首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The infiltration of leukocytes plays a major role in mediating tubulointerstitial inflammation and fibrosis in chronic renal disease. CC chemokines participate in leukocyte migration and infiltration into inflamed renal tissue. Because CC chemokine-directed leukocyte migration is mediated by target cell expression of a group of CC chemokine receptors, this study examined the expression of CC chemokines and their receptors during initiation of tubulointerstitial fibrosis after unilateral ureteral obstruction in C57BL/6 mice. Obstructed kidneys developed hydronephrosis, tubular cell damage, interstitial inflammation, and fibrosis. From days 2 to 10, a progressive interstitial influx of F4/80+ macrophages and CD3+ lymphocytes occurred (macrophages, 4-fold; lymphocytes, 20-fold at day 10, compared with contralateral control kidneys). In parallel, the number of activated fibroblast-specific protein 1+ fibroblasts and interstitial collagen IV accumulation increased from days 2 to 10. The mRNA expression of CC chemokines (predominantly monocyte chemoattractant protein-1 [MCP-1]/CCL2, RANTES/CCL5) and their receptors CCR1, CCR2, CCR5 increased progressively from days 2 to 10. By in situ hybridization, a prominent interstitial mRNA expression of MCP-1 and RANTES and their receptors CCR2 and CCR5 localized to interstitial mononuclear cell infiltrates. MCP-1 and RANTES expression was also seen in tubular epithelial cells. Fluorescence-activated cell sorter analysis of single-cell suspensions from obstructed kidneys revealed a prominent expression of CCR2 and CCR5 by infiltrating macrophages, whereas most lymphocytes expressed CCR5 only. These data demonstrate an increased expression of MCP-1/CCL2 and RANTES/CCL5 at sites of tubulointerstitial damage and progressive fibrosis during unilateral ureteral obstruction that correlates with simultaneous accumulation of interstitial macrophages and T lymphocytes expressing the respective surface receptors CCR2 and CCR5. The chemokine receptor-mediated leukocyte influx into the tubulointerstitium could offer a new potential target for therapeutic intervention in progressive renal tubulointerstitial fibrosis.  相似文献   

2.
BACKGROUND: Chemokines are involved in the regulation of the cellular renal infiltrate in glomerulonephritis; however, it is unclear to which degree resident glomerular cells or infiltrating leukocytes contribute to the formation of chemokines in glomerular inflammatory lesions. We therefore examined whether monocytes/macrophages play a role in the expression of the C-C chemokines MCP-1/CCL2 and RANTES/CCL5 in renal tissue in a lipopolysaccharide (LPS)-induced model of inflammation, where previously we have shown increased glomerular RANTES expression and glomerular infiltration of ED-1-positive cells. METHODS: Inflammatory lesions were induced by an intraperitoneal injection of LPS. The infiltration of monocytes into the glomerulus was reduced by two experimental approaches. First, rats were depleted of monocytes by the use of specific monocyte-antisera or by cytotoxic drugs. Second, the infiltration of monocytes into the kidney was reduced by using intercellular adhesion molecule-1 (ICAM-1) knockout mice. RESULTS: Both experimental approaches demonstrated a significant reduction in the number of infiltrating monocytes/macrophages after lipopolysaccharide injection. This reduction in the infiltration of inflammatory cells was associated with significantly reduced RANTES/CCL5 mRNA expression. However, MCP-1/CCL2 mRNA expression was not inhibited after the LPS injection by monocyte/macrophage depletion. Also, the increase in nuclear factor-kappaB (NF-kappaB) binding activity after the LPS injection was not reduced in pretreated animals. The experiments therefore demonstrate that infiltrating monocytes/macrophages contribute to increased RANTES/CCL5 mRNA expression in inflammatory renal lesions, whereas MCP-1/CCL2 mRNA expression and NF-kappaB activation were not reduced by monocyte/macrophage depletion. CONCLUSION: MCP-1/CCL2 released from renal tissue upon stimulation plays a major role in the regulation of monocyte/macrophage infiltration, which contributes significantly to increased renal RANTES/CCL5 expression. This cross-talk between resident renal cells and monocytes/macrophages is therefore likely to boost the number of infiltrating inflammatory cells.  相似文献   

3.
BACKGROUND: Ischemia/reperfusion injury is an inherent consequence of solid organ transplantation that increases tissue inflammation and negatively impacts organ transplant function and survival. This study investigated the expression levels of chemokine and chemokine receptor genes in living versus cadaver donor renal allografts before and after reperfusion. METHODS: This study involved 39 renal transplant patients (19 cadaveric and 20 living donor). The ischemia biopsy was taken just before graft declamping and the reperfusion biopsy 30 min after declamping. Whole-cell RNA was isolated and chemokine (IL-8, CCL2/MCP-1, CXCL10/IP-10 and CCL5/RANTES) and chemokine receptor (CCR2 and CCR5) expression was tested by quantitative PCR. RESULTS: Just prior to declamping, ischemic cadaveric donor grafts had higher expression of CXCL10/IP-10 but not IL-8 or CCL2/MCP-1 than living donor grafts. IL-8 expression increased 50% from ischemia to reperfusion in living donor grafts but increased more than 13-fold during reperfusion of cadaver donor grafts. Increased total ischemia time induced greater IL-8 expression during reperfusion. MCP-1 expression also increased during reperfusion of living and cadaver donor grafts but differences were not observed between the two groups of grafts. RANTES, CCR2, and CCR5 expression did not change in ischemic vs. reperfusion biopsies. CONCLUSIONS: The expression of chemokines directing neutrophil and macrophage recruitment increases during reperfusion of living and cadaveric donor renal allografts. Expression levels of IL-8 correlate with the ischemic time imposed on the renal graft. Early tissue injury may be attenuated by strategies antagonizing chemokines directing the recruitment of neutrophils and macrophages into kidney grafts.  相似文献   

4.
Immune complex glomerulonephritis (GN) often deteriorates during infection with viruses and bacteria that, in contrast to mammals, have DNA that contains many unmethylated CpG motifs. Balb/c mice with horse apoferritin-induced GN (HAF-GN) were treated with either saline, CpG-oligodeoxynucleotides (ODN), or control GpC-ODN. Only CpG-ODN exacerbated HAF-GN with an increase of glomerular macrophages, which was associated with massive albuminuria and increased renal MCP-1/CCL2, RANTES/CCL5, CCR1, CCR2, and CCR5 mRNA expression. CpG-ODN induced a Th1 response as indicated by serum anti-HAF IgG(2a) titers, mesangial IgG(2a) deposits, and splenocyte IFN-gamma secretion. Messenger RNA for the CpG-DNA receptor Toll-like reeptor 9 (TLR9) was present in kidneys with HAF-GN but not in normal kidneys. The source of TLR9 mRNA in HAF-GN could be infiltrating macrophages or intrinsic renal cells, e.g., mesangial cells; but, in vitro, only murine J774 macrophages expressed TLR9. In J774 cells, CpG-ODN induced the chemokines MCP-1/CCL2 and RANTES/CCL5 and the chemokine receptors CCR1 and CCR5. It is concluded that CpG-DNA can aggravate preexisting GN via a shift toward a Th1 response but also by a novel pathway involving TLR9-mediated chemokine and chemokine receptor expression by macrophages, which may contribute to the enhanced glomerular macrophage recruitment and activation. This mechanism may be relevant during infection-triggered exacerbation of human immune-complex GN and other immune-mediated diseases in general.  相似文献   

5.
6.
BACKGROUND: Chemokines produced by resident renal cells promote the infiltration of leukocyte subsets. We have analysed the chemotactic responses of CD3+ peripheral blood lymphocytes (PBLs) to factors secreted by proximal tubular epithelial cells (PTEC), assessing the role of chemokines and chemokine receptors in this process. METHODS: By FACS we analysed expression of the chemokine receptors CCR5, CXCR3, CX3CR1, CCR2, CXCR1 and CXCR2 on both freshly isolated and activated PBLs. Using Boyden chambers we studied the chemotactic activity of supernatant from resting and cytokine-stimulated (TNF-alpha and IFN-gamma) PTEC towards PBLs. Soluble recombinant chemokines and blocking antibodies were used to study the role of individual chemokine receptors. Chemokine secretion by PTEC was analysed by ELISA. RESULTS: Only a small proportion of freshly isolated cells expressed the chemokine receptors and there was low grade chemotaxis of these cells towards cytokine-stimulated PTEC supernatant compared with unstimulated PTEC supernatant. After activation, 84% of PBLs expressed CCR5, 90% expressed CXCR3 and 19% expressed CX3CR1. There remained low expression levels of CXCR1, CXCR2 and CCR2. Activated PBLs showed strong chemotactic responses to supernatant from cytokine-stimulated PTEC compared with unstimulated PTEC (P<0.001). Chemotaxis of these cells was inhibited by blocking CCR5, CXCR3 and CX3CR1 by 69%, 71% and 29% respectively, with complete inhibition following combined blockade. ELISA showed high levels of the chemokine RANTES/CCL5 (for CCR5) and IP-10/CXCL10 (for CXCR3) in cytokine-stimulated PTEC supernatant. CONCLUSIONS: Chemokines produced by cytokine activated PTEC promote the selective recruitment of activated T cells via the receptors, CCR5, CXCR3 and CX3CR1. These receptors may be amenable to therapeutic manipulation in renal inflammation.  相似文献   

7.
Crescents are morphologic manifestations of severe glomerular injury. Several chemokines and their receptors have been demonstrated to be involved in animal models of crescentic glomerulonephritis (cGN) and are potential targets for therapeutic interventions. Therefore, the expression of monocyte chemoattractant protein-1 (MCP-1), its receptor chemokine receptor 2B (CCR2B), and CCR5 in human cGN was studied. MCP-1 and CCR2B mRNA expression was evaluated, by in situ hybridization, in serial sections of 23 renal biopsies from patients with cGN. T cells, macrophages, and CCR5-expressing cells were examined by immunohistochemical analysis. MCP-1 mRNA was expressed by cells in crescents, parietal epithelium, and tubular epithelium, as well as by infiltrating leukocytes in the tubulointerstitium. The expression of CCR2B mRNA was observed in cells in glomeruli and crescents and in infiltrating leukocytes in the tubulointerstitium. CCR2B mRNA expression could not be clearly localized to intrinsic renal cells; evidence that most of the CCR2B-expressing cells were leukocytes is provided. CD3-positive T cells formed the major part of the interstitial cell infiltrates but were rare within the glomerular tufts. CD68-positive macrophages constituted a major population of infiltrating cells in crescents and contributed significantly to the interstitial infiltrates. The number of glomerular macrophages was associated with the number of MCP-1- and CCR2B-positive glomerular cells. Expression of CCR2B was significantly correlated with interstitial CD3-positive T cells. CCR5 expression was restricted to infiltrating leukocytes and was correlated quantitatively and by localization with interstitial CD3-positive T cells and CD68-positive macrophages. These first morphologic data on the distribution of CCR2-positive cells in human cGN suggest differential effects of chemokines and their receptors on the distribution of infiltrating leukocytes in different compartments of the kidney.  相似文献   

8.
We hypothesize an interaction between T cells/monocytes and the tubules in the development of tubulointerstitial injury in chronic proteinuric nephropathy. We established in vitro co-culture systems of proximal tubular epithelial cells (PTEC) and T cells/monocytes to study the contribution of soluble factors and cell-to-cell contact in the development of tubulointerstitial injury. The release of monocyte chemoattractant protein-1 (MCP1 or CCL2), Regulated upon Activation, normal T cell Expressed and Secreted (RANTES or CCL5), soluble intracellular adhesion molecules-1 (sICAM-1), or interleukin-6 (IL-6) was increased in PTEC following apical exposure to human serum albumin (HSA). The release of CCL2, CCL5, or sICAM-1 from PTEC was enhanced by contact of monocytes/T cells on the basolateral surface. Tumor necrosis factor-alpha (TNF-alpha) and IL-1beta are important soluble factors as suggested by the blocking effect of antibodies (Abs) against TNF-alpha or IL-1beta but not against other cytokines. The percentage of CD4+ T cells expressing both chemokine receptors, CCR2 and CCR5, was increased after culturing with supernatant from the apical or basolateral surface of PTEC following apical exposure to HSA. However, only CCR2 was upregulated in CD8+ T cells, whereas CCR5 expression was increased in monocytes. The chemotaxis of CD4+ or CD8+ T cells to supernatant from PTEC upon apical exposure to HSA was reduced with neutralizing Abs against CCL5 and/or CCL2, whereas the chemotaxis of monocytes was only reduced by anti-CCL5 but not by anti-CCL2. In summary, chemokines released by HSA-activated PTEC are amplified by monocytes/T cells. Mediators released by HSA-activated PTEC can differentially modulate the expression of chemokine receptors in monocytes/T cells and hence, alter their chemotaxis towards activated PTEC. These interactions are pivotal in the development of tubulointerstitial injury.  相似文献   

9.
Expression of the chemokine receptor CCR1 in human renal allografts.   总被引:2,自引:0,他引:2  
BACKGROUND: Chemokines are involved in the recruitment of leukocytes to vascularized allografts. CCR1 is a receptor for various proinflammatory chemokines and CCR1 blockade reduces renal allograft injury in rabbits. The purpose of the study was to characterize CCR1-positive cells in human renal allografts. METHODS: Formalin-fixed, paraffin-embedded allograft nephrectomies (n = 9) and non-involved parts of tumour nephrectomies (n = 10) were studied. Immunohistochemistry for CCR1, CD3 and CD68 was performed on consecutive sections. Double immunofluorescence for CCR1 and CD3, CD20, CD68, DC-SIGN and S100 was used on selected cases. Expression of CCR1 mRNA and the ligands CCL3 and CCL5 was studied in renal allograft biopsies with acute rejection (n = 10), with chronic allograft nephropathy (n = 8) and controls (n = 8). RESULTS: CCR1 protein was expressed by circulating cells in glomerular and peritubular capillaries, colocalizing with CD68. In renal allografts CCR1-positive cells were present within glomerular tufts, but only scattered CCR1-positive cells were found in tubulointerstitial infiltrates. CCR1 did not colocalize with the majority of CD68-positive cells in the interstitium. The small number of CCR1-positive interstitial cells were identified as CD20- or DC-SIGN-positive by double immunofluorescence. CCR1 mRNA was significantly increased in renal biopsies with acute allograft rejection (P < 0.001), and with chronic allograft nephropathy (P < 0.05), it correlated with the expression of CCL3 and CCL5, and with serum-creatinine. CONCLUSIONS: CCR1 mRNA expression was associated with renal function in allografts. CCR1 protein expression was restricted to monocytes, CD20-positive B cells and DC-SIGN-positive dendritic cells. Thus most interstitial macrophages were CCR1 negative, which may relate to down-regulation after migration into the interstitium in human renal allografts.  相似文献   

10.
BACKGROUND: Chemokines play a major role in leukocyte infiltration in inflammatory kidney diseases. The specificity of the chemokine action is determined by the restricted expression of the corresponding receptors on leukocytes. We therefore simultaneously studied the expression of CC-chemokine and CC-chemokine receptor 1-5 (CCR 1-5) mRNA in an accelerated model of nephrotoxic nephritis in CD-1 mice. METHODS: Kidneys were harvested at day 0, 2 and 7. Induction of nephritis was confirmed by assessment of albuminuria by ELISA and by histological evaluation. RNA was prepared from cortex and isolated glomeruli. RNase protection assays were performed to study the expression of chemokines, RNase protection assays as well as quantitative RT-PCR assays to study the expression of chemokine receptors. RESULTS: In the cortex of nephritic kidneys mRNA for MCP-1 was increased 5-fold on day 2 and increased 4-fold on day 7 as compared to controls. mRNA for RANTES was increased 5-fold on day 7 and mRNA for IP-10 6-fold on day 7. The increase of mRNA for the chemokine receptors CCR1 and 5 was between 2-fold and 3-fold determined by RNase protection assay and for CCR1, 2 and 5 between 2- and 4-fold as determined by RT-PCR. In isolated glomeruli we found by RT-PCR an increase of CCR1, CCR2 and CCR5 of between 3 and 12-fold. CONCLUSION: These results show that chemokines and their specific chemokine receptors are increased in parallel in this model of glomerulonephritis, consistent with the potential role of the chemokine system in leukocyte recruitment to the immune injured kidney.  相似文献   

11.
BACKGROUND: CC chemokines mediate leukocyte infiltration into inflamed tissue. We have recently shown that blockade of the CC chemokine receptor CCR1 reduces interstitial inflammation and fibrosis in murine obstructive nephropathy. However, it is not known whether CCR 1 blockade is protective in progressive renal injury associated with severe proteinuria. We therefore studied the effect of the small-molecule CCR1 antagonist BX471 in a murine model of adriamycin-induced focal segmental glomerulosclerosis (FSGS) with nephrotic syndrome and progressive interstitial inflammation and fibrosis. METHODS: Adriamycin nephropathy with persistent proteinuria was induced in male BALB/c mice by two intravenous injections of adriamycin (13 mg/kg) at day 0 and 14. BX471 treatment was started at day 14 when proteinuria and interstitial inflammation had developed. At 6 weeks, renal histology was studied by morphometry and immunohistochemistry. RESULTS: At week 6, adriamycin-treated mice showed FSGS, associated with tubulointerstitial injury consisting of tubular dilation and atrophy, interstitial leukocyte infiltration, and fibrosis. The mRNA expression of CCR1 and CC chemokines, including the CCR1 ligands CCL3 (MIP-1alpha) and CCL5 (RANTES), was up-regulated in diseased kidneys, with a prominent interstitial expression of CCL5. Compared to vehicle-treated controls BX471 significantly reduced the amount of macrophages and T lymphocytes in interstitial lesions by 51% and 22%, respectively. Markers of renal fibrosis such as interstitial fibroblasts (48%) and interstitial volume (23%) were significantly reduced by BX471 treatment. In contrast, the extent of proteinuria and glomerular sclerosis was not affected by BX471 treatment. CONCLUSION: Blockade of CCR1 substantially reduced interstitial leukocyte accumulation and the subsequent renal fibrosis in a murine model of nephrotic syndrome and FSGS. These findings support a role for CCR1 in interstitial leukocyte recruitment and suggest that CCR1 blockade might be a new therapeutic strategy in progressive nephropathies such as FSGS.  相似文献   

12.
The recruitment of inflammatory cells into renal tissue, mainly T cells and monocytes, is a typical feature of various renal diseases such as glomerulonephritis, thrombotic angiopathies, allograft rejection, and vasculitis. T cells predominantly infiltrate the tubulointerstitium, whereas monocytes are present in the tubulointerstitial and glomerular compartment. Because chemokines play a pivotal role in leukocyte trafficking under inflammatory conditions, this study investigated whether a differential expression of chemokines contributes to the precise coordination of leukocyte subtype trafficking in a rat model of renal microvascular endothelial injury. Renal microvascular endothelial injury was induced in rats by selective renal artery perfusion with an anti-endothelial antibody. Induction of the disease led to severe glomerular and tubulointerstitial endothelial injury with subsequent upregulation of chemokines followed by inflammatory cell recruitment. Among the analyzed chemokine mRNA, IP-10/CXCL10 (119-fold), acting via CXCR3 on activated T cells, and MCP-1/CCL2 (65-fold), acting via CCR2 on monocytes, were by far the most strongly upregulated chemokines. In situ hybridization revealed that IP-10/CXCL10 mRNA was selectively expressed by endothelial cells in the tubulointerstitial area, co-localizing with infiltrating T cells. Despite extensive damage of glomerular vasculature, no IP-10/CXCL10 expression by glomerular endothelial cells was detected. MCP-1/CCL2 mRNA in contrast was detectable in the glomerulus and the tubulointerstitium. Treatment with a neutralizing anti-IP-10/CXCL10 antibody significantly reduced the number of infiltrating tubulointerstitial T cells without affecting monocyte migration and led to an improved renal function. Our study demonstrates a role of IP-10/CXCL10 on T cell recruitment in a rat model of renal endothelial microvascular injury. Furthermore, a differential chemokine expression profile by endothelial cells in different renal compartments was found. These findings are consistent with the hypothesis that functional heterogeneity of endothelial cells from different vascular sites exists and provide an insight into the molecular mechanisms that may mediate compartment-specific T cell and monocyte recruitment in inflammatory renal disease.  相似文献   

13.
BACKGROUND: Experimental studies suggest that the infiltration of activated T cells into the allograft, the key event in the development of acute renal allograft rejection, depends on the expression of chemokines and their interaction with chemokine receptors expressed on T cells. METHODS: For a more detailed comprehension of the pathogenesis of T-cell recruitment in human acute rejection, the in situ expression of chemokines and chemokine receptors in allografts of 26 patients between day 3 and 9 after renal transplantation was examined in the present prospective study. RESULTS: Immunohistochemical staining showed a significantly increased number of CXCR3 (P<0.01) and CCR5 positive T cells (P<0.01) in the tubulointerstitium of patients with acute allograft rejection according to Banff grade Ia-IIb. Likewise the intrarenal RNA expression of the CXCR3 ligands IP-10 (5.2-fold) and I-TAC (7.2-fold) and the CCR5 ligand RANTES (5.7-fold), was significantly up-regulated in rejecting organs. In situ hybridization revealed that IP-10 but not I-TAC was predominantly expressed by infiltrating leukocytes in the tubulointerstitial area, co-localizing with CXCR3 positive T cells. To a lesser degree expression by tubular cells could be detected, providing a possible explanation for the increased urinary IP-10 excretion we found in patients with rejecting organs. CONCLUSIONS: These data from a prospective, biopsy-controlled study indicate that the local expression of IP-10 and RANTES leads to the directional movement of activated CXCR3 and CCR5 bearing T cells into the renal allograft and mediates acute rejection. Our data provide a rationale that blocking CXCR3 and CCR5 may offer a unique therapeutic approach to prevent episodes of acute rejection in the early phase after renal transplantation.  相似文献   

14.
15.
Slowly progressive renal injury is the major cause for ESRD. The model of progressive immune complex glomerulonephritis in autoimmune MRL(lpr/lpr) mice was used to evaluate whether chemokine receptor CCR1 blockade late in the disease course can affect progression to renal failure. Mice were treated with subcutaneous injections of either vehicle or BX471, a nonpeptide CCR1 antagonist, three times a day from week 20 to 24 of age [corrected]. BX471 improved blood urea nitrogen levels (BX471, 35.1 +/- 5.3; vehicle, 73.1 +/- 39.6 mg/dl; P < 0.05) and reduced the amount of ERHR-3 macrophages, CD3 lymphocytes, Ki-67 positive proliferating cells, and ssDNA positive apoptotic cells in the interstitium but not in glomeruli. Cell transfer studies with fluorescence-labeled T cells that were pretreated with either vehicle or BX471 showed that BX471 blocks macrophage and T cell recruitment to the renal interstitium of MRL(lpr/lpr) mice. This was associated with reduced renal expression of CC chemokines CCL2, CCL3, CCL4, and CCL5 and the chemokine receptors CCR1, CCR2, and CCR5. Furthermore, BX471 reduced the extent of interstitial fibrosis as evaluated by interstitial smooth muscle actin expression and collagen I deposits, as well as mRNA expression for collagen I and TGF-beta. BX471 did not affect serum DNA autoantibodies, proteinuria, or markers of glomerular injury in MRL(lpr/lpr) mice. This is the first evidence that, in advanced chronic renal injury, blockade of CCR1 can halt disease progression and improve renal function by selective inhibition of interstitial leukocyte recruitment and fibrosis.  相似文献   

16.
BACKGROUND: This study evaluated the mechanisms of monocyte/macrophage (M/M) infiltration in a rat model of anti-glomerular basement membrane glomerulonephritis (GN). We focused on chemokines and osteopontin, which are known regulators of M/M recruitment. METHODS: Using immunohistology, in situ hybridization, and Northern blotting, the expression levels of chemokines and osteopontin were evaluated in isolated glomeruli and tubules 4, 10, and 20 days after the induction of GN. In vivo blocking experiments were performed by application of neutralizing antibodies against osteopontin and monocyte chemoattractant protein-1 (MCP-1). RESULTS: In nephritic animals, high glomerular MCP-1 and RANTES (regulated upon activation normal T cell expressed and secreted) expression levels were observed on days 4 and 10. The tubular expression of MCP-1, however, was only slightly enhanced. In contrast, tubular osteopontin production was maximally stimulated (day 10) and paralleled with peaks of albuminuria and tubulointerstitial M/M infiltration. Application of an anti-osteopontin antibody ameliorated tubulointerstitial and glomerular M/M recruitment, whereas treatment with an anti-MCP-1 antibody selectively reduced glomerular M/M recruitment. However, tubulointerstitial M/M infiltration remained unchanged. CONCLUSION: These studies show that chemokines and osteopontin are differentially expressed in glomeruli and tubules in this model of GN. Chemokines play a primary role in the glomeruli, whereas osteopontin has a predominant role in tubulointerstitial M/M recruitment. The roles of chemokines and osteopontin may thus be dependent on the renal compartment and on the disease model.  相似文献   

17.
Chemokines and their receptors play a pivotal role in the initiation and amplification of the immune response. Investigated was their differential expression after syngeneic and allogeneic islet transplantation. During the 7 d after transplantation, the chemokines MCP-1, MCP-2, RANTES, MIG, IP-10, I-TAC, and two CC chemokine receptors CCR2 and CCR5 were highly expressed in allografts when compared with isografts. Disrupting the CCR2 and CCR5 pathways individually resulted in prolongation of the survival time 16.1 +/- 0.4 and 15.8 +/- 0.9 d, respectively, of fully major histocompatibility complex-mismatched islet grafts compared with wild-type controls (11.2 +/- 1.0 d). Blockade of both receptors had no synergistic effect. Rapamycin-treated wild-type recipients rejected their grafts at 17.4 +/- 2.2 d, in contrast to rapamycin-treated CCR2-/- recipients at 38 +/- 8.6 d (P = 0.025). The disruption of the CCR2 and CCR5 signaling, alone or in combination, moderately prolong islet allograft survival. However, the combination of low-dose immunosuppression and targeting of CCR2 greatly augmented islet graft survival.  相似文献   

18.
BACKGROUND: We investigated the expression and function of CC chemokine receptors (CCR) on highly-purified kidney and blood dendritic cells isolated from mice in which dendritic cells were mobilized with fms-like tyrosine 3 kinase ligand (Flt3L). METHODS: CCR and CC chemokine expression were determined by RNase protection assay or flow cytometry, and dendritic cell migratory responses assayed using Transwell chambers. Chemokine production in renal tissue was detected by immunofluorescence staining. Trafficking of fluorochrome-labeled dendritic cells was monitored in vivo. RESULTS: Freshly-isolated renal dendritic cells expressed mRNA for CCR1, 2, 5, and 7 and CCR1 and 5 protein. They did not migrate to inducible chemokines--CCL3 [macrophage inflammatory protein (MIP)-1alpha], CCL5 [regulated upon activation, normal T cell expressed and secreted (RANTES)], or CCL20 (MIP-3alpha). Following lipopolysaccharide (LPS) stimulation, the dendritic cells down-regulated CCR1, 2, and 5 expression, up-regulated or sustained signals for CCR7, and migrated to the constitutively expressed ligands CCL19 (MIP-3beta) and CCL21 (secondary lymphoid tissue chemokine). Normal kidneys expressed weak message for CCL2, 3, and 4, with stronger signals for CCL5 and 19. Intrarenal CCL5 production was enhanced by Flt3L administration, in association with marked increases in interstitial CD45+ mononuclear cells. Mobilized blood dendritic cells migrated to CCR2 and CCR5 ligands and trafficked to renal intertubular sites following adoptive (intravenous) transfer. Their migration to the CCR5 ligand MIP-1beta (CCL4) and homing to kidneys of Flt3L-treated recipients were inhibited by CCR5 antagonism. CONCLUSION: These data implicate specific CCR and their ligands in regulation of the dendritic cell constituency of the kidney. CCR5 antagonism inhibits their directed migration and intrarenal accumulation.  相似文献   

19.
We investigated the presence of CCR1- and CCR5-positive cells immunohistochemically in the kidneys of 38 patients with several renal diseases, including 13 crescentic glomerulonephritis patients. In addition, we determined cell phenotypes of CCR1- and CCR5-positive cells using a dual immunostaining technique. Urinary levels of their ligands, for CCR1 and CCR5; macrophage inflammatory protein (MIP)-1alpha, MIP-1beta and regulated upon activation in normal T cells expressed and secreted (RANTES) were evaluated by enzyme-linked immunosorbent assay. CCR1- and CCR5-positive cells were detected in both glomeruli and interstitium of the diseased kidneys. Using a dual immunostaining technique, these positive cells were CD68-positive macrophages (MPhi) and CD3-positive T cells. The number of CCR1-positive cells in glomeruli was correlated with urinary levels of MIP-1alpha. The number of CCR1-positive cells in the interstitium was correlated with both urinary MIP-1alpha and RANTES levels. CCR1-positive cells in the interstitium remained after glucocorticoid therapy, most of which were MPhi, and were correlated with the intensity of interstitial fibrosis and tubular atrophy. Glomerular CCR5-positive cells were well correlated with extracapillary lesions and urinary MIP-1alpha levels, while interstitial CCR5-positive cells, mainly CD3-positive T cells, were correlated with interstitial lesions and urinary RANTES levels. Renal CCR5-positive cells were dramatically decreased during convalescence induced by glucocorticoids. These results suggest that chemokine receptor signaling may be pivotal for human renal diseases through the recruitment and activation of MPhi and T cells; CCR5-positive cells may participate in glomerular lesions including extracapillary lesions via MIP-1alpha and in interstitial lesions via RANTES. CCR1 may be involved in interstitial lesions in resolving phase after glucocorticoid therapy.  相似文献   

20.
CCR2 signaling contributes to ischemia-reperfusion injury in kidney   总被引:7,自引:0,他引:7  
Examined were CCR2-deficient mice to clarify the contribution of macrophages via monocyte chemoattractant protein 1 (MCP-1 or CCL2)/CCR2 signaling to the pathogenesis of renal ischemia-reperfusion injury. Also evaluated was the therapeutic effects via the inhibition of MCP-1/CCR2 signaling with propagermanium (3-oxygermylpropionic acid polymer) and RS-504393. Renal artery and vein of the left kidney were occluded with a vascular clamp for 60 min. A large number of infiltrated cells and marked acute tubular necrosis in outer medulla after renal ischemia-reperfusion injury was observed. Ischemia-reperfusion induced the expression of MCP-1 mRNA and protein in injured kidneys, followed by CCR2-positive macrophages in interstitium in wild-type mice. The expression of MCP-1 was decreased in CCR2-deficient mice compared with wild-type mice. The number of interstitial infiltrated macrophages was markedly smaller in the CCR2-deficient mice after ischemia-reperfusion. CCR2-deficient mice decreased the number of interstitial inducible nitric oxide synthase-positive cells after ischemia-reperfusion. The area of tubular necrosis in CCR2-deficient mice was significantly lower than that of wild-type mice after ischemia-reperfusion. In addition, CCR2-deficient mice diminished KC, macrophage inflammatory protein 2, epithelial cell-derived neutrophil-activating peptide 78, and neutrophil-activating peptide 2 expression compared with wild-type mice accompanied with the reduction of interstitial granulocyte infiltration. Similarly, propagermanium and RS-504393 reduced the number of interstitial infiltrated cells and tubular necrosis up to 96 h after ischemia-reperfusion injury. These results revealed that MCP-1 via CCR2 signaling plays a key role in the pathogenesis of renal ischemia-reperfusion injury through infiltration and activation of macrophages, and it offers a therapeutic target for ischemia-reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号