首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NT-3 and BDNF protect CNS neurons against metabolic/excitotoxic insults   总被引:28,自引:0,他引:28  
Bin Cheng  Mark P. Mattson   《Brain research》1994,640(1-2):56-67
Neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF) were recently shown to have biological activity in central neurons. In the present study, NT-3 and BDNF attenuated glucose deprivation-induced neuronal damage dose-dependently in rat hippocampal, septal and cortical cultures. Direct measurements of intraneuronal free calcium levels ([Ca2+]i) and manipulations of calcium inlux demonstrated that NT-3 and BDNF each prevented the elevation of [Ca2+]i that mediated glucose deprivation-induced injury. Studies in cultures depleted of glia indicateda direct action of NT-3 and BDNF on neurons. Neurons pretreated with NT-3 or BDNF for 24 hr were more resistant to glutamate neurotoxicity, and showed attenuated [Ca2+]i responses to glutamate. TrkB (BDNF receptor) and trkC (NT-3 receptor) proteins were present in hippocampal, cortical and septal cultures where they were localied to neuronal cell bodies and neurites. The data demonstrate that NT-3 and BDNF can protect neurons against metabolic and excitotoxic insults, and suggest that these neurotrophins may serve [Ca2+]i-stabilizing and neuroprotective functions in the brain.  相似文献   

2.
Septal neutons from embryonic rats were grown in tissue culture. Microfluorimetric and electrophysiological techniques were used to study Ca2+ homeostasis in these neurons. The estimated basal intracellular free ionized calcium concentration ([Ca2+]i) in the neurons was low (50–100 nM). Depolarization of the neurons with 50 mM K+ resulted in rapid elevation of [Ca2+]i to 500–1,000 nM showing recovery to baseline [Ca2+]i over several minutes. The increases in [Ca2+]i caused by K+ depolarization were completely abolished by the removal of extracellular [Ca2+], and were reduced by 80% by the ‘L-type’ Ca2+ channel blocker, nimodipine (1 μM). [Ca2+]i was also increased by the excitatory amino andl-glutamate, quisqualate, AMPA and kainate. Responses to AMPA and kainate were blocked by CNOX and DNOX. In the absence of extracellular Mg2+, large fluctuations in [Ca2+]i were observed that were blocked by removal of extracellular Ca2+, by tetrodotoxin (TTX), or by antagonists ofN-methyld-aspartate (NMDA) such as 2-amino 5-phosphonovalerate (APV). In zero Mg2+ and TTX, NMDA caused dose-dependent increases in [Ca2+]i that were blocked by APV. Caffeine (10 mM) caused transient increases in [Ca2+]i in the absence of extracellular Ca2+, which were prevented by thapsigargin, suggesting the existence of caffeine-sensitive ATP-dependent intracellular Ca2+ stores. Thapsigargin (2 μM) had little effect on [Ca2+]i, or on the recovery from K+ depolarization. Removal of extracellular Na+ had little effect on basal [Ca2+]i or on responses to high K+, suggesting that Na+/Ca2+ exchange mechanisms do not play a significant role in the short-term control of [Ca2+]i in septal neurons. The mitochondrial uncoupler, CCCP, caused a slowly developing increase in basal [Ca2+]i; however, [Ca2+]i recovered as normal from high K+ stimulation in the presence of CCCP, which suggests that the mitochondria are not involved in the rapid buffering of moderate increases in [Ca2+]i. In simultaneous electrophysiological and microfluorimetric recordings, the increase in [Ca2+]i associated with action potential activity was measured. The amplitude of the [Ca2+]i increase induced by a train of action potentials increased with the duration of the train, and with the frequency of firing, over a range of frequencies between 5 and 200 Hz. Recovery of [Ca2+]i from the modest Ca2+ loads imposed on the neuron by action potential trains follows a simple exponential decay (τ = 3–5s).  相似文献   

3.
Nilsen J  Chen S  Brinton RD 《Brain research》2002,930(1-2):216-234
Conjugated equine estrogens (CEE) is the most widely prescribed pharmaceutical estrogen replacement therapy (ERT) for postmenopausal women in the United States and is the ERT of the Women’s Health Initiative. Previous studies from our laboratory have demonstrated that CEE exerts neurotrophic and neuroprotective effects in neurons involved in learning and memory, and which are affected in Alzheimer’s disease. The present work demonstrates that CEE potentiated the rise in intracellular calcium ([Ca2+]i) following exposure to physiological concentrations of glutamate. In contrast, the reverse effect occurred in the presence of excitotoxic levels of glutamate exposure, where CEE attenuated the rise in [Ca2+]i. Potentiation of the glutamate response was mediated by the NMDA receptor, as the NMDA receptor antagonist MK-801 blocked the CEE-induced potentiation, whereas the L-type calcium channel blocker nifedipine did not. Further, the CEE-potentiated glutamate response was mediated by a src tyrosine kinase, as the tyrosine kinase inhibitor PP2 blocked the potentiation induced by CEE and neurons treated with CEE displayed increased phosphorylated tyrosine. The inhibition by CEE of [Ca2+]i rise in the presence of excitotoxic levels of glutamate was mediated by mitogen activated protein kinase (MAPK), as the protective effect of CEE was blocked by inhibiting MAPK activation with PD98059. These data provide potential mechanisms to explain the cognitive enhancing and neuroprotective effects exerted by ERT.  相似文献   

4.
This study was performed to determine whether the intracellular Ca2+ concentration ([Ca2+]i) is increased in hippocampal CA3 neurons of spontaneously epileptic rats (SER) which show both absence-like and convulsive seizures using hippocampal slices loaded with Calcium Green-1 when a weak single stimulation is given to the mossy fiber. [Ca2+]i in the CA3 area was significantly increased after a single stimulus to mossy fibers in SER, while no changes were detected in normal Wistar rats. These findings suggest the existence of an abnormality in the Ca2+ channel in the SER CA3 region and that this is probably responsible for epileptic seizures.  相似文献   

5.
1. 1. The authors investigated the signal transduction in T-lymphocytes as a peripheral model for central neurons.
2. 2. Intracellular free calcium concentration [Ca2+]i was measured using fura 2 in T-lymphocytes from 6 patients with major depression during and after depression and from 6 healthy controls Patients were treated with interpersonal therapy (IPT) but not with psychotropic medication.
3. 3 Phytohemagglutinin (PHA) triggers an oscillatory [Ca2+]i signal in human T-lymphocytes. This implies two mechanisms for [Ca2+]i regulation: inositol phophate (IP) mediated release from intracellular stores and [Ca2+]i influx from the extracellular medium.
4. 4. PHA stimulates 49% of T cells from controls but only 17% of T cells from depressed patients. This finding explains previous results from cells in suspension indicating that [Ca2+]i signals after PHA-stimulation are reduced in cells from depressed patients.
5. 5 Cells from depressed patients show less [Ca2+]i oscillations. Normal oscillation pattems are restored after clinical recovery from depression.
6. 6. Thus altered [Ca2+]i oscillations in T-lymphocytes are a state phenomenon and may give us clues where to search for altered cellular mechanisms during depression.
  相似文献   

6.
Elevation of [K+]o for 30 s from 4 to 120 mM produced a fast and reversible depolarization and transient increase in [Ca2+]i in fura-2 loaded Retzius cells of the leech. The protein phosphatase inhibitor, okadaic acid, significantly slowed the return of [Ca2+]i toward baseline without affecting the amplitude of depolarization or rate of repolarization. Furthermore, okadaic acid and another phosphatase inhibitor, calyculin A, prolonged Ba2+-dependent action potentials. These results suggest that the kinetics of Ca2+ influx may be regulated by the activity of phosphatases PP-1 and/or PP-2A.  相似文献   

7.
The thrombin receptor on human platelets is activated by thrombin to stimulate platelet aggregation through the tethered ligand SFLLRN. This study examined the effects of thrombin and SFLLRN on aggregation and calcium mobilization ([Ca2+]i) in rat, guinea pig, rabbit, dog, monkey, and human platelets, and the role of protein kinases in regulating these functions. Thrombin induced platelet aggregation and [Ca2+]i in all species studied; however, only guinea pig, monkey and human platelets were responsive to SFLLRN. Similar species specific effects were obtained with [Ca2+]i studies. The kinetic profile for [Ca2+]i differed among species, suggesting that regulatory mechanisms for calcium differed between agonists and among species. Staurosporine, a non-selective inhibitor of protein kinases, inhibited platelet aggregation induced by thrombin or SFLLRN in all species. Staurosporine inhibited thrombin-induced [Ca2+]i in guinea pigs, had no effect in rat, and increased [Ca2+]i in all other species. Staurosporine inhibited SFLLRN-induced [Ca2+]i in guinea pig, yet had no effect in monkey or human. Tyrphostin 23, a specific inhibitor of tyrosine protein kinases, inhibited thrombin-induced aggregation of rabbit, monkey, dog and human platelets. SFLLRN-induced aggregation was also inhibited by tyrphostin 23. Tyrphostin 23 inhibited [Ca2+]i induced by either thrombin or SFLLRN in all species. Based on the differential response to agonist stimulation, we propose that thrombin can activate platelets via SFLLRN-dependent and independent mechanisms, which could involve yet unrecognized subtypes of the thrombin receptor or distinct cellular activating mechanisms. Furthermore, differential regulation of calcium mobilization and aggregation was observed in those platelets responding to either thrombin or SFLLRN.  相似文献   

8.
We have shown earlier that nicotinic agonists induce the release of noradrenaline from chick sympathetic neurons in culture in two ways: (a) by activating the postsynaptic nicotinic receptors on nerve cell bodies, giving rise to spreading electrical activity and opening of voltage operated calcium channels in neuronal processes; (b) by activating the presynaptic nicotinic receptors on neuronal processes. In the present work, we investigated the contribution of various pathways to the observed Ca2+ influx and subsequent noradrenaline release. Sympathetic neurons in culture were stimulated either by the nicotinic agonist dimethylphenylpiperazinium or electrically, in the presence or absence of tetrodotoxin and of specific blockers of calcium or nicotinic channels, and the effects on [Ca2+]i in the area of neuronal processes and on noradrenaline release were measured. Under control conditions, the N-type channel blocker ω-conotoxin (0.1 μmol/1) diminished the release of noradrenaline and the increase of intraterminal Ca2+ by 48% and 55%, respectively, whereas the L-type channel blocker (+)Bay k 8644 (1 μmol/1) diminished the release of noradrenaline by 25% and the increase of [Ca2+]i by 39%. The P-type channel blocker ω-agatoxin (0.3 μmol/1) had no effect. The effects of the L-type channel ligands were complex and could only be explained on the assumption that, at high concentrations, these drugs also act as nicotinic antagonists. Tetrodotoxin blocked the Ca2+ response evoked by electrical stimulation whereas DMPP applied in the presence of tetrodotoxin still evoked an increase of [Ca2+]i and the release of noradrenaline (27% and 30% of control without tetrodotoxin, respectively). These residual responses were not blocked by any of the calcium channel blockers used or by their combination. Apparently, a substantial part of the influx of Ca2+ induced by the activation of presynaptic nicotinic receptors is not carried by the N-, L- or P-type channels and probably occurs directly via the open channels of nicotinic receptors.  相似文献   

9.
We studied the early and late effects of L- trans -pyrrolidine-2,4-dicarboxylate (PDC), a competitive inhibitor of glutamate uptake with low affinity for glutamate receptors, in co-cultures of rat cortical neurons and glia expressing spontaneous excitatory amino acid (EAA) neurotransmission. At 100 or 200 μM, PDC induced different patterns of electrical changes: 100 μM prolonged tetrodotoxin-sensitive excitation triggered by synaptic glutamate release; 200 μM produced sustained, tetrodotoxin-insensitive and EAA-mediated neuronal depolarization, overwhelming synaptic activity. At 200 μM, but not at 100 μM, PDC caused rapid elevation of the glutamate concentration ([Glu]0) in the culture medium, resulting in NMDA receptor-mediated excitotoxic death of neurons 24 h later. The increase in [Glu]0 was largely insensitive to tetrodotoxin, independent of extracellular Ca2+, and present also in astrocyte-pure cultures. By the use of glutamate transporters functionally reconstituted in liposomes, we showed directly that PDC activates carrier-mediated release of glutamate via heteroexchange. Glutamate release and delayed neurotoxicity in our cultures were suppressed if PDC was applied in a Na+-free medium containing Li+. However, replacement of Na+ with choline instead of Li+ did not result in an identical effect, suggesting that Li+ does not act simply as an external Na+ substitute. In conclusion, our data indicate that alteration of glutamate transport by PDC has excitotoxic consequences and that active release of glutamate rather than just uptake inhibition is responsible for the generation of neuronal injury.  相似文献   

10.
Morphine, a preferential μ-opioid receptor agonist, alters astroglial development by inhibiting cell proliferation and by promoting cellular differentiation. Although morphine affects cellular differentiation through a Ca2+-dependent mechanism, few studies have examined whether Ca2+ mediates the effect of opioids on cell proliferation, or whether a particular Ca2+ signal transduction pathway mediates opioid actions. Moreover, it is uncertain whether one or more opioid receptor types mediates the developmental effects of opioids. To address these questions, the present study examined the role of μ-opioid receptors and Ca2+ mobilization in morphine-induced astrocyte development. Morphine (1 gmM) and non-morphine exposed cultures enriched in murine astrocytes were incubated in Ca2+-free media supplemented with < 0.005, 0.3, 1.0, or 3.0 mM Ca2+ ([Ca2+]o), or in unmodified media containing Ca2+ ionophore (A23187), nifedipine (1 μM), dantrolene (10 μM), thapsigargin (100 nM), or l-glutamate (100 μM) for 0-72 h. μ-Opioid receptor expression was examined immunocytochemically using specific (MOR1) antibodies. Intracellular Ca2+ ([Ca2+]i) was measured by microfluorometric analysis using fura-2. Astrocyte morphology and bromodeoxyuridine (BrdU) incorporation (DNA synthesis) were assessed in glial fibrillary acidic protein (GFAP) immunoreactive astrocytes. The results showed that morphine inhibited astroglial growth by activating μ-opioid receptors. Astrocytes expressed MOR1 immunoreactivity and morphine's actions were mimicked by the selective μ, agonist PL017. In addition, morphine inhibited DNA synthesis by mobilizing [Ca2+]i in developing astroglia. At normal [Ca2+]o, morphine attenuated DNA synthesis by increasing [Ca2+]i; low [Ca2+]o (0.3 mM) blocked this effect, while treatment with Ca2+ ionophore or glutamate mimicked morphine's actions. At extremely low [Ca2+]o (< 0.005 mM), morphine paradoxically increased BrdU incorporation. Although opioids can increase [Ca2+]i in astrocytes through several pathways, not all affect DNA synthesis or cellular morphology. Nifedipine (which blocks L-type Ca2+ channels) did not prevent morphine-induced reductions in BrdU incorporation or cellular differentiation, while thapsigargin (which depletes IP3-sensitive Ca2+ stores) severely affected inhibited DNA synthesis and cellular differentiation-irrespective of morphine treatment. However, dantrolene (an inhibitor of Ca2+-dependent Ca2+ release) selectively blocked the effects of morphine. Collectively, the findings suggest that opioids suppress astroglial DNA synthesis and promote cellular hypertrophy by inhibiting Ca2+-dependent Ca2+ release from dantrolene-sensitive intracellular stores. This implies a fundamental mechanism by which opioids affect central nervous system maturation.  相似文献   

11.
The coupling of Ca2+ influx to synaptic vesicle (SV) recycling in nerve terminals is essential for neurotransmitter release and thus neuronal communication. Both of these parameters have been monitored using fluorescent reporter dyes such as fura-2 and FM1-43 in single central nerve terminals. However, their simultaneous monitoring has been hampered by the proximity of their fluorescence spectra, resulting in significant contamination of their signals by bleedthrough. We have developed an assay that simultaneously monitors both SV recycling and changes in intracellular free Ca2+ ([Ca2+]i) in cultured neurons using the reporter dyes FM4-64 and fura-2AM. By monitoring both fura-2 and FM4-64 emission in the far red range, we were able to visualize functionally independent readouts of both SV recycling and [Ca2+]i independent of fluorescence bleedthrough. We were also able to incorporate an assay of cell viability without any fluorescence bleedthrough from either fura-2 or FM4-64 signals, using the dye SYTOX Green. We propose that this assay of three key neuronal functions could be simply translated into a high content screening format for studies investigating small molecule inhibitors of these processes.  相似文献   

12.
Cytoplasmic [Ca2+] ([Ca2+]i) was measured using Fura-2 in pyramidal neurones isolated from the rat dorsal cochlear nucleus (DCN). The kinetic properties of Ca2+ removal following K+ depolarization-induced Ca2+ transients were characterized by fitting exponential functions to the decay phase. The removal after small transients (<82 nM peak [Ca2+]i) had monophasic time course (time constant of 6.43±0.48 s). In the cases of higher Ca2+ transients biphasic decay was found. The early time constant decreased (from 3.09±0.26 to 1.46±0.11 s) as the peak intracellular [Ca2+] increased. The value of the late time constant was 18.15±1.60 s at the smallest transients, and showed less dependence on [Ca2+]i. Blockers of Ca2+ uptake into intracellular stores (thapsigargin and cyclopiazonic acid) decreased the amplitude of the Ca2+ transients and slowed their decay. La3+ (3 mM) applied extracellularly during the declining phase dramatically changed the time course of the Ca2+ transients as a plateau developed and persisted until the La3+ was present. When the other Ca2+ removal mechanisms were available, reduction of the external [Na+] to inhibit the Na+/Ca2+ exchange resulted in a moderate increase of the time constants. It is concluded that in the isolated pyramidal neurones of the DCN the removal of Ca2+ depends mainly on the activity of Ca2+ pump mechanisms.  相似文献   

13.
Exposure of neurons to glutamate is an essential element of neuronal function, producing transient elevations in free intracellular calcium ([Ca2+]i) that are required for normal physiological processes. However, prolonged elevations in [Ca2+]i have been observed following glutamate excitotoxicity and have been implicated in the pathophysiology of delayed neuronal cell death. In the current study, we utilized indo-1 and fura-2ff Ca2+ imaging techniques to determine if glutamate-induced prolonged elevations in [Ca2+]i were due to persistent influx of extracellular Ca2+ or from impairment of neuronal Ca2+ extrusion/sequestration mechanisms. By experimentally removing Ca2+ from the extracellular solution following glutamate exposure, influx of Ca2+ into the neurons was severely attenuated. We observed that brief glutamate exposures (<5 min, 50 microM glutamate) resulted in a Ca2+ influx that continued after the removal of glutamate. The Ca2+ influx was reversible, and the cell was able to effectively restore [Ca2+]i to resting levels. Longer, excitotoxic glutamate exposures (> or = 5 min) generated a Ca2+ influx that continued for the duration of the recording period (>1 h). This persistent Ca2+ influx was not primarily mediated through traditionally recognized Ca2+ channels such as glutamate receptor-operated channels or voltage-gated Ca2+ channels. In addition to the persistent Ca2+ influx, longer glutamate exposures also produced a lasting disruption of Ca2+ extrusion/sequestration mechanisms, impairing the ability of the neuron to restore resting [Ca2+]i. These data suggest that glutamate-induced protracted [Ca2+]i elevations result from at least two independent, simultaneously occurring alterations in neuronal Ca2+ physiology, including a persistent Ca2+ influx and damage to Ca2+ regulation mechanisms.  相似文献   

14.
Potassium chloride (KCl)-depolarization has been used to study the properties of L-type Ca2+ channel-mediated signal transduction in hippocampal neurons. Calcium influx through L-type Ca2+ channels stimulates a second messenger pathway that transactivates genes under the regulatory control of the Ca2+- and cyclic AMP-responsive element (CRE). Here, we show that in striatal neurons, but not in hippocampal neurons, CRE binding protein (CREB) phosphorylation and CRE-mediated gene expression after KCl-depolarization depends on functional NMDA receptors. This difference in NMDA receptor dependence is not due to different properties of L-type Ca2+ channels in either neuronal type, but rather to different neuron-intrinsic properties. Despite this variation, the second messenger pathway activated by KCl requires Ca2+/calmodulin (CaM) kinase for CREB phosphorylation in both neuronal types. We conclude that depolarization by KCl works differently in striatal and hippocampal neurons.  相似文献   

15.
We have studied the function of carbohydrates of the L1 molecule, a member of the immunoglobulin superfamily of adhesion molecules, using a novel monoclonal antibody, mAb-L1(2E12), against L1 molecule. This antibody was specific for the 200 kDa component of mouse L1 molecule and its epitope was N-linked for complex-type oligosaccharides. The mAb-L1(2E12) was found to induce a rise in intracellular Ca2+ concentration ([Ca2+]i) in cultured mouse embryonic cortical neurons. The rise in [Ca2+]i was dependent on the concentrations of mAb-L1(2E12). The rise seemed to be due to an influx of extracellular Ca2+ as EGTA treatment abolished it. Both cadmium and nifedipine blocked the effect of mAb-L1(2E12), suggesting the Ca2+ influx was through voltage-operated Ca2+ channels, particularly L-type Ca2+ channels. These results provide an important insight for understanding the mechanisms by which oligosaccharides of the L1 molecule influence various functions of neural cells.  相似文献   

16.
Secretory phospholipase A2 (sPLA2) exhibits neurotoxicity in the central nervous system. There are high-affinity binding sites of the porcine pancreatic group IB sPLA2 (sPLA2-IB) in the brain. sPLA2-IB causes neuronal cell death via apoptosis in the rat cerebral cortex. Although apoptosis is triggered by an influx of Ca2+ into neurons, it has not yet been ascertained whether the Ca2+ influx is associated with the neurotoxicity of sPLA2-IB. We thus examined the possible involvement of Ca2+ in the neurotoxicity of sPLA2-IB in the primary culture of rat cortical neurons. sPLA2-IB induced neuronal cell death in a concentration- and time-dependent manner. This death was accompanied by condensed chromatin and fragmented DNA, exhibiting apoptotic features. Before apoptosis, sPLA2-IB markedly enhanced the influx of Ca2+ into neurons. A calcium chelator suppressed neurons from sPLA2-IB-induced neuronal cell death in a concentration-dependent manner. An L-type voltage-sensitive Ca2+ channel (L-VSCC) blocker significantly protected the sPLA2-IB-potentiated influx of Ca2+. On the other hand, blockers of N-VSCC and P/Q-VSCC did not. An L-VSCC blocker protected neurons from sPLA2-IB-induced neuronal cell death. In addition, the L-VSCC blocker ameliorated the apoptotic features of sPLA2-IB-treated neurons. Neither an N-VSCC blocker nor P/Q-VSCC blockers affected the neurotoxicity of the enzyme. In conclusion, these findings demonstrate that the influx of Ca2+ into neurons play an important role in the neurotoxicity of sPLA2-IB. Furthermore, the present study suggests that L-VSCC contribute to the sPLA2-IB-potentiated influx of Ca2+ into neurons.  相似文献   

17.
Lactate production (Jlac), oxygen consumption rate (QO2), plasma membrane potentials (Em) and cytosolic free calcium levels [Ca2+]i were studied on symaptosomes isolated from rat brains, incubated in presence of high doses of nicardipine (90 μM), diltiazem (0.5 mM) and verapamil (0.25 mM), and submitted to depolarizing stimulation or inhibition of mitochondrial respiration. Nicardipine was able to completely prevent the veratridine-induced stimulation ofJlac, QO2andEm depolarization, whereas diltiazem and verapamil were less effective, although the concentrations used were 5 and 3 times higher, respectively, than nicardipine. Diltiazem, verapamil and nicardipine (9 μM) also prevented the veratridine-induced increase in [Ca2+]i, this effect being much less pronounced if the drugs were added after veratridine. Monensin (20 μM) was also able to increase [Ca2+]i but this effect was not affected by verapamil. Synaptosomes were also submitted to an inhibition of respiration of intrasynaptic mitochondria by incubation with rotenone (5 μM); in this condition of mimicked hypoxiaEm was more positive of about 11 mV; none of the drugs utilized modified this situation. The rotenone-induced 3-fold increase inJlac was barely modified by diltiazem and verapamil but it was completely abolished by nicardipine. The possible mechanism of the counteracting action of the drugs towards veratridine stimulation and rotenone inhibition and the involvement of Na+/Ca2+ exchanger in affecting [Ca2+]i are discussed.  相似文献   

18.
Activin exerts a neurotrophic effect on cultured hippocampal neurons   总被引:6,自引:0,他引:6  
Activin is a member of the transforming growth factor (TGF)-β superfamily, which comprises a growing list of multifunctional proteins that serve as regulators of cell proliferation and differentiation. Recently, activin was shown to regulate the neurotransmitter phenotype in peripheral neurons. It is also a potent survival factor for neurogenic clonal cell lines, retinal neurons and midbrain dopaminergic neurons. We have studied the effect of activin on hippocampal cells which show abundant expression of activin receptors or binding sites. Exposure of primary cultures of rat hippocampal neurons to activin supported neuronal survival. This neurotrophic action of activin was blocked by treatment with the tyrosine kinase inhibitor genistein or the protein kinase C inhibitor calphostin C. However, the Ca2+/calmodulin kinase inhibitor KN-62 had no effect. Nicardipine, a blocker of the -type Ca2+ channel, also inhibited the neurotrophic effect of activin. Furthermore, activin potentiated the depolarization-induced elevation in intracellular Ca2+ concentration ([Ca2+]i). The neurotrophic effect and the potentiation of depolarization-induced increase of [Ca2+]i caused by activin were completely abolished by the protein synthesis inhibitor cycloheximide. These results suggest that activin supports neuronal survival by increasing the expression of voltage-dependent Ca2+ channel through the action of a tyrosine kinase and of protein kinase C, but not of Ca2+/calmodulin kinase.  相似文献   

19.
The effects of valproate (VPA) on neuronal excitability and on changes in extracellular potassium ([K+]0) and calcium ([Ca2+]0) were investigated with ion selective-reference electrode pairs in area CA1 of rat hippocampal slices. Field potential responses to single ortho- and antidromic stimuli were unaltered by VPA (1–5 mM). The afferent volley evoked in the Schaffer-commissural fibers was also unaffected. In contrast, VPA (1 mM) depressed frequency potentiation and paired pulse facilitation markedly. Decreases in [Ca2+]0 induced either by repetitive stimulation or by application of the excitatory amino acids N-methyl-d-aspartate and quisqualate were reduced, and the latter results suggest that VPA interferes with postsynaptic Ca2+ entry. When synaptic transmission was blocked by lowering [Ca2+]0 (0.2 mM) and elevating [Mg2+]0 (7 mM), prolonged afterdischarges elicited by antidromic stimulation were blocked by VPA. VPA also suppressed the spontaneous epileptiform activity seen when [Ca2+]0 was lowered to 0.2 mM, without elevating [Mg2+]0. The amplitudes of the rises in [K+]0 induced by repetitive orthodromic stimulation were only slightly depressed and those elicited by antidromic stimulation were generally unaltered by VPA, as were laminar profiles of stimulus-evoked [K+]0 signals. These results indicate that VPA has membrane actions in addition to known effects on excitatory and inhibitory transmitter pools.  相似文献   

20.
Verapamil (ED50=3×10−6 M) and nicardipine (ED50=10−6 M) inhibited the platelet activating factor (PAF)-induced increase of free cytosolic calcium concentration ([Ca2+]i) in quin2-loaded human platelets. In a Ca-free medium containing 5 mM BaCl2, PAF stimulated the inflow of Ba2+ ions which is completely abolished by verapamil and nicardipine. Simultaneous determination of quin2 fluorescence and 45Ca absorption showed that the action of verapamil is accounted for by blocking of the Ca2+ entry. Nicardipine suppresses also Ca2+ mobilization from intracellular stores. The effects of verapamil and nicardipine are not competitive with respect to PAF.The blockers reduce the [Ca2+]i increase induced by ADP, vasopressin, and PGH2 analogue U46619.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号