首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ObjectiveOpticin is a class III member of the small leucine-rich repeat proteoglycan (SLRP) family, produced in articular joint tissues. In normal and osteoarthritic (OA) cartilage, opticin is degraded. This study aimed to assess whether human cartilage opticin is degraded by the main proteases involved in OA pathophysiology, and to determine the protease cleavage sites of this SLRP.MethodsWe analyzed the proteolytic activity of matrix metalloproteinases (MMPs)-1, -2, -3, -7, -8 and -9, and ADAMTS-4 and -5 on proteoglycan extracts from normal and moderately fibrillated OA human cartilage, and on recombinant human opticin. Opticin degradation was analyzed by Western blotting and cleavage sites were determined by sequence analysis.ResultsAll eight proteases digested opticin from proteoglycan extracts from both normal and OA samples, as well as recombinant human opticin, MMP-2 and MMP-7 are the proteases that degrade recombinant human opticin most efficiently. The opticin cleavage site determined for these MMPs was between the glycosylation and leucine-rich repeat domains. MMP-7 had two additional digestion sites near the N-terminal end of opticin.ConclusionOpticin is a substrate for several MMPs and aggrecanases involved during OA cartilage degradation, and seems to be a preferential substrate for MMP-7. The role of opticin in cartilage degeneration could be related to decreased levels of intact opticin, followed by its proteolytic degradation, which in turn may stimulate some of the modifications observed in the OA cartilage, such as neovascularisation and changes in the extracellular matrix.  相似文献   

2.
OBJECTIVE: To determine the effects of osteoarthritic (OA) subchondral osteoblasts on the metabolism of human OA chondrocytes in alginate beads. METHODS: Human chondrocytes were isolated from OA cartilage and cultured in alginate beads for 4 days in the absence or in the presence of osteoblasts isolated from non-sclerotic (N) or sclerotic (SC) zones of human OA subchondral bone in monolayer (co-culture system). Before co-culture, osteoblasts were incubated for 72 h with or without 1.7ng/ml interleukin (IL)-1beta, 100 ng/ml IL-6 with its soluble receptor (50 ng/ml) or 10 ng/ml oncostatin M (OSM). Aggrecan (AGG) and matrix metalloproteases (MMP)-3 and -13 mRNA levels in chondrocytes were quantified by real-time polymerase chain reaction. AGG production was assayed by a specific enzyme amplified sensitivity immunoassay. RESULTS: SC, but not N, osteoblasts induced a significant inhibition of AGG production and AGG gene expression by human OA chondrocytes in alginate beads, and significantly increased MMP-3 and MMP-13 gene expression by chondrocytes. When they were pre-incubated with IL-1beta, IL-6 or OSM, N osteoblasts inhibited AGG synthesis and increased MMP-3 and -13 gene expression by chondrocytes in alginate beads in a same order of magnitude as SC osteoblasts. CONCLUSIONS: These results demonstrate that SC OA subchondral osteoblasts could contribute to cartilage degradation by stimulating chondrocytes to produce more MMP and also by inhibiting AGG synthesis.  相似文献   

3.
OBJECTIVE: To examine the expression pattern of human cartilage glycoprotein 39 (HC gp-39) mRNA in human cartilage and bone. DESIGN: In-situ hybridization analysis was used to examine the expression pattern of human cartilage glycoprotein 39 (HC gp-39) mRNA in adult human osteoarthritic articular cartilage from various stages of disease, as well as in human osteophytic tissue and in human fetal bone. RESULTS: In cartilage from patients with mild osteoarthritic cartilage degeneration, HC gp-39 was expressed at moderate to high levels only in chondrocytes of the superficial zone. In advanced OA cartilage, cloning chondrocytes of the superficial zone expressed high levels of HC gp-39 and chondrocytes of the mid- and deep zones were also positive. HC gp-39 was undetectable in the chondrocytes of normal articular cartilage. In osteophytic tissue, the expression of HC gp-39 mRNA was intense in flattened, end-stage osteoblasts and in primary osteocytes in both endochondral and intramembranous bone formation. Proliferating osteoblasts expressed low to moderate levels. Notably, mature osteocytes were negative for HC gp-39 expression. Chondrocytes in the secondary ossification center of developing fetal cartilage demonstrated high expression while growth plate and mineralized cartilage chondrocytes had lower expression. Osteoblasts at sites of endochondral and intramembranous bone formation were positive for expression of HC gp-39. CONCLUSIONS: The stage-specific expression of HC gp-39 in fetal development and adult remodelling bone and cartilage provides evidence for a specific functional or structural role for HC gp-39 in bone and cartilage tissue. HC gp-39 is expressed in diseased human osteoarthritic cartilage and osteophyte, but not in non-diseased tissue, and its distribution within the tissue changes as disease progresses. OA is characterized not only by cartilage degeneration, but by increased subchondral bone formation and osteophytosis. The results from this study indicate that the increased HC gp-39 expression in OA serum and synovial fluid may reflect not only cartilage degeneration but increased osteogenesis.  相似文献   

4.
HGF is increased in human OA cartilage, possibly from Ob's. RT-PCR shows HGF isoforms are differently regulated between chondrocytes and Ob. A paracrine cross-talk between subchondral bone and cartilage may occur during OA. Recently, hepatocyte growth factor (HGF) has been identified by immunohistochemistry in cartilage and more particularly in the deep zone of human osteoarthritic (OA) cartilage. By investigating HGF expression in cartilage, we found that chondrocytes did not express HGF; however, they expressed the two truncated isoforms, namely HGF/NK1 and HGF/NK2. Because the only other cells localized near the deep zone are osteoblasts from the subchondral bone plate, we hypothesized that they were expressing HGF. Indeed, we found that HGF was synthesized by osteoblasts from the subchondral bone plate. Moreover, OA osteoblasts produced five times more HGF than normal osteoblasts and almost no HGF/NK1, unlike normal osteoblasts. Because prostaglandin E2 (PGE2) and pro-inflammatory cytokines such as interleukin (IL)-1 and IL-6 are involved in OA progression, we investigated whether these factors impact HGF produced by normal osteoblasts. PGE2 was the only factor tested that was able to stimulate HGF synthesis. However, the addition of NS398, a selective inhibitor of cyclo-oxygenase-2 (COX-2) had no effect on HGF produced by OA osteoblasts. HGF/NK2 had a moderate stimulating effect on HGF production by normal osteoblasts, whereas osteocalcin was not modulated by either HGF or HGF/NK2. When investigating signaling routes that might be implicated in OA osteoblast-produced HGF, we found that protein kinase A was at least partially involved. In summary, this study raises the hypothesis that the HGF found in articular cartilage is produced by osteoblasts, diffuses into the cartilage, and may be implicated in the OA process.  相似文献   

5.
OBJECTIVE: To characterize a novel secreted frizzled-related protein (SFRP) and determine its tissue distribution at the mRNA and protein level. METHODS: The FrzB-2 gene was identified by expressed sequence tag (EST) analysis of human tissue-derived libraries. Tissue distribution of FrzB-2 mRNA was determined by Northern blot analysis and in situ hybridization. FrzB-2 protein reactivity was localized in human OA articular cartilage by immunocytochemistry, using a polyclonal antibody against a peptide sequence unique to FrzB-2. Apoptosis was detected in articular cartilage sections using Tunel staining. RESULTS: ESTs corresponding to FrzB-2 were found in osteoblast, chondrosarcoma, osteosarcoma, osteoclastoma and synovial fibroblast libraries. FrzB-2 mRNA is expressed in a number of tissues and cell types including bone-related cells and tissues such as primary human osteoblasts and osteoclastoma. In situ hybridization studies showed strong FrzB-2 mRNA expression in human chondrocytes in human osteoarthritic (OA) cartilage but negligible levels in normal cartilage chondrocytes. The FrzB-2 cDNA encodes a secreted 40 kDa protein consisting of 346 amino acids. FrzB-2 is 92. 5% identical to the rat orthologue, DDC-4, which has been shown to be associated with physiological apoptosis. FrzB-2 protein was selectively detected in human OA articular cartilage by immunocytochemistry, using a polyclonal antibody. Consistent with its potential role in apoptosis, positive FrzB-2 staining and Tunel positive nuclei staining were detected in chondrocyte clones in sections of human OA cartilage. CONCLUSION: These data suggest that FrzB-2 may play a role in apoptosis and that the expression of this protein may be important in the pathogenesis of human OA.  相似文献   

6.
7.
We have compared the concentrations of stromal-cell-derived factor-1 (SDF-1), matrix metalloproteinase-1 (MMP-1), MMP-9 and MMP-13 in serum before and after synovectomy or total knee replacement (TKR). We confirmed the presence of SDF-1 and its receptor CXCR4 in the synovium and articular cartilage by immunohistochemistry. We established chondrocytes by using mutant CXCR4 to block the release of MMPs. The level of SDF-1 was decreased 5.1- and 6.7-fold in the serum of patients with OA and RA respectively, after synovectomy compared with that before surgery. MMP-9 and MMP-13 were decreased in patients with OA and RA after synovectomy. We detected SDF-1 in the synovium and the bone marrow but not in cartilage. CXCR4 was detected in articular cartilage. SDF-1 increased the release of MMP-9 and MMP-13 from chondrocytes in a dose-dependent manner. The mutant CXCR4 blocked the release of MMP-9 and MMP-13 from chondrocytes by retrovirus vector. Synovectomy is effective in patients with OA or RA because SDF-1, which can regulate the release of MMP-9 and MMP-13 from articular chondrocytes for breakdown of cartilage, is removed by the operation.  相似文献   

8.
OBJECTIVES: To examine the localization of bone morphogenetic protein (BMP)-2 mRNA and protein in human osteoarthritic (OA) articular cartilage and osteophyte. DESIGN: Five normal, four growing and 14 OA human cartilage samples, graded histomorphologically by Mankin Score, were studied by in situ hybridization and immunohistochemistry for the expression of BMP-2. RESULTS: BMP-2 mRNA was present in chondrocytes in neonatal growing articular cartilage, but was scarcely present in normal adult articular cartilage. In OA articular cartilage, BMP-2 mRNA and protein were detected in both clustering and individual chondrocytes in moderately or severely damaged OA cartilage. In moderately damaged OA cartilage, BMP-2 mRNA was localized in both upper and middle zone chondrocytes, but was not detected in deep layer chondrocytes. In severely damaged OA cartilage, cellular localization of BMP-2 mRNA was extended to the deep zone. In the area of osteophyte formation, BMP-2 mRNA was intensely localized in fibroblastic mesenchymal cells, fibrochondrocytes, chondrocytes and osteoblasts in newly formed osteophytic tissue. The pattern of BMP-2/4 immunolocalization was associated with that of mRNA localization. CONCLUSIONS: BMP-2 mRNA and BMP-2/4 were detected in cells appearing in OA tissues. BMP-2 was localized in cells of degenerating cartilage as well as osteophytic tissue. Given the negative localization of BMP-2 in normal adult articular cartilage, BMP-2 might be involved in the regenerating and anabolic activities of OA cells, which respond to cartilage damage occurring in osteoarthritis.  相似文献   

9.
目的综述在正常和骨性关节炎(osteoarthritis,OA)的关节软骨及软骨下骨中,甲状旁腺激素(parathyroid hormone,PTH)和甲状旁腺激素相关蛋白(parathyroid hormone-related protein,PTHrP)的作用机制研究进展。方法广泛查阅近年来有关PTH和PTHrP对正常和OA关节软骨作用机制的文献,并进行总结与分析。结果 PTH和PTHrP可抑制OA软骨细胞的肥大分化及凋亡,促进其增殖,从而对OA软骨细胞起到保护作用;OA软骨下骨成骨细胞对PTH的反应下降。结论 PTH、PTHrP可能通过多种信号通路参与软骨降解和软骨下骨重塑,并对OA进展起到延缓和保护作用。  相似文献   

10.
《BONE》2013,54(2):340-349
Osteoporosis (OP) and osteoarthritis (OA) are major health problems in the increasing elderly population, particularly in postmenopausal women, but their relationship remains unclear. The present study investigated whether alendronate (ALN), a potent inhibitor of bone resorption, could protect articular cartilage from degeneration in a combined animal model of OP and OA induced by ovariectomy (OVX). Seventy-eight seven-month-old female Sprague–Dawley rats were assigned into five experimental groups: (1) sham-operated with vehicle treatment, (2) sham-operated with ALN treatment, (3) OVX with vehicle treatment, (4) ALN treatment starting at OVX, and (5) ALN treatment starting at eight weeks after OVX. Histological and micro-CT analyses, together with urine collagen degradation markers, indicated that early ALN treatment completely prevented both subchondral bone loss and cartilage surface erosion induced by OVX. Although late ALN treatment also inhibited subchondral bone loss and significantly reduced cartilage erosion in the OVX rats, these tissues did not completely recover even after 10-weeks of ALN treatment. Quantitative RT-PCR analyses showed that the protective effect of ALN correlated with increased ratio of OPG/RANKL in both subchondral bone and cartilage. Moreover, whereas OVX caused upregulation of expression of matrix metalloproteinases MMP-13 and MMP-9 in the articular cartilage and chondrocytes in the interface between the articular cartilage and subchondral bone, respectively, early ALN treatment blocked whereas late ALN treatment attenuated the upregulation of these catabolic enzymes in the corresponding tissues. Together, these data indicate that the subchondral bone loss plays an important role in OA pathogenesis in the combined OP and OA model and suggest that treatment timing is an important factor for the effectiveness of anti-resorptive drug therapy of combined OP and OA.  相似文献   

11.
12.

Background

Tenascin-C (TN-C) is an extracellular matrix glycoprotein that is involved in tissue injury and repair processes. We analyzed TN-C expression in normal and osteoarthritic (OA) human cartilage, and evaluated its capacity to induce inflammatory and catabolic mediators in chondrocytes in vitro. The effect of TN-C on proteoglycan loss from articular cartilage in culture was also assessed.

Methods

TN-C in culture media, cartilage extracts, and synovial fluid of human and animal joints was quantified using a sandwich ELISA and/or analyzed by Western immunoblotting. mRNA expression of TN-C and aggrecanases were analyzed by Taqman assays. Human and bovine primary chondrocytes and/or explant culture systems were utilized to study TN-C induced inflammatory or catabolic mediators and proteoglycan loss. Total proteoglycan and aggrecanase -generated ARG-aggrecan fragments were quantified in human and rat synovial fluids by ELISA.

Results

TN-C protein and mRNA expression were significantly upregulated in OA cartilage with a concomitant elevation of TN-C levels in the synovial fluid of OA patients. IL-1 enhanced TN-C expression in articular cartilage. Addition of TN-C induced IL-6, PGE2, and nitrate release and upregulated ADAMTS4 mRNA in cultured primary human and bovine chondrocytes. TN-C treatment resulted in an increased loss of proteoglycan from cartilage explants in culture. A correlation was observed between TN-C and aggrecanase generated ARG-aggrecan fragment levels in the synovial fluid of human OA joints and in the lavage of rat joints that underwent surgical induction of OA.

Conclusions

TN-C expression in the knee cartilage and TN-C levels measured in the synovial fluid are significantly enhanced in OA patients. Our findings suggest that the elevated levels of TN-C could induce inflammatory mediators and promote matrix degradation in OA joints.  相似文献   

13.
OBJECTIVE: The vascular invasion of bone marrow tissue into the subchondral plate is often observed in articular cartilage and we named it the subchondral bone absorption pit; however, its implication in the pathogenesis of osteoarthritis (OA) has been poorly understood. The purpose of this study was to evaluate its characteristics and roles in osteoarthritic conditions. METHODS: Articular cartilage specimens from 11 patients with medial type knee OA and 7 non-arthritic cadavers were analyzed with HE staining. OA sections were stained with safranin-O, TRAP (tartrate resistant acid phosphatase) and immunostained with anti-MMP-1, MMP-3, MMP-13, vitronectin receptor (VNR)-alpha chain, vimentin and bone morphogenic protein (BMP) 2/4 antibodies. RESULTS: Subchondral bone resorption pits were classified according to the extent of invasion: pits with bone marrow tissue were located within uncalcified cartilage below the tidemark in grade I and invaded beyond the tidemark in grade II, while no invasion was seen in grade 0. Grade II pits were dominant in OA compared to non-arthritic joints, especially medial condyles. Proteoglycan detected with safranin-O staining was lost around the tip of grade II pits and the density of pits was related to the modified Mankin Score. Cells in pits expressed vimentin, MMP-1, MMP-3 and MMP-13. Some polynuclear cells co-expressed VNR-alpha chain and MMP-13, whereas pits showed reparative features expressing BMP. CONCLUSION: These results suggest that subchondral bone resorption pits contribute to cartilage degradation by expressing matrix metalloproteinases in OA.  相似文献   

14.
15.
Avascularity is important for the unique biomechanical properties of articular cartilage, and normal cartilage actively repels vascular invasion. This study investigated whether the antiangiogenic properties changed in the presence of osteoarthritis (OA) by culturing explants of human articular cartilage on the chorioallantoic membrane (CAM) of chick embryos and investigating the incidence of vascular invasion and the effects of exogenous vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9). The results were compared with those of non-OA cartilage obtained after femoral neck fractures. Altogether, 72% of OA samples but only 5% of non-OA samples were invaded by the CAM, indicating that changes in the antiangiogenic properties represented a fundamental difference between control and OA cartilage. Exogenous VEGF or MMP-9 increased the frequency of invasion to 70%–100%. Invasion most frequently occurred into cartilage matrix from which proteoglycans had been lost, the latter being detectable by sirius red staining of cartilage collagen. VEGF was synthesized by chondrocytes in proportion to the severity of degradation and might exacerbate the loss of resistance to invasion. These results indicate that loss of resistance to vascular invasion distinguishes OA cartilage from normal articular cartilage, which may be important in the pathogenesis of OA.  相似文献   

16.
Osteocalcin (OC), which is a marker of the mature osteoblasts, can also be found in posthypertrophic chondrocytes of the epiphyseal growth plate, but not in chondrocytes of the resting zone or in adult cartilage. In human osteoarthritis (OA), chondrocytes can differentiate to a hypertrophic phenotype characterized by type X collagen. The protein- and mRNA-expression pattern of OC was systematically analyzed in decalcified cartilage and bone sections and nondecalcified cartilage sections of human osteoarthritic knee joints with different stages of OA to investigate the differentiation of chondrocytes in OA. In severe OA, we found an enhanced expression of the OC mRNA in the subchondral bone plate, demonstrating an increased osteoblast activity. Interestingly, the OC protein and OC mRNA were also detected in osteoarthritic chondrocytes, whereas in chondrocytes of normal adult cartilage, both the protein staining and the specific mRNA signal were negative. The OC mRNA signal increased with the severity of OA and chondrocytes from the deep cartilage layer, and proliferating chondrocytes from clusters showed the strongest signal for OC mRNA. In this late stage of OA, chondrocytes also stained for alkaline phosphatase and type X collagen. Our results clearly show that the expression of OC in chondrocytes correlates with chondrocyte hypertrophy in OA. Although the factors including this phenotypic shift in OA are still unknown, it can be assumed that the altered microenvironment around osteoarthritic chondrocytes and systemic mediators could be potential inducers of this differentiation. Received: 20 May 1999 / Accepted: 10 February 2000  相似文献   

17.
We investigated the feasibility of the intra‐articular injection of resveratrol for preventing the progression of existing cartilage degeneration in a mouse model of osteoarthritis (OA). The effects of resveratrol on the expression of silent information regulator 2 type 1 (SIRT1), hypoxia‐inducible factor‐2α (HIF‐2α) and catabolic factors in OA cartilage was explored. OA was induced in the mouse knee via destabilization of the medial meniscus (DMM). Resveratrol was injected weekly into the operated knee beginning 4 weeks after surgery. The OA phenotype was evaluated via histological and immunohistochemical analyses at 8 weeks after DMM. Western blot analysis was performed to identify whether resveratrol modulated the interleukin (IL)‐1β‐induced expression of HIF‐2α in human chondrocytes. Histologically, resveratrol treatment preserved the structural homeostasis of the articular cartilage and the subchondral bone. Following resveratrol injection, the expression of collagen type II was retained, but the expression of inducible nitric oxide synthase and matrix metalloproteinase‐13 was reduced in OA cartilage. Moreover, the administration of resveratrol significantly induced the activation of SIRT1 and the inhibition of HIF‐2α expression in mouse OA cartilage and in IL‐1β‐treated human chondrocytes. These findings indicate that the intra‐articular injection of resveratrol significantly prevents the destruction of OA cartilage by activating SIRT1 and thereby suppressing the expression of HIF‐2α and catabolic factors. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 33:1061–1070, 2015.  相似文献   

18.
19.
20.
骨关节炎软骨细胞凋亡调控基因的研究   总被引:7,自引:0,他引:7  
Hu J  Huang G  Huang S  Yang L 《中华外科杂志》2000,38(4):266-268
目的 比较分析正常人及老年性骨关节炎患者软骨细胞bax和bcl 2的表达及细胞凋亡状况。 方法 取 9例骨关节炎患者的关节软骨做实验标本 ,以 6例无骨关节炎病史的意外死亡者关节软骨作为正常对照 ;采用逆转录 /聚合酶链反应 (RT PCR)方法检测bax和bcl 2mRNA表达 ,免疫组化检测bax和bcl 2蛋白 ;应用TUNEL方法进行凋亡细胞原位检测。 结果 骨关节炎患者和正常对照软骨细胞都能表达bax和bcl 2mRNA ;骨关节炎关节软骨细胞baxmRNA表达量较正常对照显著增高 (P <0 0 1) ,bcl 2mRNA表达量也高于正常对照组 (P <0 0 5 ) ,两组间bax/bcl 2表达量的比值差异无显著性意义 (P >0 0 5 ) ;免疫组化可检测到相应表达水平的蛋白 ;骨关节炎软骨细胞凋亡 (4%~ 14% )多于正常对照 (0~ 2 % )。 结论 软骨细胞凋亡受bax和bcl 2共同调节 ;bax和bcl 2的共同调节结果可能是OA患者软骨细胞凋亡增加 ,但凋亡率不高、病理过程进展缓慢的一个重要的原因  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号