首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was performed to distinguish central and peripheral alpha(2)-adrenoceptors in the inhibition of rat pineal melatonin synthesis. The rats received lipo- or hydrophilic alpha(2)-adrenoceptor ligand injections at middark; after 1 or 2 h the pineal melatonin contents were measured. The lipophilic agonist medetomidine (100 microg/kg s.c.) suppressed the melatonin contents significantly, while the hydrophilic agonists ST-91 and p-aminoclonidine (10 or 100 microg/kg i.v.) did not. The suppression by medetomidine was counteracted by the lipophilic antagonist yohimbine (0.3-3.0 mg/kg i.p.) but not by the hydrophilic antagonist L-659,066 (1-10 mg/kg i.v.). In conclusion, the suppression of nocturnal melatonin synthesis by alpha(2)-adrenoceptor agonists is mainly of central origin.  相似文献   

2.
The roles of endogenous serotonin (5-HT) and 5-HT receptor subtypes in regulation of acetylcholine (ACh) release in frontal cortex of conscious rats were examined using a microdialysis technique. Systemic administration (1 and 3 mg/kg, i.p.) of the 5-HT-releasing agent p-chloroamphetamine (PCA) elevated ACh output in a dose-dependent manner. Depletion of endogenous 5-HT by p-chlorophenylalanine significantly attenuated the facilitatory effect of PCA on ACh release. The PCA (3 mg/kg)-induced increase in ACh release was significantly inhibited by local application of the 5-HT4 receptor antagonists RS23597 (50 μM) and GR113803 (1 μM), while the 5-HT1A antagonist WAY-100135 (10 mg/kg, i.p.; 100 μM), 5-HT1A/1B/β-adrenoceptor antagonists (−)-pindolol (8 mg/kg, i.p.) and (−)-propranolol (150 μM), 5-HT2A/2C antagonist ritanserin (1 mg/kg, i.p.; 10 μM) and 5-HT3 antagonist ondansetron (1 mg/kg, i.p.; 10 μM) failed to significantly modify the effect of PCA. These results suggest that PCA-induced enhancement of 5-HT transmission facilitates ACh release from rat frontal cortex at least in part through 5-HT4 receptors.  相似文献   

3.
We previously reported that cardiovascular effects elicited by intracerebroventricular (i.c.v.) administration of clonidine result from stimulation of central α2-adrenergic and/or H2-histaminergic receptors, but not via activation of I1-imidazoline receptors in conscious cats. In this study, we investigated the effects on arterial blood pressure (MAP) and heart rate (HR) following an intravenous (i.v.) administration of clonidine using conscious cats. Injection of clonidine (2–10 μg/kg i.v.) elicited a decrease in mean arterial pressure (MAP) and heart rate (HR) dose-dependently. The dose of 10 μg/kg of clonidine decreased MAP and HR by 30±4 mmHg and 62±15 bpm, respectively. Intravenous or i.c.v. pretreatment with yohimbine, the α2-adrenoceptor and 5-HT1A receptor antagonist, blocked the cardiovascular responses to a subsequent i.v. injection of 10 μg/kg clonidine. However, i.v. or i.c.v. preadministration of cimetidine, the H2-histamine receptor antagonist, failed to antagonize the decreases in MAP and HR to a subsequent i.v. injection of 10 μg/kg clonidine. In addition, i.c.v. or i.v. pretreatment with the I1-imidazoline receptor blocker, efaroxan, failed to inhibit the cardiovascular effects of an i.v. administration of clonidine. These results demonstrate that i.v. clonidine evokes decreases in MAP and HR possibly via central α2-adrenoceptor and/or 5-HT1A receptors and not through H2-histamine or I1-imidazoline receptors.  相似文献   

4.
Serotonin type 2A (5-HT2A) receptor-mediated neurotransmitter is known to activate hypothalamic–pituitary–adrenal (HPA) axis, regulate sleep–awake cycle, induce anorexia and hyperthermia. Interaction between melatonin and 5-HT2A receptors in the regulation of the sleep–awake cycle and head-twitch response in rat have been reported. Previous studies have shown that melatonin has suppressant effect on HPA axis activation, decreases core body temperature and induces hyperphagia in animals. However, melatonin interaction with 5-HT2A receptors in mediation of these actions is not yet reported. We have studied the acute effect of melatonin and its antagonist, luzindole on centrally administered (±)-1-(2,5-dimethoxy-4-iodophenyl) 2-amino propane (DOI; a 5-HT2A/2C agonist)-induced activation of HPA axis, hypophagia and hyperthermia in 24-h food-deprived rats. Like ritanserin [(1 mg/kg, i.p.) 5-HT2A/2C antagonist], peripherally administered melatonin (1.5 and 3 mg/kg, i.p.) did not affect the food intake, rectal temperature or basal adrenal ascorbic acid level. However, pretreatment of rats with it significantly reversed DOI (10 μg, intraventricular)-induced anorexia and activation of HPA axis. But the hyperthermia induced by DOI was not sensitive to reversal by melatonin. Mel1 receptor subtype antagonist luzindole (5 μg, intraventricular) did not modulate the DOI effect but antagonized the melatonin (3 mg/kg, i.p.) reversal of 5-HT2A agonist response. The present data suggest that melatonin reversal of DOI-induced hypophagia could be due to suppression of 5-HT2A mediated activation of HPA axis.  相似文献   

5.
We attempted to find out the role of α2-adrenoceptors of the medullary lateral reticular nucleus (LRN) in antinociception in rats. Spinal antinociception was evaluated using the tail-flick test, and supraspinal antinociception using the hotplate test. Antinociceptive effects were determined following local electric stimulation of the LRN, and following microinjections of medetomidine (an α2-adrenoceptor agonist; 1–10 μg), atipamezole (an α2-adrenoceptor antagonist; 20 μg) or lidocaine (4%) into the LRN. The experiments were performed using intact and spinalized Hannover-Wistar rats with a unilateral chronic guide cannula. Electric stimulation of the LRN as well as of the periaqueductal gray produced a significant spinal antinociceptive effect in intact rats. Medetomidine (1–10 μg), when microinjected into the LRN, produced no significant antinociceptive effect in the tail-flick test in intact rats. However, following spinalization, medetomidine in the LRN (10 μg) produced a significant atipamezole-reversible antinociceptive effect in the tail-flick test in the hot-plate test, medetomidine (10 μg) in the LRN produced a significant atipamezole-reversible increase of the paw-lick latency in intact rats. Microinjection of atipamezole (20 μg) or lidocaine alone into the LRN produced no significant effects in the tail-flick test. The results are in line with the previous evidence indicating brat the LRN and the adjacent ventrolateral medulla is involved in descending inhibition of spinal nocifensive responses. However, α2-adrenoceptors in the LRN do not mediate spinal antinociception but, on the contrary, their activation counteracts antinociception at the spinal cord level. The spinal aninociceptive effect of supraspinally administered medetomidine in spinalized rats can be explained by a spread of the drug (e.g., via circulation) which then directly activates α2-adrenoceptors at the spinal cord level.  相似文献   

6.
Effects of the selective α2-adrenoceptor agonist, medetomidine, on a compound volley of a tibial nerve stimulation-evoked spinal reflex, pain-induced phrenic motor responses and on postoperative neuropathic pain behavior were studied in rats. Medetomidine (0.3 mg/kg) decreased the amplitude of the compound volley recorded from peroneal nerve in response to tibial stimulation in pentobarbital (40 mg/kg) anesthetized rats. Atipamezole, an α2-adnenoceptor antagonist (1.5 mg/kg) fully restored the response when given 60 min after the medetomidine administration. Pain-evoked phrenic motor responses were completely inhibited upon combination anesthesia by pentobarbital (40 mg/kg) and medetomidine (0.3 mg/kg) (PB+M) but not upon plain pentobarbital anesthesia (50 or 60 mg/kg) (PB50, PB60). To study the effect of medetomidine on postoperative neuropathic pain behavior (autonomy), transection of sciatic nerve was done under PB+M, PB50 or PB60 anesthesia. No differences between the groups were found in the postoperative pain behavior during eight-week follow up. The results show that activation of α2-adrenergic receptors by medetomidine under pentobarbital anesthesia mitigates trauma-induced afferent barrage, whereas it does not reduce the subsequent autotomy.  相似文献   

7.
Studies from this laboratory have shown that either central or peripheral administration of clonidine, the α2-adrenoceptor agonist, can attenuate a variety of dipsogenic stimuli in rats. Further, yohimbine and tolazoline, α2-adrenoceptor antagonists, augment the drinking response to both peripherally administered isoproterenol and angiotensin II. Studies reported here establish a dose-inhibition relationship between the dose of clonidine administered (2 to 32 μg/kg) intracerebroventricularly (IVT) and inhibition of the drinking response to peripherally administered angiotensin II (200 μg/kg, SC). DI50 was approximately 4 μg/kg. Yohimbine (300 μg/kg, SC) reversed the antidipsogenic effect of centrally administered clonidine (32 μg/kg, IVT) on angiotensin II-induced (200 μg/kg, SC) water intake. Phenylephrine, an α2-adrenoceptor agonist, administered IVT (40 and 80 μg/kg) also inhibited angiotensin II-induced drinking in a dose-related fashion. The antidipsogenic effect of phenylephrine (80 μg/kg) was blocked by administration of yohimbine (300 μg/kg, SC). Thus, this effect of phenylephrine most likely occurs by way of α2-adrenoceptors. These results support a role for the pre-synaptic α2-adrenoceptor in the mediation of drinking in rats. Activation of α2-adrenoceptors is accompanied by reduced water intake while inhibition of these receptors enhances water intake.  相似文献   

8.
Exogenous pyrogens, e.g., bacterial lipopolysaccharides (LPS), are thought to stimulate macrophages to release endogenous pyrogens, e.g., TNFα, IL-1 β, and IL-6, which act in the hypothalamus to produce fever. We studied the effect of different α1 and α2-adrenoceptor subtype antagonists, applied intraperitoneally, on the febrile response induced by LPS in rabbits. Evidence was obtained that prazosin, an α1 and α2B/2C-adrenoceptor antagonist; WB-4101, an α1 and α2A-adrenoceptor antagonist; CH-38083, a highly selective α2-adrenoceptor antagonist (α2: α1 > 2000); BRL-44408, an α2A-adrenoceptor antagonist; and ARC-239, an α2B/2C and also α1-adrenoceptor antagonist, blocked the increase of colonic temperature of the rabbit produced by 2 μg/kg LPS administered intravenously without being able in themselves to affect colonic temperature. In addition, prazosin, WB-4101 and CH-38083 antagonized the fall in skin temperature that occurred at the time when the colonic temperature was rising in control animals injected with LPS. All these results suggest that norepinephrine, through stimulation of both α1andα22Aandα2B/2C) adrenoceptor subtypes, is involved in producing fever in response to bacterial LPS.  相似文献   

9.
The effects on arterial blood pressure and heart rate after an intracerebroventricular (i.c.v.) administration of clonidine were investigated using conscious normotensive cats. Injection of clonidine (5–10 μg; 5 μl; i.c.v.) elicited a decrease in mean arterial pressure (MAP) and heart rate (HR) in a dose-dependent manner. The highest dose of 10 μg of clonidine decreased MAP and HR by 39 ± 3 mmHg and 74 ± 5 b.p.m., respectively (n = 7). Pretreatment with yohimbine, the α2-adrenoceptor antagonist (8 μg; 5 μl; i.c.v.) blocked the cardiovascular responses to a subsequent i.c.v. injection of 10 μg clonidine (n = 7). Furthermore, preadministration of cimetidine (100 μg; 5 μl; i.c.v.), the H2 histamine receptor antagonist with imidazoline receptor activating properties, prevented the decreases in MAP and HR to a subsequent i.c.v. injection of 10 μg clonidine (n = 7). By contrast, pretreatment with the specific I1 imidazoline receptor blocker, efaroxan (100–500 μg; 5 μl; i.c.v.), failed to inhibit the cardiovascular effects of an i.c.v. administration of 10 μg clonidine (n = 7). These results suggest that the effects of centrally administered clonidine on MAP and HR are probably not mediated through activation of the I1 subtype of imidazoline receptors in conscious cats. However, the cardiovascular effects elicited by i.c.v. administration of clonidine appear to result from stimulation of central α2-adrenergic or the H2 histaminergic-like receptors.  相似文献   

10.
We evaluated possible interactions between substance P (SP) and the α2-adrenoceptors in the nucleus reticularis gigantocellularis (NRGC) of the medulla oblongata involved in cardiovascular regulation. Adult, male Sprague-Dawley rats anesthetized with pentobarbital sodium (40 mg/kg, i.p., with 10 mg/kg/h i.v. supplements) were used. The circulatory suppressant efficacy of a centrally acting α2-adrenoceptor agonist, guanabenz, was used as the experimental index. Bilateral microinjection of SP (300 or 600 pmol) into the NRGC, a medullary site that is critically involved in the cardiovascular depressive actions of guanabenz, significantly diminished the hypotensive and bradycardiac efficacy of the aminoguanidine compound (100 μg/kg, i.v.). This implied reduction in α2-adrenoceptor activity in the NRGC by SP was antagonized by its selective receptor antagonist, [d-Pro2,d-Trp7,9]-SP (1200 pmol). Similarly, attenuation by SP of the cardiovascular suppressant effects of guanabenz was also reversed by immunocytochemically verified depletion of dopamine-β-hydroxylase-immunoreactive nerve terminals in the NRGC, elicited by the selective noradrenergic neurotoxin, DSP4 (50 μg). These data suggest that SP may exert an inhibitory action on the α2-adrenoceptors in the NRGC that are involved in central cardiovascular regulation, possibly via a presynaptic modulation on noradrenergic neurotransmission.  相似文献   

11.
Systemic (s.c.) administration of α2 agonists clonidine (25–100 μg/kg) or guanfacine (50–400 μg/kg) elicited antinociception as assessed by the cat tail-flick model and potentiated in a dose-dependent manner the antinociceptive effect of etorphine (2.5 μg) administered directly into the periaqueductal gray. Conversely, systemic yohimbine (1 mg/kg) attenuated the effects of central etorphine, and diminished potentiation of etorphine by theα2 agonists. Prior microinjection of clonidine (5μg) or guanfacine (5 μg) into the locus coeruleus (LC) reduced the intensity of central etorphine antinociception whereas central yohimbine (20 μg) pretreatment increased peak antinociceptive activity and prolonged the duration of etorphine. Thus, systemicα2 agonists are inherently antinociceptive and potentiate central narcotic antinociception; however, the site of interaction betweenα2 agonists and opiates does not appear to be the LC inasmuch asα2 agonists attenuate the antinociceptive effect of etorphine when administered directly into the LC. A spinal site of action is suggested based upon known LC-spinal projections and our experimental observations.  相似文献   

12.
The present study was designed to investigate: (1) the involvement of dopamine D1 and D2 receptors, and (2) the roles of these receptors and endogenous opioid systems (endorphinergic and enkephalinergic systems) in the ethanol-induced place preference in rats exposed to conditioned fear stress using the conditioned place preference paradigm. The administration of ethanol (300 mg/kg, i.p.) induced a significant place preference. The selective D1 receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H3-benzazepine)hydrochloride (SCH23390; 0.01 and 0.03 mg/kg, s.c.) and the selective D2 receptor antagonist S(−)-5-(aminosulfonyl)-N-[(1-ethyl-2-pyrrolidinyl)-methyl]-2-methoxybenzamide (sulpiride; 20 and 40 mg/kg, s.c.) significantly attenuated the ethanol-induced place preference. The administration of ethanol (75 mg/kg, i.p.) tended to produce a place preference, but this effect was not significant. SCH23390 (0.03 mg/kg, s.c.) and sulpiride (40 mg/kg, s.c.) significantly attenuated the enhancement of the ethanol (75 mg/kg, i.p.)-induced place preference produced by the μ-opioid receptor agonist morphine (0.1 mg/kg, s.c.). In addition, SCH23390 (0.03 mg/kg, s.c.) also significantly attenuated the enhancement of the ethanol (75 mg/kg, i.p.)-induced place preference produced by the selective δ-opioid receptor agonist 2-methyl-4aα-(3-hydroxyphenyl)-1,2,3,4,4a,5,12,12aα-octahydroquinolino[2,3,3,-g]isoquinoline (TAN-67; 20 mg/kg, s.c.). On the other hand, sulpiride (40 mg/kg) had no significant effect on the enhancement of the ethanol (75 mg/kg, i.p.)-induced place preference produced by TAN-67. These results suggest that D1 and D2 receptors may be involved in the rewarding mechanism of ethanol under psychological stress. In addition, D1 receptors may participate in the rewarding effect of ethanol modulated by the activation of μ- and δ-opioid receptors, whereas D2 receptors may participate in the rewarding effect of ethanol modulated by the activation of μ-opioid receptors, but not in that modulated by the activation of δ-opioid receptors.  相似文献   

13.
Summary. The α2-adrenoceptor antagonists potentiate both ipsilateral and contralateral rotations induced by amphetamine and apomorphine respectively in hemiparkinsonian rats. The present study investigated the role of serotonergic transmission in this potentiation in unilaterally 6-hydroxydopamine nigral lesioned rats. D-amphetamine (0.5 mg/kg, i.p.) produced ipsilateral rotations, which were decreased by the dopamine receptor antagonist haloperidol (0.2 mg/kg, i.p.) and the α1-receptor antagonist prazosin (1 mg/kg, i.p.). The selective α2-antagonist 2-methoxy idazoxan (0.2 mg/kg, i.p.) potentiated the amphetamine-induced ipsilateral rotations, that were attenuated by haloperidol and prazosin. The selective serotonin re-uptake inhibitor citalopram (10 mg/kg, i.p.) and selective serotonin synthesis inhibitor p-chlorophenylalanine (150 mg/kg, i.p., 3 days) decreased and increased the observed potentiation respectively. Apomorphine (0.2 mg/kg, s.c.) produced contralateral rotations, which were decreased by haloperidol but not by prazosin. 2-methoxy idazoxan potentiated these rotations which were attenuated by haloperidol but not by prazosin. Citalopram and p-chlorophenylalanine increased and decreased the observed potentiation respectively. Citalopram and p-chlorophenylalanine had no effect by per se on D-amphetamine and apomorphine-induced rotations. 2-methoxy idazoxan alone increased both ipsilateral and contralateral spontaneous rotations. Taken together, these findings indicate that an increase in noradrenergic tone by 2-methoxy idazoxan potentiates both D-amphetamine-induced ipsilateral and apomorphine induced contralateral rotations. α1-Antagonism attenuates D-amphetamine induced ipsilateral rotations and its potentiation by 2-methoxy idazoxan but not apomorphine rotations or its potentiation. Increasing and decreasing the serotonergic transmission decreases and increases D-amphetamine potentiation, whereas increases and decreases apomorphine potentiation respectively. The possible mechanisms for these findings are discussed.  相似文献   

14.
The aim of this study was to determine whether 5-hydroxytryptamine (5-HT)3 receptors on cardiopulmonary afferents mediating the Bezold–Jarisch reflex (BJR) desensitize upon repeated exposure to selective agonists. BJR-mediated falls in heart rate, diastolic arterial blood pressure and cardiac output elicited by the 5-HT3-receptor agonists, phenylbiguanide (100 μg/kg, i.v.) or 2-methyl-5-HT (100 μg/kg, i.v.), progressively diminished upon repeated injection in conscious rats. The BJR responses elicited by 5-HT (40 μg/kg, i.v.) were markedly reduced in rats which had received the above injections of phenylbiguanide or 2-methyl-5-HT whereas the BJR responses elicited by -S-nitrosocysteine (10 μmol/kg, i.v.) were similar before and after the injections of the 5-HT3 receptor agonists. These findings suggest that tachyphylaxis to 5-HT3 receptor agonists may be due to the desensitization of 5-HT3 receptors on cardiopulmonary afferents rather than the impairment of the central or peripheral processing of the BJR.  相似文献   

15.
The role of μ opioid receptor subtypes, μ1 and μ2, in morphine-conditioned place preference was examined using ddY and μ1 opioid receptor-deficient CXBK mice. In ddY mice, the μ receptor agonist morphine caused a dose-related preference for the drug-associated place, but the κ agonist U-50,488H produced a dose-related place aversion. These results demonstrated that the mouse is available for place preference conditioning using opioids. Under this condition, the influence of pretreatment with selective μ1 opioid receptor antagonist naloxonazine morphine-induced place preference was investigated in ddY mice. Although pretreatment with the selective μ1 antagonist naloxonazine (35 mg/kg, s.c.) did not modify the morphine-induced place preference, pretreatment with the selective μ antagonist β-funaltrexamine (β-FNA 10 mg/kg, s.c.) eliminated the appetitive effect of morphine. Furthermore, morphine (1–5 mg/kg, s.c.) produced a dose-related preference for the drug-associated place in CXBK mice. These findings suggest that the morphine-induced conditioned place preference may be mediated by naloxonazine-insensitive sites (μ2 opioid receptors). In addition, chronic infusion of the dopamine D1 antagonist SCH23390 (1.0 mg/kg/day) during the conditioning sessions eliminated the morphine-induced place preference in CXBK mice. Similarly, morphine combined with naloxonazine failed to produce the place preference in ddY mice chronically treated with SCH23390. The blocking effect of SCH23390 on the morphine-conditioned place preference suggests that μ2 receptors may regulate the dopaminergic system, especially dopamine D1 receptors, and are also involved in the reinforcing effects of morphine.  相似文献   

16.
Effects of methylcobalamin (methyl-B12), a putative drug for treating human circadian rhythm disorders, on the melatonin-induced circadian phase shifts were examined in the rat. An intraperitoneal injection of 1–100 μg/kg melatonin 2-h before the activity onset time (CT 10) induced phase advances of free-running activity rhythms in a dose-dependent manner (ED50=1.3 μg/kg). Injection of methyl-B12 (500 μg/kg) prior to melatonin (1 μg/kg) injection induced larger phase advances than saline preinjected controls, while the injection of methyl-B12 in combination with saline did not induce a phase advance. These results indicate amplification of melatonin-induced phase advances by methyl-B12. Pinealectomy abolished the phase alternating effect of methyl-B12, suggesting a site of action within the pineal gland. In fact, methyl-B12 significantly increased the content of melatonin in the pineal collected 2-h after activity onset (CT 14). In contrast, no difference in melatonin content was found at CT 10, indicating that the effect of methyl-B12 may be gated after the activity onset time when endogenous melatonin synthesis is known to increase. These results suggest that methyl-B12 amplifies melatonin-induced phase advances via an increase in melatonin synthesis during the early subjective night at a point downstream from the clock regulation.  相似文献   

17.
α2-Adrenoceptor agonists, such as clonidine, attenuate hypoxia-induced damage to brain and retinal neurones by a mechanism of action which likely involves stimulation of α2-adrenoceptors. In addition, the neuroprotective effect of α2-adrenoceptor agonists in the retina may involve stimulation of bFGF production. The purpose of this study was to examine more thoroughly the neuroprotective properties of clonidine. In particular, studies were designed to ascertain whether clonidine acts as a free radical scavenger. It is thought that betaxolol, a β1-adrenoceptor antagonist, acts as a neuroprotective agent by interacting with sodium and L-type calcium channels to reduce the influx of these ions into stressed neurones. Studies were therefore undertaken to determine whether clonidine has similar properties. In addition, studies were undertaken to determine whether i.p. injections of clonidine or betaxolol affect retinal bFGF mRNA levels. In vitro data were generally in agreement that clonidine and bFGF counteracted the effect of NMDA as would occur in hypoxia. No evidence could be found that clonidine interacts with sodium or L-type calcium channels, reduces calcium influx into neurones or acts as a free radical scavenger at concentrations below 100 μM. Moreover, i.p. injection of clonidine, but not betaxolol, elevated bFGF mRNA levels in the retina. The conclusion from this study is that the neuroprotective properties of α2-adrenoceptor agonists, like clonidine, are very different from betaxolol. The fact that both betaxolol and clonidine blunt hypoxia-induced death to retinal ganglion cells suggests that combining the two drugs may be a way forward to producing more effective neuroprotection.  相似文献   

18.
The effects of partial division of the great auricular nerve of adult rabbits were evaluated on the responsiveness of cutaneous C-fiber polymodal nociceptors (CPMs) to sympathetic stimulation (SS), close-arterial injections of epinephrine (EPI) and other α-adrenergic agonists. In normal unanesthetized rabbits, the two ears were usually at the same temperature. Two to 4 weeks after partial nerve lesions, however, the operated ear was cooler by 1–3°C in the majority of animals, suggestive of increased vasoconstriction and possible denervation supersensitivity. Neither SS nor EPI (50 ng) excited CPM units (n=23) from intact anesthetized animals. In contrast, 14–27 days after partial nerve lesions, SS (8 out of 38 units) and EPI (12 out of 38 units) were excitatory for a class of CPMs. There was notable variability in the response of different units and of a given unit between first and second trials. Responses consisted of 1–22 impulses for SS and 1–23 impulses for EPI in the 60 s following a trial. Arterial occlusion did not activate responsive units, suggesting that the excitation was not caused by vascular or temperature changes. Selective α2-adrenoceptor blockade with yohimbine (0.6–1.0 mg/kg i.v.) or rauwolscine (1.0 mg/kg i.v.) reversibly antagonized the effects of SS and EPI. EPI-responsive units were also excited by norepinephrine (50 ng) and guanabenz (10 μg) but not by clonidine (3 μg) or B-HT 933 (3 μg). The results suggest that circulating EPI, acting via an α-adrenoceptor subtype, can play a part in the development and/or maintenance of aberrant pain syndromes such as causalgia and other sympathetically related dystrophies.© 1997 Elsevier Science B.V. All rights reserved.  相似文献   

19.
1. Aged α2C-adrenoceptor knockout and wild type mice were used to investigate whether α2C-adrenoceptors are involved in mediating the beneficial effects of α2-adrenoceptor agonist, dexmedetomidine, on spatial working memory.
2. A win-stay task in the radial arm maze was used to dissociate the effects of dexmedetomidine on working vs. reference memory. In addition, the animals were tested in simple response habit learning in the T-maze.
3. Knockout mice made more working memory errors after the change of the baited arm in radial arm maze, but after training reached again as accurate level of performance as wild type controls. Dexmedetomidine 5 and 10 μg/kg alleviated the increase in spatial working memory errors after the change of the baited arm in knockout mice. Knockout and wild type mice performed equally well in T-maze, and dexmedetomidine had no effect on this simple response learning.
4. The present results indicate that α2-adrenoceptor agonists have a selective effect on spatial working memory not only in monkeys but also in mice. Further, this study confirms our earlier finding that the presence of α2C-adrenoceptors is not necessary for the spatial working memory enhancing effect of α2-adrenoceptor agonists.
Author Keywords: α2C-adrenoceptor; α2C-adrenoceptor agonist; radial arm maze; spatial working memory; T-maze  相似文献   

20.
We have studied effects of 5-hydroxytryptamine 1A (5-HT1A) receptor-selective compounds on the extracellular noradrenaline (NA) level in the hippocampus of rats using microdialysis and on their locomotor activity. A selective 5-HT1A receptor agonist, flesinoxan (5 mg/kg, i.p.) increased the extracellular NA level in the hippocampus, and increased the locomotor activity. Both responses were blocked by pretreatment with a 5-HT1A receptor antagonist, WAY100635 (1 mg/kg, i.p.) and an α2 adrenoceptor agonist, clonidine (50 μg/kg, i.p.). Bilateral intrahippocampal injection of flesinoxan (200 nmol in 2 μl, respectively) increased the locomotor activity of rats and the intrahippocampal perfusion of flesinoxan (1 mM, 2 μl/min) increased the extracellular NA level in the hippocampus. Bilateral intrahippocampal injections of a small amount of WAY100635 (0.1 nmol in 2 μl, respectively) blocked the flesinoxan (5 mg/kg, i.p.)-induced hyperactivity. Flesinoxan (5 mg/kg, i.p.) did not significantly influence the level of serotonin or its major metabolite in the hippocampus, or dopamine or its metabolites in the striatum. In conclusion, these behavioral as well as pharmacological results indicate that postsynaptic 5-HT1A receptor activation by flesinoxan increase the extracellular NA level in the hippocampus, which may be the cause of the increase of the locomotor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号