首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND & PURPOSE: We demonstrated previously that reciprocal regulation of soluble (sGC) and particulate (pGC) guanylate cyclases by NO and natriuretic peptides coordinates cyclic cGMP-mediated vasodilatation in vitro. Herein, we investigated whether such an interaction contributes to vascular homeostasis in mice and humans in vivo. EXPERIMENTAL APPROACH: Mean arterial blood pressure (MABP) changes in anaesthetized mice were monitored in response to i.v. administration of cGMP- and cAMP-dependent vasodilators in wild-type (WT), endothelial NO synthase (eNOS) and natriuretic peptide receptor (NPR)-A knockout mice. Forearm blood flow (FBF) in response to intra-brachial infusion of ANP (25, 50, 100, 200 pmol min(-1)) in the absence and presence of the NOS inhibitor NG-methyl-L-arginine (L-NMA; 4 micromol min(-1)) and the control constrictor noradrenaline (240 pmol min(-1)) was assessed in healthy volunteers. KEY RESULTS: Sodium nitroprusside (SNP; NO-donor) and atrial natriuretic peptide (ANP) produced dose-dependent reductions in MABP in WT animals that were significantly enhanced in eNOS KO mice. In NPR-A K mice, SNP produced a dose-dependent reduction in MABP that was significantly greater than that in WT mice. Responsiveness to the cAMP-dependent vasodilator epoprostenol was similar in WT, eNOS KO and NPR-A KO animals. ANP caused vasodilatation of the forearm resistance vasculature that was significantly greater in individuals lacking endothelium-derived NO (i.e. L-NMA treated). CONCLUSIONS & IMPLICATIONS: These data demonstrate that crosstalk occurs between the NO-sGC and ANP-pGC pathways to regulate cGMP-dependent vasodilatation in vivo in both mice and humans. These findings have implications for understanding the link between natriuretic peptide activity and cardiovascular risk.  相似文献   

2.

Background and purpose:

Excessive production of nitric oxide (NO) by inducible NO synthase (iNOS) is thought to underlie the vascular dysfunction, systemic hypotension and organ failure that characterize endotoxic shock. Plasma levels of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) are raised in animal models and humans with endotoxic shock and correlate with the associated cardiovascular dysfunction. Since both NO and natriuretic peptides play important roles in cardiovascular homeostasis via activation of guanylate cyclase-linked receptors, we used mice lacking natriuretic peptide receptor (NPR)-A (NPR1) to establish if natriuretic peptides contribute to the cardiovascular dysfunction present in endotoxic shock.

Experimental approach:

Wild-type (WT) and NPR-A knockout (KO) mice were exposed to lipopolysaccharide (LPS) and vascular dysfunction (in vitro and in vivo), production of pro-inflammatory cytokines, and iNOS expression and activity were evaluated.

Key results:

LPS-treated WT animals exhibited a marked fall in mean arterial blood pressure (MABP) whereas NPR-A KO mice maintained MABP throughout. LPS administration caused a greater suppression of vascular responses to the thromboxane-mimetic U46619, ANP, acetylcholine and the NO-donor spermine-NONOate in WT versus NPR-A KO mice. This differential effect on vascular function was paralleled by reduced pro-inflammatory cytokine production, iNOS expression and activity (plasma [NOx] and cyclic GMP).

Conclusions and implications:

These observations suggest that NPR-A activation by natriuretic peptides facilitates iNOS expression and contributes to the vascular dysfunction characteristic of endotoxic shock. Pharmacological interventions that target the natriuretic peptide system may represent a novel approach to treat this life-threatening condition.  相似文献   

3.
1. The sensitivity of the soluble guanylate cyclase (sGC)-cyclic guanosine-3',5'-monophosphate (cyclic GMP) system to nitric oxide (NO) was investigated in mouse aorta from wild type (WT) and NO synthase (NOS) knockout (KO) animals. 2. The NO donor, spermine-NONOate (SPER-NO) was more potent in aortas from eNOS KO mice compared to WT (pEC50 7.30+/-0.06 and 6.56+/-0.04, respectively; n=6; P<0.05). In contrast, the non-NO based sGC activator, YC-1 was equipotent in vessels from eNOS WT and KO mice. The sensitivity of aortas from nNOS and iNOS KO animals to SPER-NO was unchanged. Forskolin (an adenylate cyclase activator), was equipotent in vessels from eNOS WT and KO animals. 3. The cyclic GMP analogue, 8-Br-cGMP was equipotent in eNOS WT and KO mice (pEC50 4. 38+/-0.04 and 4.40+/-0.05, respectively; n=5; P>0.05). Zaprinast (10-5 M) a phosphodiesterase type V (PDE V) inhibitor, had no effect on the response to SPER-NO in vessels from eNOS WT or KO mice. 4. The NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 3x10-4 M) increased the potency of SPER-NO in aortas from WT mice (pEC50 6. 64+/-0.02 and 7.37+/-0.02 in the absence and presence of L-NAME, respectively; n=4; P<0.05). 5. In summary, there is increased sensitivity of vessels from eNOS KO animals to NO. Cyclic AMP-mediated dilatation is unchanged, consistent with a specific up-regulation of sGC - cyclic GMP signalling. The functional activity of cyclic GMP-dependent protein kinase (G-kinase) and PDE V was also unchanged, suggesting that sGC is the site of up-regulation. These alterations in the sensitivity of the sGC - cyclic GMP pathway might represent a mechanism for the dynamic regulation of NO bioactivity.  相似文献   

4.
1. The role of protein kinase C (PKC) in mediating enhanced contractile responses of aortae and mesenteric arteries from male rats with 12-14 week streptozotocin-induced diabetes to noradrenaline (NA) was investigated using the PKC activator, phorbol 12,13-dibutyrate (PDB), and the PKC inhibitor, staurosporine. 2. Maximum contractile responses of aortae and mesenteric arteries from diabetic rats to NA were significantly enhanced compared with responses of arteries from age-matched control animals. The maximum NA responses were increased by 59.6 +/- 7.9% in aortae and by 54.9 +/- 7.4% in mesenteric arteries from diabetic animals, compared to their respective controls. 3. Pretreatment of aortae and mesenteric arteries from both control and diabetic animals with staurosporine (5 x 10(-8) M) caused marked inhibition of contractile responses to a maximum concentration of NA (10(-5) M in aortae; 3 x 10(-5) M in mesenteric arteries). In the presence of staurosporine, no difference was observed in the magnitude of contractile responses of arteries from control and diabetic rats to NA. 4. Maximum contractile responses of mesenteric arteries from diabetic rats to PDB were significantly increased (by 45.0 +/- 4.9%) compared to responses of arteries from control animals. In contrast, no significant difference was found in the magnitude of contractile responses or aortae from control and diabetic rats to PDB. 5. Staurosporine (5 x 10(-8) M caused marked attenuation of contractile responses of arteries from control and diabetic rats to a maximum concentration of PDB (3 x 10(-6) M).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Acetylcholine interacts with endothelial muscarinic receptors to enhance nitric oxide (NO) release and thereby cause vasodilation. The present study was designed to determine if this effect of acetylcholine is mediated by muscarinic M3 receptors. Thoracic aortae were isolated from wild-type (WT) and M3 receptor knock out (M3R-/-) male mice, and endothelium-intact (I) and -denuded (D) aortic rings were bathed in physiological buffer. Preparations were utilized to examine the contractile response to phenylephrine (1 x 10(-8) - 3 x 10(-4) M added cumulatively) and the vasodilatory actions of acetylcholine (10(-8) - 10(-4) M), carbachol (10(-9) - 10(-4) M), ATP (3 x 10(-5) M) and the NO donor SIN-1 (10(-4) M), each added in the presence of phenylephrine. Endothelium-dependent vasodilatory effects of acetylcholine and carbachol were obvious in aortae isolated from WT mice (56.3 +/- 9.8% and 49.1 +/- 4.1% reductions, respectively, in phenylephrine-induced contraction; p < 0.05), while acetylcholine and carbachol-associated relaxations observed in endothelium-intact M3R-/- preparations (17.9 +/- 2.6% and 13.5 +/- 4.2% reductions, respectively) did not differ significantly from time-control values. ATP-induced, endothelium-dependent vasodilation was similar in preparations from M3R-/- and WT mice, and SIN-1 elicited similar dilatory effects in intact and denuded WT and M3R-/- segments. Phenylephrine concentration-response curves were shifted leftwards by removal of the endothelium in both groups (EC50 values: WT-I/D--25.59 +/- 6.86/3.13 +/- 1.01 x 10(-7) M; M3R-/-I/D--13.92 +/- 4.21/1.52 +/- 0.46 x 10(-7) M; both p < 0.05); however, the phenylephrine response did not differ significantly when compared between the WT and M3R-/- groups. These results indicate that the attenuated vasodilatory effect of acetylcholine in endothelium-intact aortae from M3R-/- mice is due to the absence of muscarinic M3 receptors, and thus suggest that in mouse aorta, muscarinic M3 receptors play a major role in the endothelium-dependent acetylcholine-induced vasodilation.  相似文献   

6.
1. Acetycholine-mediated relaxations in phenylephrine-contracted aortas, femoral and mesenteric resistance arteries were studied in vessels from endothelial nitric oxide synthase knock-out (eNOS -/-) and the corresponding wild-type strain (eNOS +/+) C57BL6/SV19 mice. 2. Aortas from eNOS (+/+) mice relaxed to acetylcholine in an endothelium-dependent NG-nitro-L-arginine (L-NOARG) sensitive manner. Aortas from eNOS (-/-) mice did not relax to acetylcholine but demonstrated enhanced sensitivity to both authentic NO and sodium nitroprusside. 3. Relaxation to acetylcholine in femoral arteries was partially inhibited by L-NOARG in vessels from eNOS (+/+) mice, but relaxation in eNOS (-/-) mice was insensitive to a combination of L-NOARG and indomethacin and the guanylyl cyclase inhibitor 1H-[1,2, 4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). The L-NOARG/ODQ/indomethacin-insensitive relaxation to acetylcholine in femoral arteries was inhibited in the presence of elevated (30 mM) extracellular KCl. 4. In mesenteric resistance vessels from eNOS (+/+) mice, the acetylcholine-mediated relaxation response was completely inhibited by a combination of indomethacin and L-NOARG or by 30 mM KCl alone. In contrast, in mesenteric arteries from eNOS (-/-) mice, the acetylcholine-relaxation response was insensitive to a combination of L-NOARG and indomethacin, but was inhibited in the presence of 30 mM KCl. 5. These data indicate arteries from eNOS (-/-) mice demonstrate a supersensitivity to exogenous NO, and that acetylcholine-induced vasorelaxation of femoral and mesenteric vessels from eNOS (-/-) mice is mediated by an endothelium-derived factor that has properties of an EDHF but is neither NO nor prostacyclin. Furthermore, in mesenteric vessels, there is an upregulation of the role of EDHF in the absence of NO.  相似文献   

7.
Exposure to nitrates causes tachyphylaxis to nitric oxide (NO), which reduces the effects of the second messenger cyclic guanosine-3',-5'-monophosphate (cyclic GMP). We tested the hypothesis that prolonged exposure to NO would also blunt the effects of natriuretic peptides. Cardiac myocytes were isolated from control (N=7) and chronic nitroglycerin (patched, N=7) rabbits. Patched animals received a transdermal nitroglycerin patch (0.3mg/h for 5 days). Myocyte function was determined at baseline, after C-type natriuretic peptide (CNP, 10(-8) and 10(-7)M) or brain natriuretic peptide (BNP, 10(-8) and 10(-7)M) or S-nitroso-N-acetyl-penicilliamine (SNAP, a NO donor, 10(-6) and 10(-5)M) followed by KT5823 (a cyclic GMP protein kinase inhibitor, 10(-6)M). Soluble and particulate guanylyl cyclase activities were measured in vitro and phosphoprotein analysis was performed. In control animals, CNP 10(-8)M (5.14+/-0.5%) and 10(-7)M (4.4+/-0.7%) significantly reduced percentage shortening from baseline (6.1+/-1.6%). KT5823 restored percentage shortening to 4.9+/-0.8%. Similar data were obtained with BNP and SNAP. In patched animals, CNP, BNP, SNAP had no significant effects on percentage shortening. The data on maximal rate of shortening and relaxation were consistent with these results. Guanylyl cyclase activities were not different in the control and patched animals. The myocytes from control and patched animals had similar protein phosphorylation patterns. Our data suggested that in addition to NO, the responses to both natriuretic peptides were downregulated after chronic exposure to nitroglycerin, but these effects were not due to changes in either guanylyl cyclase or cyclic GMP protein kinase, suggesting an altered downstream pathway.  相似文献   

8.
Atrial natriuretic peptide (ANP) plays an important role in the pathophysiology of the vascular complications in diabetes. The working hypothesis was that diabetes might modify the vascular actions of ANP in isolated rabbit carotid arteries and the mechanisms involved in these actions. ANP (10?12–10?7 M) induced a relaxation of precontracted carotid arteries, which was lower in diabetic than in control rabbits. In arteries from both groups of animals, endothelium removal increased the ANP-induced relaxation. Isatin inhibited the relaxation to ANP both in arteries with and without endothelium. Carotid arteries from diabetic rabbits showed a decreased natriuretic peptide receptor (NPR)-A expression and an enhanced NPR-C expression. Inhibition of NO-synthesis did not modify ANP-induced relaxation in control rabbits but inhibited it in diabetic rabbits. In arteries with endothelium indomethacin enhanced the relaxation to ANP in control rabbits but did not modify it in diabetic rabbits. In endothelium-denuded arteries indomethacin inhibited the relaxation to ANP in both groups of animals. In KCl-depolarised arteries, relaxation to ANP was almost abolished both in control and diabetic rabbits. Tetraethylammonium inhibited the relaxation to ANP, and this inhibition was higher in diabetic than in control rabbits. These results suggest that diabetes produces hyporeactivity of the rabbit carotid artery to ANP by a mechanism that at least includes a reduced expression of NPR-A, an enhanced expression of NPR-C and a reduced participation of K+-channels. Furthermore, diabetes enhances endothelial NO release and diminishes the ratio thromboxane A2/prostacyclin. This increase of vasodilators could result from compensatory mechanisms counteracting the arterial hyporeactivity to ANP.  相似文献   

9.
BACKGROUND AND PURPOSE: Adrenoceptors can associate with cardiac caveolae. To investigate the function of vascular caveolae, adrenoceptor-mediated effects were compared in the saphenous artery of caveolin-1 knockout (cav-1KO) and wild-type (WT) mice. EXPERIMENTAL APPROACH: Electronmicroscopy was used to detect caveolae. Real-Time quantitative PCR was used for adrenoceptor subtypes. Catecholamine-evoked contractions and relaxations were studied in arterial segments. KEY RESULTS: Caveolae were found in arterial smooth muscle from WT but not from cav-1KO mice. Arterial mRNA levels for the adrenoceptors alpha1A, alpha1B, alpha1D, beta1, beta2 and beta3 were similar in cav-1KO and WT. (-)-Noradrenaline contracted cav-1KO (-log EC50M=7.1) and WT (-log EC50M=7.3) arteries through prazosin-sensitive receptors. Maximum (-)-noradrenaline-evoked contractions were greater in cav-1KO than WT arteries. (-)-Isoprenaline relaxed WT arteries (-log EC50M=7.3) more potently than cav-1KO arteries (-log EC50M=6.8); the effects were antagonized partially and similarly by the beta2-selective antagonist ICI118551 (50 nM). The (-)-isoprenaline-evoked relaxation was partially antagonized by the beta1-adrenoceptor-selective antagonist CGP20712 (300 nM) in WT but not cav-1KO arteries. The beta3-adrenoceptor-selective antagonist L748337 (100 nM) partially antagonized the relaxant effects of (-)-isoprenaline in cav-1KO but not in WT arteries. BRL37344 partially relaxed arteries through beta3-adrenoceptors in cav-1KO but not WT. The relaxant effects of BRL37344 were decreased by the NO synthase inhibitor OmegaL-nitroarginine. CONCLUSIONS AND IMPLICATIONS: The function of arterial alpha1- and beta2-adrenoceptors is similar in cav-1KO and WT mice. beta1-adrenoceptor-mediated relaxation in WT is lost in cav-1KO and replaced by the appearance of beta3-adrenoceptors.  相似文献   

10.
1. Endothelin (ET) receptor antagonists are cardioprotective during myocardial ischaemia and reperfusion through a nitric oxide (NO)-dependent mechanism. The aim of the present study was to investigate whether the ET receptor antagonist, bosentan, is cardioprotective in atherosclerotic mice. 2. Buffer-perfused hearts from apolipoprotein E/LDL receptor double knockout (KO) and wild-type (WT) mice were subjected to global ischaemia and reperfusion. 3. Following reperfusion, the recovery of rate-pressure product (RPP; left ventricular developed pressure (LVDP) x heart rate) was equally impaired in WT and KO mice given vehicle (34+/-8 and 29+/-9%, respectively). The ET(A)/ET(B) receptor antagonist bosentan (10 micromol l(-1)) improved recoveries to 57+/-10% in WT and to 68+/-10% in KO mice (P<0.01). Similar effects were observed for the recovery of left ventricular end-diastolic pressure (LVEDP), developed pressure and dP/dt. 4. Bosentan improved the recovery of coronary flow in both KO and WT mice. Recovery of coronary flow was significantly higher in the KO mice given bosentan (135+/-15%) than in the WT group (111+/-12%; P<0.01). ET-1 (1 nmol l(-1)) impaired recovery of coronary flow in both WT and KO mice though this effect was more pronounced in the KO mice (P<0.01). 5. Coronary outflow of NO during reperfusion was enhanced in both KO and WT mice following bosentan administration. 6. The ET(A)/ET(B) receptor antagonist bosentan protects the atherosclerotic mouse heart from ischaemia/reperfusion injury. The observation that ET receptor blockade and stimulation have a greater effect on coronary flow in atherosclerotic hearts indicates an increased activation of the ET system in atherosclerotic coronary arteries.  相似文献   

11.
1. Isometric tension was recorded in isolated rings of aorta, carotid, coronary and mesenteric arteries taken from endothelial nitric oxide synthase knockout mice (eNOS(-/-) mice) and the corresponding wild-type strain (eNOS(+/+) mice). The membrane potential of smooth muscle cells was measured in coronary arteries with intracellular microelectrodes. 2. In the isolated aorta, carotid and coronary arteries from the eNOS(+/+) mice, acetylcholine induced an endothelium-dependent relaxation which was inhibited by N(omega)-L-nitro-arginine. In contrast, in the mesenteric arteries, the inhibition of the cholinergic relaxation required the combination of N(omega)-L-nitro-arginine and indomethacin. 3. The isolated aorta, carotid and coronary arteries from the eNOS(-/-) mice did not relax in response to acetylcholine. However, acetylcholine produced an indomethacin-sensitive relaxation in the mesenteric artery from eNOS(-/-) mice. 4. The resting membrane potential of smooth muscle cells from isolated coronary arteries was significantly less negative in the eNOS(-/-) mice (-64.8 +/- 1.8 mV, n = 20 and -58.4 +/- 1.9 mV, n = 17, for eNOS(+/+) and eNOS(-/-) mice, respectively). In both strains, acetylcholine, bradykinin and substance P did not induce endothelium-dependent hyperpolarizations whereas cromakalim consistently produced hyperpolarizations (- 7.9 +/- 1.1 mV, n = 8 and -13.8 +/- 2.6 mV, n = 4, for eNOS(+/+) and eNOS(-/-) mice, respectively). 5. These findings demonstrate that in the blood vessels studied: (1) in the eNOS(+/+) mice, the endothelium-dependent relaxations to acetylcholine involve either NO or the combination of NO plus a product of cyclo-oxygenase but not EDHF; (2) in the eNOS(-/-) mice, NO-dependent responses and EDHF-like responses were not observed. In the mesenteric arteries acetylcholine releases a cyclo-oxygenase derivative.  相似文献   

12.
13.
BACKGROUND: Four cardiac hormones have anticancer effects in vitro: i) atrial natriuretic peptide (ANP), ii) vessel dilator, iii) long acting natriuretic peptide (LANP), and iv) kaliuretic peptide. MATERIALS AND METHODS: These cardiac hormones were infused subcutaneously for 28 days with weekly fresh hormones at 3 nM min(-1) kg(-1) body weight in athymic mice bearing human pancreatic adenocarcinomas. RESULTS: ANP, vessel dilator, LANP and kaliuretic peptide eliminated 80%, 33%, 20% and 14% of the pancreatic adenocarcinomas. Even in the treated animals which did not have a total cure, their tumor volume decreased to less than 10% (and with vessel dilator to 2%) of that of the untreated animals. The natriuretic peptide receptor (NPR)-A receptor was decreased 33% to 55% in the metastatic lesions compared to the primary pancreatic adenocarcinoma. CONCLUSION: Four cardiac hormones eliminated up to 80% of human pancreatic adenocarcinomas in athymic mice.  相似文献   

14.
BACKGROUND: The inducible nitric-oxide synthase (iNOS) synthesizes NO from L-arginine. Availability of L-arginine is maintained by a lipopolysaccharide (LPS)-induced induction of the CAT-2B amino acids transporter. Recently, we could show that the cardiovascular hormone atrial natriuretic peptide (ANP) inhibits the induction of iNOS in LPS-stimulated macrophages via its guanylate cyclase-coupled A-receptor. PURPOSE: To investigate whether ANP exerts an effect on LPS-induced L-arginine uptake. METHODS: Murine bone marrow derived macrophages were activated with LPS (1 microg/ml, 20 h) in the presence or absence of ANP or C-type natriuretic peptide (CNP). L-Arginine transport was determined by measuring the uptake of L-[(3)H]arginine. L-[(3)H]Arginine influx was also determined in LPS-activated cells in the presence of N(G)-monomethyl-L-arginine (L-NMMA), competitor amino acids, or ANP. Nitrite accumulation was determined in supernatants of LPS-activated cells cultured in the presence or absence of L-ornithine. RESULTS: ANP dose dependently (10(-8)-10(-6)M) inhibited LPS-induced L-[(3)H]arginine uptake when added simultaneously with LPS, whereas it showed no effect when added simultaneously with L-[(3)H]arginine. The effect was abrogated by the A-receptor antagonist HS-142-1 (10 microg/ml). CNP (10(-6) M) did not influence L-arginine transport. Competitor amino acids (10(-2) M) inhibited L-[(3)H]arginine uptake. An excess of unlabeled L-arginine (10(-2) M) as well as its analog L-NMMA (10(-3) M) also reduced L-[(3)H]arginine influx. L-Arginine uptake was critical for production of NO because L-ornithine significantly decreased LPS-induced nitrite accumulation. CONCLUSION: This work demonstrates that ANP inhibits LPS-induced L-arginine uptake via its guanylate cyclase-coupled A-receptor. Besides its influence on the induction of iNOS, this effect may represent an important and unique mechanism by which ANP regulates NO production in macrophages.  相似文献   

15.
Natriuretic peptides play an important role in sodium regulation and blood pressure (BP) control. We examined the effects of atrial natriuetic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) on human isolated resistance arteries and the mechanisms involved in vasorelaxation. Human subcutaneous resistance arteries were mounted in an isometric myograph and contracted with phenylephrine. CNP, but not ANP or BNP, relaxed arteries in a concentration dependent manner. The action of CNP was unaffected by removal of the endothelium, inhibition of nitric oxide synthase by NG-monomethyl-Larginine or inhibition of soluble guanylate cyclase by 1H-[1,2,4] oxadiazolo [4,3-alpha] quinoxalin-1-one. Blockade of cyclic GMPdependent kinase by 8- bromoguanosine- 3, 5- cyclic monophosphorothioate, Rp-isomer (Rp-8-Br-cGMPS) inhibited CNP relaxation. CNP relaxation was also inhibited by high potassium or iberiotoxin, indicating that it was due to opening of BKCa channels. Omapatrilat, a vasopeptidase inhibitor of neutral endopeptidase and angiotensin-converting enzyme, enhanced the effect of CNP and inhibited responses to Ang I. In summary, CNP, but not ANP or BNP, relaxes human resistance arteries by activating cyclic GMP-dependent kinase and BKCa. The effects of CNP are enhanced by vasopeptidase inhibition and this may contribute to the vasodilator effects of these agents in vivo. Since CNP is widely present in endothelium it may play a role in the regulation of peripheral resistance in man in physiological and pathological circumstances.  相似文献   

16.
(1) Photorelaxation is the reversible relaxation of vascular smooth muscle (VSM) when irradiated with ultraviolet (UV) light resulting from the release of nitric oxide (NO). In this study we characterize the involvement of endothelial nitric oxide synthase (eNOS) in the photorelaxation response of thoracic aorta from endothelial NOS deficient (-/-) and control (C57BL/6j) mice. (2) Cirazoline contracted aortae were repeatedly exposed to 30 s of UV light every 3-4 min. Equal levels of photorelaxation (45+/-2%; n=34) was observed in both strains. (3) 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), K(+), 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO), 4-aminopyridine (4-AP) and ethacrynic acid significantly reduced the photorelaxation response. In C57BL/6j mice diethyldithiocarbamate (DETCA) also reduced photorelaxation. (4) Control endothelium-intact and -denuded aorta and L-NAME (100 micro M) treated and untreated eNOS (-/-) aortae were repeatedly exposed to UV light for 5 min every 10 min until no photorelaxation response was observed. After 1 h of rest in the dark the vessels showed between 30-70% recovery of the photorelaxation response indicating regeneration of the store in the absence of the endothelium and eNOS. (5) The results of this study suggest that photorelaxation in mouse aorta VSM results from the release of NO from a stable store of RSNOs, which activates soluble guanylate cyclase (sGC), leading to cGMP-dependent relaxation that is partially mediated by an increase in K(V) channel activation and hyperpolarization. In addition, the eNOS isoform is not essential for the formation of the photorelaxation store and a non-NOS source of NO may be involved in the maintenance of this store.  相似文献   

17.
1. Second messenger responses to natriuretic peptides were studied in guinea-pig cerebellar slices by use of radioactive precursors. 2. The rank order of potency of the different natriuretic peptides in generating [3H]-guanosine 3':5'-cyclic monophosphate (cyclic GMP) was atrial natriuretic peptide (ANP) > brain natriuretic peptide (BNP) >> C-type natriuretic peptide (CNP) with EC50 values of 19.5 +/- 8.8 nM for ANP and 169 +/- 41 nM for BNP. CNP induced [3H]-cyclic GMP accumulation only at concentrations greater than 1 microM. 3. An additive response to ANP (1 microM) was observed in the presence of the adenosine receptor agonist, 5'-N-ethylcarboxamidoadenosine (NECA, 10 microM) or the soluble guanylyl cyclase activator, sodium nitroprusside (SNP, 100 microM) for [3H]-cyclic GMP accumulation. 4. ANP, BNP and CNP (all at 1 microM) failed to alter significantly either basal-, forskolin- (10 microM), isoprenaline- (100 microM), or NECA- (10 microM) induced [3H]-cyclic AMP generation. Natriuretic peptides also did not change the [3H]-cyclic AMP steady-state reached after 10 min of treatment with 10 microM forskolin. 5. Natriuretic peptides failed to elicit significant accumulation of [3H]-inositol phosphates at concentrations up to 10 microM. 6. These data are consistent with the presence of ANPA, rather than ANPB or clearance receptors (C-receptors), linked to second messenger cascades in guinea-pig cerebellar slices.  相似文献   

18.
Natriuretic peptides, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) act through different receptors and at different potencies to affect cardiac myocyte function. We tested the hypothesis that these three peptides would differentially reduce cardiomyocyte function through their effects on the cyclic GMP signaling pathway. Rabbit ventricular myocytes were isolated and stimulated by electrical field stimulation. Cell function was measured using a video edge detector. ANP BNP or CNP at 10−9, 10−8, 10−7 M were added to the myocytes. Intracellular cyclic GMP was determined using a radioimmunoassay in the absence or presence of ANP, BNP or CNP. All natriuretic peptides decreased myocyte contractility in a similar concentration dependent manner. Myocyte percentage shortening was significantly decreased with all peptides at 10−7 M compared with baseline (ANP from 5.4±0.4 to 3.9±0.2%; BNP from 5.0±0.2 to 3.5±0.1%; CNP from 5.6±0.3 to 4.0±0.3%). Maximum rate of shortening and relaxation were also decreased similarly and significantly. Intracellular cyclic GMP was significantly increased in myocytes treated with ANP, BNP or CNP (Baseline 1.0±0.2, ANP 2.1±0.2, BNP 2.3±0.3, CNP 2.0±0.2 pmol/105 myocytes). Furthermore, inhibition of the cyclic GMP protein kinase with KT5823 caused a reversal in the functional effects of CNP. We concluded that all natriuretic peptides had similar negative effects on ventricular myocyte function and their effects were accompanied by increased cyclic GMP. Blockade the effect of CNP by a cyclic GMP protein kinase inhibitor demonstrated that effects were mediated through the cyclic GMP signaling pathway.  相似文献   

19.
C型钠尿肽抑制大鼠胃窦环行肌自发性收缩活动   总被引:3,自引:0,他引:3  
Guo HS  Cui X  Cui YG  Kim SZ  Cho KW  Li ZL  Xu WX 《Acta pharmacologica Sinica》2003,24(10):1021-1026,1062
目的:研究钠尿肽对胃动力的作用及其可能的机制.方法:用四道记录仪记录胃窦环行肌条的自发性收缩活动;利用放射免疫技术测定cGMP的产生量;利用放射自显影技术分析钠尿肽受体在胃内的分布情况.结果:钠尿肽受体在大鼠胃的不同部位均有分布,但在胃窦部最多。ANP、BNP和CNP均能抑制胃窦环行肌条的自发性收缩,其中,CNP的作用尤为明显并呈剂量依赖关系.CNP的这种抑制性作用被鸟苷酸环化酶抑制剂LY83583所削弱,而用cGMF敏感的磷酸酯酶抑制剂zaparinist预处理时CNP的抑制作用明显增加.CNP明显提高胃窦环行肌cGMP的浓度.用非选择性钾通道阻断剂TEA预处理后发现CNP对胃窦环行肌自发性收缩活动的抑制作用明显减弱.结论:钠尿肽受体在大鼠的胃窦分布最多.CNP明显抑制大鼠胃窦环行肌的自发性收缩活动.CNP对大鼠胃窦环行肌自发性收缩活动的抑制效应是通过cGMP途径实现的.钾通道也参与CNP对大鼠胃窦平滑肌的舒张过程。  相似文献   

20.
The ability of four endogenous vasodilators, nitric oxide (NO; 0.01 - 30 microM), atrial (ANP), brain (BNP) and C-type (CNP) natriuretic peptide (0.1 - 300 nM), to reverse endothelin-1 (ET-1; 10 nM) constrictions in human resistance and conductance coronary arteries (CA) in vitro was investigated. ET-1 (0.1 - 300 nM) constricted resistance CA more potently than conductance CA (P<0.05; EC(50) values 2.98 nM (95% CI: 1.49 - 5.95 nM and 8.58 (4.72 - 15.6 nM) respectively)). The NO-donor diethylamine NONOate fully reversed the ET-1 constriction in conductance CA (E(MAX) 127+/-9.16%), however only partial reversal was observed in resistance CA (E(MAX) 78.8+/-8.13; P<0.05). The soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (100 microM) reduced the maximum response to diethylamine NONOate to 76.9+/-14.4% in conductance CA (P<0.05), but had no effect on resistance CA (E(MAX) 77.2+/-18.4%). There was no difference between responses to ANP in conductance and resistance CA (EC(50) values 4.25 nM (0.84 - 21.4 nM) and 18.4 nM (2.92 - 116 nM), E(MAX) 53.1+/-14.7% and 48.6+/-11.8% respectively). BNP was a more potent vasodilator of conductance than resistance CA. In conductance CA the mean EC(50) value was 2.4 nM (0.74 - 7.75 nM), E(MAX) 54.5+/-14.9%. Concentration-response curves to BNP were incomplete in resistance CA. Concentration-response curves to CNP were incomplete in both conductance and resistance CA. The greater potency of ET-1 in resistance vessels may exacerbate the effects of increased circulating levels of the peptide in disease. Only NO could fully reverse ET-1 mediated constrictions in conductance CA, and none of the dilators tested could completely counteract constrictions in resistance CA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号