L(*)a(*)b(*) scale) in a similar fashion that has been documented for increases in melanin concentration. Topical H(2)O(2) application reduced deoxy-hemoglobin levels as measured by DRS. This reduction coincided kinetically with a visible skin blanching. Application of pressure or H(2)O(2) did not significantly alter the levels of oxy-hemoglobin or melanin. In this report we present compelling evidence that deoxy-hemoglobin significantly contributes to the skin color appearance. Blood pooling, expressed as increased deoxy-hemoglobin, can contribute to what is visually perceived as pigmentation. Furthermore, we present that measurement of its contribution to the skin color appearance can only be accomplished with DRS.  相似文献   

14.
Photodynamic therapy (PDT) for the treatment of prostate cancer has been demonstrated to be a safe treatment option capable of inducing tissue destruction and decreasing prostate specific antigen (PSA) levels. However, prostate-PDT results in large intra- and interpatient variations in treatment response, possibly due to biological variations in tissue composition and short-term response to the therapeutic irradiation. Within our group, an instrument for interstitial PDT on prostate tissue has been developed that combines therapeutic light delivery and monitoring of light transmission via numerous bare-ended optical fibers. Here, we present algorithms that utilize data on the light distribution within the target tissue to provide realtime treatment feedback based on a light dose threshold model for PDT. This realtime dosimetry module is implemented to individualize the light dose and compensate for any treatment-induced variations in light attenuation. More specifically, based on the light transmission signals between treatment fibers, spatially resolved spectroscopy is utilized to assess the effective attenuation coefficient of the tissue. These data constitute input to a block-Cimmino optimization algorithm, employed to calculate individual fiber irradiation times provided the requirement to deliver a predetermined light dose to the target tissue while sparing surrounding sensitive organs. By repeatedly monitoring the light transmission signals during the entire treatment session, optical properties and individual fiber irradiation times are updated in realtime. The functionality of the algorithms is tested on diffuse light distribution data simulated by means of the finite element method (FEM). The feasibility of utilizing spatially resolved spectroscopy within heterogeneous media such as the prostate gland is discussed. Furthermore, we demonstrate the ability of the block-Cimmino algorithm to discriminate between target tissue and organs at risk (OAR). Finally, the realtime dosimetry module is evaluated for treatment scenarios displaying spatially and temporally varying light attenuation levels within the target tissue. We conclude that the realtime dosimetry module makes it possible to deliver a certain light dose to the target tissue despite spatial and temporal variations of the target tissue optical properties at the therapeutic wavelength.  相似文献   

15.
Photodynamic therapy (PDT) is a treatment that combines a photosensitizer with light to generate oxygen-dependent photochemical destruction of diseased tissue. This modality has been approved worldwide since 1993 for the treatment of several oncological and nononcological disorders. PDT continues to be interested in both preclinical and clinical research, with more than 500 publications each year during the past 5 years. This minireview focuses on the effects of PDT on tumor stroma. A tumor consists of two fundamental elements: parenchyma (neoplastic cells) and stroma. The stroma is composed of vasculature, cellular components, and intercellular matrix and is necessary for tumor growth. All the stromal components can be targeted by PDT. Although the exact mechanism of PDT is unknown, emerging evidence has indicated that effective PDT of tumor requires destruction of both parenchyma and stroma. Further, damage to subendothelial zone of vasculature, in addition to endothelium, also appears to be a crucial factor. The PDT-generated immune response as a way of vaccination for treatment and prevention of metastatic tumors remains to be exploited.  相似文献   

16.
This paper reports a pleomorphic adenoma with grossly visible pigmentation resulting in the macroscopic appearance of melanotic lesion in a 33-year-old Japanese male. In addition to the characteristic histopathological features of a benign pleomorphic adenoma, variously formed and -sized cells, many of which were considered to be melanocytes, containing melanin pigment in their cytoplasm, were distributed in the epithelial component. In addition, melanin pigment was deposited in tumor cells of duct structures. Furthermore, condensed secretory substances with marked pigmentation were frequently seen in the tubular lumina. Perusal of the English language literature revealed only two cases of parenchymal pigmentation of salivary gland tumors: both were mucoepidermoid carcinoma. The possible histogenesis of melanocytes in the salivary gland lesions is discussed, though no firm conclusion could be drawn.  相似文献   

17.
目的 探讨光动力疗法对鼠肝癌细胞MM45T-Li凋亡的影响.方法 以血卟啉单甲醚(HMME)为光敏剂,630 nm激光为激发光源的光动力疗法作用于鼠肝癌MM45T-Li细胞.细胞分别与2.5、5、10、20.μg/ml的光敏剂孵育4h后,用不同能量密度的激光照射;MTr法检测HMME的暗毒性以及光动力疗法作用24h后的细胞活性;Hoechst细胞核荧光染色法观察HMME介导的光动力疗法对细胞凋亡的影响.结果 在不照光的情况下各组浓度的HMME对细胞活性无明显抑制作用.当HMME浓度为10、20 μg/ml时,PDT对细胞活性的抑制率随能量密度的增加而增加.Hoechst染色观察PDT作用12h后部分细胞出现染色质凝集、核固缩、核碎裂等形态学改变,5.4 J/cm2及7.2 J/cm2组的凋亡率高于对照组(P<0.05).结论 HMME介导的光动力疗法可以有效地诱导鼠肝癌MM45T-Li细胞凋亡.  相似文献   

18.
Photodynamic therapy (PDT) is an FDA-approved modality that rapidly eliminates local tumors, resulting in cure of early disease and palliation of advanced disease. PDT was originally considered to be a local treatment; however, both pre-clinical and clinical studies have shown that local PDT treatment of tumors can enhance systemic anti-tumor immunity. The current state of investigations into the ability of PDT to enhance anti-tumor immunity, the mechanisms behind this enhancement and the future of PDT as an immunotherapy are addressed in this review.  相似文献   

19.
A distinctive pigment of the skin in New Guinea indigenes   总被引:3,自引:0,他引:3  
An unusual pigmentation of skin is described amongst indigenes of widely scattered areas in New Guinea. It is suggested that it is due to the accumulation of a red intermediary metabolite in the formation of melanin, and that it results from a metabolic error determined by an autosomal recessive gene. Pedigrees of thirty-three families with red skins are presented and analysed. The pigment could not be identified by histochemical studies of biopsy specimens and a portable reflectance spectrophotometer did not define its characteristics. The gene is present in high frequency in some areas in which it must possess a significant survival advantage.  相似文献   

20.
Silicon phthalocyanine Pc 4 photodynamic therapy (Pc 4-PDT) has emerged as a potentially effective treatment for cutaneous T-cell lymphoma (CTCL). Noninvasive reflectance and fluorescence spectroscopy before, during, and after PDT may provide useful dose metrics and enable therapy to be tailored to individual lesions. We present the design and implementation of a portable bedside spectroscopy system for initial clinical trials of Pc 4-PDT of CTCL. Reflectance and fluorescence spectra were obtained from an early stage CTCL patient throughout the course of the PDT treatment. Preliminary patient data show a significant effect of Pc 4 on the tissue absorption, modest Pc 4 photobleaching, and heterogeneity of Pc 4 within and between the lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号