首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using knockout and transgenic technology, genetically modified animal models allowed us to understand the role of glucagon signalling in metabolism. Mice with a global deletion of the glucagon receptor gene (Gcgr) were designed using gene targeting. The phenotype of Gcgr(-/-) mouse provided important clues about the role of Gcgr in foetal growth, pancreatic development and glucose and lipid homeostasis. The lack of Gcgr activation was associated with: (i) hypoglycaemic pregnancies, poor foetal growth and increased foetal-neonatal demise; (ii) altered cytoarchitecture of pancreatic islets; (iii) altered glucose, lipid and hormonal milieu; (iv) reduced gastric emptying; (v) altered body composition and protection from diet-induced obesity; (vi) altered energy state; (vii) impaired hepatocyte survival; (viii) altered metabolic response to prolonged fasting and exercise and (ix) prevented development of diabetes in insulin-deficient mice. In contrast, mice overexpressing the Gcgr on pancreatic β-cells displayed an increase insulin secretion, pancreatic insulin content and β-cell mass, and partially protected against hyperglycaemia and impaired glucose tolerance when fed a high-fat diet. These findings suggest that glucagon signalling plays a significant role in the regulation of glucose and lipid homeostasis. Treatment options designed to block Gcgr activation may have negative implications in the treatment of diabetes.  相似文献   

2.
Fatty change (steatosis) is the most frequent liver pathology in western countries and is caused by a broad range of disorders such as alcohol abuse and metabolic syndrome. The surface layer of lipid droplets (LDs) contains members of a protein family that share homologous sequences and domains, the so-called PAT proteins, named after their constituents, perilipin, adipophilin, and TIP47. We characterized the LD-associated proteins in normal and diseased liver connected with LD accumulation. Adipophilin and TIP47 are expressed in LDs of vitamin A-storing hepatic stellate cells and additionally in LDs of steatotic hepatocytes. Perilipin, which was thought to be characteristic for LDs of adipocytes and steroidogenic cells, becomes de novo expressed in hepatocytes of human steatotic liver. Perilipin splice variant A was found in human steatotic hepatocytes by biochemical, molecular biological, and immunohistochemical methods. Its association with LDs is different from TIP47 and adipophilin, and depends on size and localization of the LDs, suggesting that the different PAT proteins play specific roles during maturation of LDs.  相似文献   

3.
A substantial body of evidence has accumulated over the past 35 years in support of a role for oxidative damage to the mitochondrial respiratory chain and mitochondrial DNA in the determination of mammalian lifespan. The goal of this review is to provide a concise summary of recent studies using transgenic and knockout mouse models with altered expression of mitochondrial antioxidant enzymes (MnSOD (Sod2Tg and Sod2+/−), thioredoxin 2 (Trx2+/−), mitochondrial targeted catalase (mCAT) and mutant mice models that have been genetically manipulated to increase mitochondrial deletions or mutations (PolγD257A/D257A mutant mice) to examine the role of mitochondrial oxidative stress in aging. The majority of studies using these strategies do not support a clear role for mitochondrial oxidative stress or a vicious cycle of oxidative damage in the determination of lifespan in mice and furthermore do not support the free radical theory of aging. However, several key questions remain to be addressed and clearly more studies are required to fully understand the role of mitochondria in age-related disease and aging.  相似文献   

4.
The major cAMP-dependent protein kinase (A-kinase) substrate in adipocytes is perilipin, a protein found exclusively at the surface of the lipid storage droplets. Using anti-perilipin serum, we have isolated two related classes of full-length coding cDNAs, designated perilipin A and B, from a rat adipocyte cDNA expression library. The two cDNAs derive from two mRNA species that arise by differential splicing. The mRNAs are predicted to encode perilipins A and B, proteins of 517 aa (56,870 Da) and 422 aa (46,420 Da), respectively, which share a common 406-aa N-terminal sequence. The predicted perilipin A contains peptides present in proteolytic digests of the purified 62-kDa form of perilipin from rat adipocytes, as well as the requisite consensus A-kinase phosphorylation sites. Like perilipin A, the B form is expressed in adipocytes and is associated with lipid storage droplets. Modeling of predicted secondary structures fails to reveal an underlying basis for the tenacious association of perilipins with lipid droplets. These proteins exhibit a significant sequence relationship (approximately 65% similarity through 105 aa) with only one other known protein, the adipocyte differentiation-related protein (ADRP). Like the perilipins, ADRP appears to be adipocyte-specific, which suggests that they interact in a related intracellular pathway. The molecular probes for perilipins A and B described here will permit detailed analyses of their functional role(s) in lipid metabolism.  相似文献   

5.
The nervous system plays a key role in the regulation of neuroendocrine axes and, in turn, the released neurohormones modulate the activity of different brain regions. Neurodegenerative diseases, which are known to affect specific neuronal populations, may provoke neuroendocrine dysfunctions that alter the intimate relationship between both systems. In addition, these modifications may influence the progression of the neurodegenerative process. In the present review, we summarise some of the endocrine changes characterising three major neurodegenerative diseases: Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Special attention is focused on the contribution of disease transgenic models to elucidate such alterations.  相似文献   

6.
Hepatocellular carcinoma (HCC) ranks as the third most common cause of death from cancer worldwide. Although major risk factors for the development of HCC have been defined, many aspects of the evolution of hepatocellular carcinogenesis and metastasis are still unknown. Suitable animal models are, therefore, essential to promote our understanding of the molecular, cellular and pathophysiological mechanisms of HCC and for the development of new therapeutic strategies. This Review provides an overview of animal models that are relevant to HCC development, metastasis and treatment. For HCC development, this Review focuses on transgenic mouse models of HBV and HCV infection, which provide experimental evidence that viral genes could initiate or promote liver carcinogenesis. Animal models of HCC metastasis provide platforms to elucidate the mechanisms of HCC metastasis, to study the interaction between the microenvironment and HCC invasion and to conduct intervention studies. In addition, animal models have been developed to investigate the effects of new treatment modalities. The criteria for establishing ideal HCC animal models are also discussed.  相似文献   

7.
8.
A wide range of strategies in cancer immunotherapy has been developed in the last decade, some of which are currently being used in clinical settings. The development of these immunotherapeutical strategies has been facilitated by the generation of relevant transgenic animal models. Since the different strategies in experimental immunotherapy of cancer each aim to activate different immune system components, a variety of transgenic animals have been generated either expressing tumor associated, HLA, oncogenic or immune effector cell molecule proteins. This review aims to discuss the existing transgenic mouse models generated to study and develop cancer immunotherapy strategies and the variable results obtained. The potential of the various transgenic animal models regarding the development of anti-cancer immunotherapeutical strategies is evaluated.  相似文献   

9.
Hepatits C virus (HCV) is an enveloped virus with positive‐sense single‐stranded RNA genome that causes both acute and persistent infections associated with chronic hepatitis, cirrhosis and hepatocellular carcinoma, which needs fully functional human hepatocytes for its development. Due to the strict human tropism of HCV, only human and higher primates such as chimpanzees have been receptive to HCV infection and development, cognition about pathophysiololgy and host immune responses of HCV infection is limited by lacking of simple laboratory models of infection for a long time. During the past decade, gene transfer approaches have been helpful to the understanding of the molecular basis of human disease. Transgenic cell lines, chimeric and transgenic animal models were developed and had been demonstrated their invaluable benefits. This review focuses on the existing HCV transgenic models and summarize the relative results about probable pathophysical changes induced by HCV proteins.  相似文献   

10.
Yu YH  Ginsberg HN 《Circulation research》2005,96(10):1042-1052
For many years adipose tissue was viewed as the site where excess energy was stored, in the form of triglycerides (TGs), and where that energy, when needed elsewhere in the body, was released in the form of fatty acids (FAs). Recently, it has become clear that when the regulation of the storage and release of energy by adipose tissue is impaired, plasma FA levels become elevated and excessive metabolism of FA, including storage of TGs, occurs in nonadipose tissues. Most recently, work by several laboratories has made it clear that in addition to FA, adipose tissue communicates with the rest of the body by synthesizing and releasing a host of secreted molecules, collectively designated as adipokines. Several recent reviews have described how these molecules, along with FA, significantly effect total body glucose metabolism and insulin sensitivity. Relatively little attention has been paid to the effects of adipokines on lipid metabolism. In this review, we will describe, in detail, the effects of molecules secreted by adipose tissue, including FA, leptin, adiponectin, resistin, TNF-alpha, IL-6, and apolipoproteins, on lipid homeostasis in several nonadipose tissues, including liver, skeletal muscle, and pancreatic beta cells.  相似文献   

11.
Heart disease in AIDS, particularly cardiomyopathy (CM), is an increasingly recognized clinical problem with as yet undefined pathogenetic mechanisms. Among the potential etiologies of AIDS CM are HIV-1 infection of cardiac myocytes and subsequent cardiac dysfunction, opportunistic infection, inflammatory reactions, cytokine effects, and cardiotoxicity of prescribed or illicit drugs. It seems probable that multiple factors may impact on the development of CM in AIDS. Transgenic mice (TG) are useful biological tools to explore mechanisms of cardiac function and disease. In AIDS models, TG offer novel ways to elucidate mechanisms of AIDS CM through combined in vivo and in vitro studies. With targeted and non-targeted TG, structural and functional effects of specific HIV-1 gene products on heart tissue may be addressed. The impact of environmental agents including therapeutics or cardiotoxins may also be defined. To address the complexity of AIDS CM using TG, an experimental approach has been employed in our laboratories to model the clinical condition. We utilize AIDS TG with generalized expression of HIV-1 gene products in CM models with combined antiretroviral regimens to define the cardiovascular effects of AIDS and its therapy on the structure and function of the murine heart. We are developing a series of cardiac specific TG bearing selected HIV-1 genes. These TG target the selected HIV-1 genes expressed in cardiac ventricular myocytes. Tissue-specific targeting of this type enables us to define structural and functional effects of specific HIV-1 gene products on the cardiac myocyte.  相似文献   

12.
13.
The adrenocortical gland undergoes structural and functional remodelling in the fetal and postnatal periods. After birth, the fetal zone of the gland undergoes rapid involution in favor of the definitive cortex, which reaches maturity with the emergence of the zona reticularis(zR) at the adrenarche. The mechanisms underlying the adrenarche, the process leading to pre-puberty elevation of plasma androgens in higher primates, remain unknown, largely due to lack of any experimental model. By following up fetal and definitive cortex cell lines in mice, we showed that activation of protein kinase A (PKA) signaling mainly impacts the adult cortex by stimulating centripetal regeneration, with differentiation and then conversion of the zona fasciculata into a functional zR. Animals developed Cushing syndrome associated with primary hyperaldosteronism, suggesting possible coexistence of these hypersecretions in certain patients. Remarkably, all of these traits were sex-dependent: testicular androgens promoted WNT signaling antagonism on PKA, slowing cortical renewal and delaying onset of Cushing syndrome and the establishment of the zR in male mice, this being corrected by orchidectomy. In conclusion, zR derives from centripetal conversion of the zona fasciculata under cellular renewal induced by PKA signaling, determining the size of the adult cortex. Finally, we demonstrated that this PKA-dependent mobilization of cortical progenitors is sexually dimorphic and could, if confirmed in humans, account for female preponderance in adrenocortical pathologies.  相似文献   

14.
The pathogenesis of hypertension is multi-factorial, involving many of the systems contributing to blood pressure homeostasis including the vasculature, kidneys, central, and sympathetic nervous systems, along with various hormonal regulators. However, over the years, many studies have indicated a predominant importance of the kidney in blood pressure homeostasis and hypertension. This work has established the notion that the kidney is a key determinant of the chronic level of intra-arterial pressure playing a major role in the pathogenesis of hypertension. Therefore, this review will focus on recent work using genetically modified mouse models addressing the role of the kidney in hypertension. In particular, human genetic studies of Mendelian disorders with major impact on blood pressure homeostasis have provided powerful evidence for a role of the kidney in hypertension. Of the approximately 20 genes identified as causal in these disorders, virtually all have an effect on the control of solute transport in the kidney. As such, we have especially focused on generation of mouse models addressing the nature of these specific molecular defects in nephron function that produce an alteration in blood pressure.  相似文献   

15.
16.
17.
Translational research is necessary for the development of efficient experimental animal models that can be used to develop innovative medical treatments, such as improvements in organ or tissue transplantation. We have developed animal models that produce photogenic proteins in their islet cells: rats models expressing the gene for luciferase or green fluorescent protein (GFP), and pig models expressing the gene for GFP or Kusabira-Orange. We also developed methods for preserving isolated islets in culture and showed that the fluorescence of the islets remains at usable levels for at least seven days. These models will enable transplanted islets to be visualized without the need for chemical reactions, and will be useful for research on the biology of islets as well as for the development of new transplantation methods.  相似文献   

18.
Genetic forms of human dilated cardiomyopathy (DCM) are briefly discussed, and a variety of animal models of genetic DCM are presented, some of which are caused by the gene mutations that also cause DCM in humans. The forms of DCM related to mutations or deletion of genes coding for extrasarcomeric or intrasarcomeric proteins, as well as to overexpression or knockout of genes in the beta-adrenergic signaling pathway, are included. Finally, novel approaches to treatment in experimental animal models are discussed, including double transgenesis and newer recombination methods, as well as in vivo somatic gene transfer which, based on initial experiments in animals, seems likely to find eventual application in human cardiac failure.  相似文献   

19.
乙型肝炎病毒基因组转基因小鼠模型的制备与鉴定   总被引:11,自引:11,他引:11  
目的 建立一种新的乙型肝炎病毒(HBV)基因组高效复制与表达转基因小鼠模型,以用于抗HBV药物筛选和乙型肝炎发病机制的研究。方法 以加长的ayw亚型HBV全基因组作为目的基因,采用显微注射技术,转导于小鼠受精卵细胞雄原核,然后将受精卵细胞移植于受体假孕母鼠输卵管内,发育产生子代小鼠。鼠尾组织聚合酶链反应(PCR)筛选、Southern印迹鉴定后,再用酶链免疫吸附法(ELISA)检测血清乙型肝炎表面抗原及e抗原,Southern印迹检测血清HBV DNA。结果 实验获子代小鼠61只,鼠尾组织经PCR筛选、Southern印迹鉴定18只阳性,血清乙型肝炎表面抗原及e抗原、HBV DNA呈阳性反应7只。结论 1.3倍加长的HBV全基因组转基因小鼠具有较高的复制、表达效率。  相似文献   

20.
A large number of studies deals with the association of cholesterol and Abeta levels, however, the results are so far controversial. Whereas some studies report on increased cholesterol levels, other authors refer to an association of decreased peripheral cholesterol and the incidence of Alzheimer's disease. It is also questionable whether plasma cholesterol levels could be used as a predictive biomarker for the incidence of Alzheimer's disease. In the present report, we studied the relationship between these two parameters during aging in different transgenic mouse models of Alzheimer's disease, expressing both mutant human amyloid precursor protein and mutant human presenilin-1. Measurements of plasma cholesterol levels revealed a significant reduction in aged APP/PS1 and APP/PS1ki mice, whereas plasma levels in young and aged control mice remained almost unchanged. Furthermore, statistical analysis revealed a significant negative correlation between plasma cholesterol and brain Abeta42 levels during aging in the mice expressing both APP and PS1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号