首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonhuman primate embryonic stem (ES) cells have vast promise for preclinical studies. Genetic modification in nonhuman primate ES cells is an essential technique for maximizing the potential of these cells. The common marmoset (Callithrix jacchus), a nonhuman primate, is expected to be a useful transgenic model for preclinical studies. However, genetic modification in common marmoset ES (cmES) cells has not yet been adequately developed. To establish efficient and stable genetic modifications in cmES cells, we inserted the enhanced green fluorescent protein (EGFP) gene with heterotypic lox sites into the β-actin (ACTB) locus of the cmES cells using gene targeting. The resulting knock-in ES cells expressed EGFP ubiquitously under the control of the endogenous ACTB promoter. Using inserted heterotypic lox sites, we demonstrated Cre recombinase-mediated cassette exchange (RMCE) and successfully established a monomeric red fluorescent protein (mRFP) knock-in cmES cell line. Further, a herpes simplex virus-thymidine kinase (HSV-tk) knock-in cmES cell line was established using RMCE. The growth of tumor cells originating from the cell line was significantly suppressed by the administration of ganciclovir. Therefore, the HSV-tk/ganciclovir system is promising as a safeguard for stem cell therapy. The stable and ubiquitous expression of EGFP before RMCE enables cell fate to be tracked when the cells are transplanted into an animal. Moreover, the creation of a transgene acceptor locus for site-specific transgenesis will be a powerful tool, similar to the ROSA26 locus in mice.  相似文献   

2.
Oct-3 is a key molecule for maintaining self-renewal in mouse embryonic stem (ES) cells. The function of Oct-3 in ES cells of other species, however, especially primate ES cells, is not clear. In the present study, we cloned two splicing isoforms of Oct-3, Oct-3A and Oct-3B, from cynomolgus monkey ES cells, and found that they have high homology to human Oct-3A and Oct-3B. To examine their function, Oct-3A and Oct-3B were overexpressed in cynomolgus monkey ES cells. Transient Oct-3A overexpression induced ES cell differentiation into endodermal and mesodermal lineages and disrupted proliferation of undifferentiated monkey ES cells. In contrast, Oct-3B overexpression did not induce differentiation of monkey ES cells. These findings indicate that a certain Oct-3A expression level has an important role in sustaining self-renewal in non-human primate ES cells.  相似文献   

3.
Because embryonic stem (ES) cells are able to proliferate indefinitely and differentiate into any type of cell, they have the potential for providing an inexhaustible supply of transplantable cells or tissues. However, methods for the in vitro differentiation of human ES cells are still quite limited. One possible strategy would be to generate differentiated cells in vivo. In view of future clinical application, we investigated the possibility of using xenogeneic large animals for this purpose. We transplanted nonhuman primate cynomolgus ES cells into fetal sheep at 43-67 gestational days (full term 147 days, n=15). After birth, cynomolgus tissues, which were mature teratomas, had been engrafted in sheep when more than 1 x 10(6) ES cells were transplanted at <50 gestational days. Despite the sustained engraftment, both cellular and humoral immune responses against the ES cells were detected, and additional transplantation was not successful in the animals. At 2 weeks post-transplantation, the ES cell progeny proliferated when transplanted at 48 (<50) gestational days, whereas they were cleared away when transplanted at 60 (>50) gestational days. These results support the rapid development of the xenogeneic immunological barrier in fetal sheep after 50 gestational days. Notably, a large number of Foxp3(+) regulatory T cells were present around the ES cell progeny, but macrophages were absent when the transplant was conducted at <50 gestational days, implying that regulatory T cells and premature innate immunity might have contributed to the sustained engraftment. In conclusion, long-term macroscopic engraftment of primate ES cells in sheep is feasible despite the xenogeneic immunological barrier.  相似文献   

4.
5.
6.
BACKGROUND: An effective freezing-thawing technique is crucial for the clinical application of human embryonic stem (ES) cells. The aim of this study was to find an optimal cryopreservation protocol for human ES cells using slow freezing-rapid thawing without a programmable freezer. METHODS: The human ES cell line, SNUhES-3, was cultured on an STO feeder layer in gelatin-coated tissue culture dishes. All cryopreservation steps were performed using a simple commercial freezing container. The survival rate of cryopreserved-thawed human ES cells was estimated by counting colony numbers under a stereomicroscope. Initially, we compared the survival rates of cryopreserved human ES cells using three cryoprotectants: dimethylsulphoxide (DMSO), ethylene glycol (EG) and glycerol. In this experiment, 5% DMSO/95% fetal bovine serum (FBS) (vol/vol) showed the highest survival rate. We next tested the impact of various concentrations of FBS (95, 50 and 5%) with 5% DMSO, and then examined the effects of adding EG or glycerol to 5% DMSO + optimal FBS. RESULTS: No significant difference in survival rate was observed between 95 and 50% FBS in the presence of 5% DMSO. A significant improvement in survival rate was obtained by adding 10% EG to 5% DMSO+50% FBS. After thawing, surviving cells were found to maintain the inherent characteristics of human ES cells. CONCLUSION: 5% DMSO+50% FBS+10% EG may be an optimal cryoprotectant for the slow freezing-rapid thawing of human ES cells.  相似文献   

7.
Golos TG 《Human immunology》2003,64(11):1102-1109
Placental contributions to the establishment of maternal-fetal immune tolerance, and placental influences on maturation and vascular development of the endometrium in the human have been difficult to explore directly. Although significant differences exist in organization and relevant gene expression between human and nonprimate placentas, the nonhuman primate has substantial potential to provide insights into the physiology of human pregnancy and maternal-fetal immune tolerance. In this report, we will summarize major histocompatability complex class I gene expression in the nonhuman primate placenta and present progress in characterizing the immune cells resident in the primate endometrium. Finally, we will outline new experimental approaches for modifying placental function now available to move research forward in this field.  相似文献   

8.
9.
10.
HIV-1 infection of nonhuman primates does not lead to the acquired immunodeficiency syndrome seen in humans. The basis for this lack of disease progression in these animals is still unknown. In this study, primary nonhuman primate peripheral blood mononuclear cells (PBMC) were tested for their susceptibility to in vitro infection by several different primary HIV-1 isolates representing distinct subtypes or clades. None of the five HIV-1 subtypes tested were able to readily establish an infection in chimpanzee or baboon PBMC, as determined by p24 antigen capture assays. To address the mechanism of in vitro resistance to HIV-1 infection, PBMC were analyzed for HIV coreceptor mRNA expression and cell surface expression. Flow cytometry analysis of the nonhuman primate PBMC demonstrated that they do express CD4, CCR3, CCR5, and CXCR4 on their cell surface. Therefore, the level of restriction in the virus replication cycle does not appear to lie at the point of entry in these cells.  相似文献   

11.
Human embryonic stem (ES) cells are predicted to be a valuable source for producing ES-derived therapeutic spare tissues to treat diseases by controlling their growth and differentiation. To understand the regulative mechanisms of their differentiation in vivo and in vitro, ES cells derived from nonhuman primates could be a powerful tool. We established four ES cell lines from cynomolgus monkey (Macaca fascicularis) blastocysts produced by in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI). The ES cells were characterized by the expression of specific markers such as alkaline phosphatase and stage-specific embryonic antigen-4. They were successfully maintained in an undifferentiated state and with a normal karyotype even after more than 6 months of culture. Pluripotential competence was confirmed by the formation of teratomas containing ectoderm-, mesoderm-, and endoderm- derivatives after subcutaneous injection into SCID mice. Differentiation to a variety of tissues was identified by immunohistochemical analyses using tissue-specific antibodies. Therefore, we established pluripotent ES cell lines derived from monkeys that are widely used as experimental animals. These lines could be a useful resource for preclinical stem cell research, including allogenic transplantation into monkey models of disease.  相似文献   

12.
Human immunodeficiency virus (HIV) infection is associated with the loss of the two principal types of dendritic cell (DC), myeloid DC (mDC) and plasmacytoid DC (pDC), but the mechanism of this loss and its relationship to AIDS pathogenesis remain ill-defined. The nonhuman primate is a powerful model to dissect this response for several reasons. Both DC subsets have been well characterized in nonhuman primates and shown to have strikingly similar phenotypic and functional characteristics to their counterparts in the human. Moreover, decline of mDC and pDC occurs in rhesus macaques with end-stage simian immunodeficiency virus (SIV) infection, the model of HIV infection in humans. In this brief review, we discuss what is known about DC subsets in pathogenic and nonpathogenic nonhuman primate models of HIV infection and highlight the advances and controversies that currently exist in the field.  相似文献   

13.
Classic derivation of mouse embryonic stem (ES) cells from blastocysts is inefficient, strain-dependent, and requires expert skills. Over recent years, several major improvements have greatly increased the success rate for deriving mouse ES cell lines. The first improvement was the establishment of a user-friendly and reproducible medium-alternating protocol that allows isolation of ES cells from C57BL/6 transgenic mice with efficiencies of up to 75%. A recent report describes the use of this protocol in combination with leukemia inhibitory factor and pluripotin treatment, which made it possible to obtain ES cells from F1 strains with high efficiency. We report modifications of these protocols for user-friendly and reproducible derivation of mouse ES cells with efficiencies of up to 100%. Our protocol involves a long initial incubation of primary outgrowths from blastocysts with pluripotin, which results in the formation of large spherical outgrowths. These outgrowths are morphologically distinct from classical inner cell mass (ICM) outgrowths and can be easily picked and trypsinized. Pluripotin was omitted after the first trypsinization because we found that it blocks attachment of ES cells to the feeder layer and its removal facilitated formation of ES cell colonies. The newly established ES cells exhibited normal karyotypes and generated chimeras. In summary, our user-friendly modified protocol allows formation of large spherical ICM outgrowths in a robust and reliable manner. These outgrowths gave rise to ES cell lines with success rates of up to 100%.  相似文献   

14.
Major histocompatibility complex class I molecules of nonhuman primates   总被引:4,自引:0,他引:4  
The usefulness of nonhuman primates in immunologically relevant research has until now been limited by difficulties in characterizing the major histocompatibility (MHC) gene products of these species. We have now biochemically characterized the MHC-encoded class I molecules from four different species of nonhuman primates using antibodies directed against human MHC class I structures and one-dimensional isoelectric focusing (1-D IEF). We demonstrated the functional relevancy of this technique of MHC typing by generating virus-specific cytotoxic T cells and assaying their cytotoxic activity against a panel of virus-transformed cells that expressed the same or differing class I structures. Only virus-infected cell lines expressing MHC class I antigens identical to those of the cytotoxic T lymphocyte population were lysed. This simple method of MHC class I typing using 1-D IEF will be useful in immunological research involving nonhuman primates and in nonhuman primate colony management.  相似文献   

15.
Genetically manipulated dendritic cells (DC) are considered to be a promising means for antigen-specific immune therapy. This study reports the generation, characterization, and genetic modification of DC derived from human embryonic stem (ES) cells. The human ES cell-derived DC (ES-DC) expressed surface molecules typically expressed by DC and had the capacities to stimulate allogeneic T lymphocytes and to process and present protein antigen in the context of histocompatibility leukocyte antigen (HLA) class II molecule. Genetic modification of human ES-DC can be accomplished without the use of viral vectors, by the introduction of expression vector plasmids into undifferentiated ES cells by electroporation and subsequent induction of differentiation of the transfectant ES cell clones to ES-DC. ES-DC introduced with invariant chain-based antigen-presenting vectors by this procedure stimulated HLA-DR-restricted antigen-specific T cells in the absence of exogenous antigen. Forced expression of programmed death-1-ligand-1 in ES-DC resulted in the reduction of the proliferative response of allogeneic T cells cocultured with the ES-DC. Generation and genetic modification of ES-DC from nonhuman primate (cynomolgus monkey) ES cells was also achieved by the currently established method. ES-DC technology is therefore considered to be a novel means for immune therapy.  相似文献   

16.
The ability to cryopreserve lymphocytes in peripheral blood mononuclear cells (PBMC) to retain their function after thawing is critical to the analysis of cancer immunotherapy studies. We evaluated a variety of cryopreservation strategies with the aim of developing an optimized protocol for freezing and thawing PBMC to retain viability and function. We determined several factors which do not affect cell viability after cryopreservation such as shipping frozen samples on dry ice, the length of time and speed at which samples are washed and centrifuged after thawing, and the number of cells frozen per container. Different media additives, however, did impact the viability of the cells after thawing. There was a significant reduction in the viability of the cells after freezing when using human AB serum compared to all other additives tested (p<0.000). A second critical parameter was the temperature of the media used to wash the cells after removal from the cryotubes. When the media was cooled to 4 degrees C prior to washing, the mean viability was 69.7+/-12.5%, at 25 degrees C 92.55+/-3.1%, and at 37 degrees C 95.11+/-2.5%. Finally, we used an optimized cryopreservation protocol with different media additives to determine if functional T cell responses to tetanus toxoid could be preserved. There was a statistically significant correlation between the tetanus specific stimulation index (S.I.) of the non-cryopreserved PBMC and SI obtained from cells frozen with media containing human serum albumin as compared to other additives such as dextran or fetal bovine serum.  相似文献   

17.
18.
We identified intermediate-stage progenitor cells that have the potential to differentiate into hematopoietic and endothelial lineages from nonhuman primate embryonic stem (ES) cells. Sequential fluorescence-activated cell sorting and immunostaining analyses showed that when ES cells were cultured in an OP9 coculture system, both lineages developed after the emergence of two hemoangiogenic progenitor-bearing cell fractions, namely, vascular endothelial growth factor receptor (VEGFR)-2(high) CD34(-) and VEGFR-2(high) CD34(+) cells. Exogenous vascular endothelial growth factor increased the proportion of VEGFR-2(high) cells, particularly that of VEGFR-2(high) CD34(+) cells, in a dose-dependent manner. Although either population of VEGFR-2(high) cells could differentiate into primitive and definitive hematopoietic cells (HCs), as well as endothelial cells (ECs), the VEGFR-2(high) CD34(+) cells had greater hemoangiogenic potential. Both lineages developed from VEGFR-2(high) CD34(-)or VEGFR-2(high) CD34(+) precursor at the single-cell level, which strongly supports the existence of hemangioblasts in these cell fractions. Thus, this culture system allows differentiation into the HC and EC lineages to be defined by surface markers. These observations should facilitate further studies both on early developmental processes and on regeneration therapies in human.  相似文献   

19.
20.
Embryonic stem cells: prospects for developmental biology and cell therapy   总被引:35,自引:0,他引:35  
Stem cells represent natural units of embryonic development and tissue regeneration. Embryonic stem (ES) cells, in particular, possess a nearly unlimited self-renewal capacity and developmental potential to differentiate into virtually any cell type of an organism. Mouse ES cells, which are established as permanent cell lines from early embryos, can be regarded as a versatile biological system that has led to major advances in cell and developmental biology. Human ES cell lines, which have recently been derived, may additionally serve as an unlimited source of cells for regenerative medicine. Before therapeutic applications can be realized, important problems must be resolved. Ethical issues surround the derivation of human ES cells from in vitro fertilized blastocysts. Current techniques for directed differentiation into somatic cell populations remain inefficient and yield heterogeneous cell populations. Transplanted ES cell progeny may not function normally in organs, might retain tumorigenic potential, and could be rejected immunologically. The number of human ES cell lines available for research may also be insufficient to adequately determine their therapeutic potential. Recent molecular and cellular advances with mouse ES cells, however, portend the successful use of these cells in therapeutics. This review therefore focuses both on mouse and human ES cells with respect to in vitro propagation and differentiation as well as their use in basic cell and developmental biology and toxicology and presents prospects for human ES cells in tissue regeneration and transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号