首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jatrorrhizine, one of the protoberberine alkaloids derived from the plant Coptis chinensis, is expected to be developed as a new gastric prokinetic drug, but its metabolic characteristics in humans remain unknown. This study characterized the phase I and phase II metabolites, metabolic kinetics, and cytochrome P450 (CYP) and UDP‐glucuronosyltransferase (UGT) enzymes responsible for the metabolism of jatrorrhizine in human liver microsomes (HLMs). Chemical inhibition in HLMs and metabolism by recombinant human CYP or UGT enzymes were employed to determine the key metabolic enzyme subtypes. In HLMs, demethyleneberberine (demethylated product) and jatrorrhizine glucuronide were identified as the phase I and phase II metabolites, respectively. The enzyme kinetics for both demethylation and glucuronidation were fitted to the Michaelis–Menten equation. Demethylation was inhibited significantly by furafylline and predominantly catalysed by recombinant CYP1A2, whereas glucuronidation was inhibited by silibinin, quercetin, as well as 1‐naphthol and catalysed by recombinant UGT1A1, UGT1A3, UGT1A7, UGT1A8, UGT1A9 and UGT1A10. These results showed that jatrorrhizine is metabolized by human CYP1A2 and multiple UGT1A isoforms. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
AIMS: Using the fluconazole-zidovudine (AZT) interaction as a model, to determine whether inhibition of UDP-glucuronosyltransferase (UGT) catalysed drug metabolism in vivo could be predicted quantitatively from in vitro kinetic data generated in the presence and absence bovine serum albumin (BSA). METHODS: Kinetic constants for AZT glucuronidation were generated using human liver microsomes (HLM) and recombinant UGT2B7, the principal enzyme responsible for AZT glucuronidation, as the enzyme sources with and without fluconazole. K(i) values were used to estimate the decrease in AZT clearance in vivo. RESULTS: Addition of BSA (2%) to incubations decreased the K(m) values for AZT glucuronidation by 85-90% for the HLM (923 +/- 357 to 91 +/- 9 microm) and UGT2B7 (478-70 microm) catalysed reactions, with little effect on V(max). Fluconazole, which was shown to be a selective inhibitor of UGT2B7, competitively inhibited AZT glucuronidation by HLM and UGT2B7. Like the K(m), BSA caused an 87% reduction in the K(i) for fluconazole inhibition of AZT glucuronidation by HLM (1133 +/- 403 to 145 +/- 36 microm) and UGT2B7 (529 to 73 microm). K(i) values determined for fluconazole using HLM and UGT2B7 in the presence (but not absence) of BSA predicted an interaction in vivo. The predicted magnitude of the interaction ranged from 41% to 217% of the reported AUC increase in patients, depending on the value of the in vivo fluconazole concentration employed in calculations. CONCLUSIONS: K(i) values determined under certain experimental conditions may quantitatively predict inhibition of UGT catalysed drug glucuronidation in vivo.  相似文献   

3.
In order to gain insights into the renal and hepatic glucuronidation of frusemide (FSM), this study: (i) characterised the kinetics of FSM glucuronidation by human liver microsomes (HLM) and human kidney cortical- (HKCM) and medullary- (HKMM) microsomes, and (ii) identified the human UDP-glucuronosyltransferase enzyme(s) involved in this pathway. HLM, HKCM and HLMM efficiently glucuronidated FSM. FSM glucuronide (FSMG) formation followed Michaelis-Menten kinetics in all tissues. While the mean K(m) for FSMG formation by HKMM (386 +/- 68 microM) was lower than the K(m) values for HLM (988 +/- 271 microM) and HKCM (704 +/- 278 microM), mean V(max)/K(m) values were comparable for the three tissues. A panel of recombinant UGT enzymes was screened for the capacity to glucuronidate FSM. UGT 1A1, 1A3, 1A6, 1A7, 1A9, 1A10 and 2B7 metabolised FSM. Of the renally and hepatically expressed enzymes, comparison of kinetic parameters suggests a predominant role of UGT1A9 in FSM glucuronidation, although UGT1A1 may also contribute to FSMG formation by HLM. Consistent with these observations, the UGT1A selective inhibitors phenylbutazone and sulfinpyrazone decreased FSMG formation by HLM, HKCM and HKMM by 60-80%, whereas the UGT2B7 selective inhibitor fluconazole reduced FSM glucuronidation by < or =20%. The ability of HKCM and HKMM to form FSMG supports the proposition that the kidney is the main organ involved in FSM glucuronidation in vivo, although a role for hepatic metabolism remains a possibility in renal dysfunction. The data further demonstrate the potential importance of both the medulla and cortex in renal drug metabolism and detoxification.  相似文献   

4.
1.?Serotonin is a UGT1A6 substrate that is mainly found in the extrahepatic tissues where some UGT1As are expressed. The aim of the present study was to characterize serotonin glucuronidation in various tissues of humans and rodents.

2.?Serotonin glucuronidation in the human liver and kidney fitted to the Michaelis–Menten model, and the Km values were similar to that of recombinant UGT1A6. However, serotonin glucuronidation in the human intestine fitted to the Hill equation, indicating that it is likely catalyzed not only by UGT1A6, but also by another UGT1A isoform. Serotonin glucuronidation in the rat liver, intestine and kidney fitted well to the Michaelis–Menten model and exhibited monophasic kinetics in the kidney, but biphasic kinetics in the liver and intestine. Furthermore, serotonin glucuronidation in the rat brain fitted best to the Hill equation. Serotonin glucuronidation in the mouse tissues fitted to the Michaelis–Menten model and exhibited monophasic kinetics in the liver and intestine microsomes, but biphasic kinetics in the kidney and brain microsomes.

3.?In conclusion, we clarified that tissue and species differences exist in serotonin glucuronidation. It is necessary to take these potential differences into account when considering the pharmacodynamics and pharmacokinetics of serotonin.  相似文献   

5.
The predominant metabolic pathway of gemcabene in humans is glucuronidation. The principal human UDP-glucuronosyltransferases (UGTs) involved in the glucuronidation of gemcabene were determined in this study. Glucuronidation of gemcabene was catalyzed by recombinant UGT1A3, recombinant UGT2B7, and recombinant UGT2B17, as well as by human liver microsomes (HLM). Gemcabene glucuronidation in recombinant UGTs and HLM followed non-Michaelis-Menten kinetics consistent with homotropic activation, but pharmacokinetics in humans were linear over the dose range tested (total plasma C(max), 0.06-0.88 mM). Gemcabene showed similar affinity (S(50)) for recombinant UGTs (0.92-1.45 mM) and HLM (1.37 mM). S-Flurbiprofen was identified as a more selective inhibitor of recombinant UGT2B7-catalyzed gemcabene glucuronidation (>23-fold lower IC(50)) when compared with recombinant UGT1A3- or recombinant UGT2B17-catalyzed gemcabene glucuronidation. The IC(50) for S-flurbiprofen inhibition of gemcabene glucuronidation was similar in HLM (60.6 microM) compared with recombinant UGT2B7 (27.4 microM), consistent with a major role for UGT2B7 in gemcabene glucuronidation in HLM. In addition, 5,6,7,3',4',5'-hexamethoxyflavone inhibited recombinant UGT1A3 and recombinant UGT2B17-catalyzed gemcabene glucuronidation (with 4-fold greater potency for recombinant UGT1A3) but did not inhibit gemcabene glucuronidation in HLM, suggesting that UGT1A3 and UGT2B17 do not contribute significantly to gemcabene glucuronidation. Reaction rates for gemcabene glucuronidation from a human liver bank correlated well (r(2)=0.722, P<0.0001; n=24) with rates of glucuronidation of the UGT2B7 probe substrate 3'-azido-3'-deoxythymidine. In conclusion, using the three independent experimental approaches typically used for cytochrome P450 reaction phenotyping, UGT2B7 is the major enzyme contributing to gemcabene glucuronidation in human liver microsomes.  相似文献   

6.
Magnolol is a food additive that is often found in mints and gums. Human exposure to this compound can reach a high dose; thus, characterization of magnolol disposition in humans is very important. Previous studies indicated that magnolol can undergo extensive glucuronidation in humans in vivo. In this study, in vitro assays were used to characterize the glucuronidation pathway in human liver and intestine. Assays with recombinant human UDP-glucuronosyltransferase enzymes (UGTs) revealed that multiple UGT isoforms were involved in magnolol glucuronidation, including UGT1A1, -1A3, -1A7, -1A8, -1A9, -1A10, and -2B7. Magnolol glucuronidation by human liver microsomes (HLM), human intestine microsomes (HIM), and most recombinant UGTs exhibited strong substrate inhibition kinetics. The degree of substrate inhibition was relatively low in the case of UGT1A10, whereas the reaction catalyzed by UGT1A9 followed biphasic kinetics. Chemical inhibition studies and the relative activity factor (RAF) approach were used to identify the individual UGTs that played important roles in magnolol glucuronidation in HLM and HIM. The results indicate that UGT2B7 is mainly responsible for the reaction in HLM, whereas UGT2B7 and UGT1A10 are significant contributors in HIM. In summary, the current study clarifies the glucuronidation pathway of magnolol and demonstrates that the RAF approach can be used as an efficient method for deciphering the roles of individual UGTs in a given glucuronidation pathway in the native tissue that is catalyzed by multiple isoforms with variable and atypical kinetics.  相似文献   

7.
Darexaban maleate is a novel oral direct factor Xa inhibitor, which is under development for the prevention of venous thromboembolism. Darexaban glucuronide was the major component in plasma after oral administration of darexaban to humans and is the pharmacologically active metabolite. In this study, we identified UDP-glucuronosyltransferases (UGTs) responsible for darexaban glucuronidation in human liver microsomes (HLM) and human intestinal microsomes (HIM). In HLM, the K(m) value for darexaban glucuronidation was >250 μM. In HIM, the reaction followed substrate inhibition kinetics, with a K(m) value of 27.3 μM. Among recombinant human UGTs, UGT1A9 showed the highest intrinsic clearance for darexaban glucuronidation, followed by UGT1A8, -1A10, and -1A7. All other UGT isoforms were inactive toward darexaban. The K(m) value of recombinant UGT1A10 for darexaban glucuronidation (34.2 μM) was comparable to that of HIM. Inhibition studies using typical UGT substrates suggested that darexaban glucuronidation in both HLM and HIM was mainly catalyzed by UGT1A8, -1A9, and -1A10. Fatty acid-free bovine serum albumin (2%) decreased the unbound K(m) for darexaban glucuronidation from 216 to 17.6 μM in HLM and from 35.5 to 18.3 μM in recombinant UGT1A9. Recent studies indicated that the mRNA expression level of UGT1A9 is extremely high among UGT1A7, -1A8, -1A9, and -1A10 in human liver, whereas that of UGT1A10 is highest in the intestine. Thus, the present results strongly suggest that darexaban glucuronidation is mainly catalyzed by UGT1A9 and UGT1A10 in human liver and intestine, respectively. In addition, UGT1A7, -1A8, and -1A9 play a minor role in human intestine.  相似文献   

8.
Edaravone was launched in Japan in 2001 and was the first neuroprotectant developed for the treatment of acute cerebral infarction. Edaravone is mainly eliminated as glucuronide conjugate in human urine (approximately 70%), but the mechanism involved in the elimination pathway remains unidentified. We investigated the glucuronidation of edaravone in human liver microsomes (HLM) and human kidney microsomes (HKM) and identified the major hepatic and renal UDP-glucuronosyltransferases (UGTs) involved. As we observed, edaravone glucuronidation in HLM and HKM exhibited biphasic kinetics. The intrinsic clearance of glucuronidation at high-affinity phase (CL(int1)) and low-affinity phase (CL(int2)) were 8.4 ± 3.3 and 1.3 ± 0.2 μl · min(-1) · mg(-1), respectively, for HLM and were 45.3 ± 8.2 and 1.8 ± 0.1 μl · min(-1) · mg(-1), respectively, for HKM. However, in microsomal incubations contained with 2% bovine serum albumin, CL(int1) and CL(int2) were 16.4 ± 1.2 and 3.7 ± 0.3 μl · min(-1) · mg(-1), respectively, for HLM and were 78.5 ± 3.9 and 3.6 ± 0.5 μl · min(-1) · mg(-1), respectively, for HKM. Screening with 12 recombinant UGTs indicated that eight UGTs (UGT1A1, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2B7, and UGT2B17) produced a significant amount of glucuronide metabolite. Thus, six UGTs (UGT1A1, UGT1A6, UGT1A7, UGT1A9, UGT2B7, and UGT2B17) expressed in human liver or kidney were selected for kinetic studies. Among them, UGT1A9 exhibited the highest activity (CL(int1) = 42.4 ± 9.5 μl · min(-1) · mg(-1)), followed by UGT2B17 (CL(int) = 3.3 ± 0.4 μl · min(-1) · mg(-1)) and UGT1A7 (CL(int) = 1.7 ± 0.2 μl · min(-1) · mg(-1)). Inhibition study found that inhibitor of UGT1A9 (propofol) attenuated edaravone glucuronidation in HLM and HKM. In addition, edaravone glucuronidation in a panel of seven HLM was significantly correlated (r = 0.9340, p = 0.0021) with propofol glucuronidation. Results indicated that UGT1A9 was the main UGT isoform involved in edaravone glucuronidation in HLM and HKM.  相似文献   

9.
Clopidogrel is predominantly hydrolyzed to clopidogrel carboxylic acid (CCA) by carboxylesterase 1, and subsequently CCA is glucuronidated to clopidogrel acyl glucuronide (CAG) by uridine diphosphate‐glucuronosyltransferases (UGTs); however, the UGT isoenzymes glucuronidating CCA remain unidentified to date. In this study, the glucuronidation of CCA was screened with pooled human liver microsomes (HLMs) and 7 human recombinant UGT (rUGT) isoforms. Results indicated that rUGT2B7 exhibited the highest catalytical activity for the CCA glucuronidation as measured with a mean Vmax value of 120.9 pmol/min/mg protein, 3‐ to 12‐fold higher than that of the other rUGT isoforms tested. According to relative activity factor approach, the relative contribution of rUGT2B7 to CCA glucuronidation was estimated to be 58.6%, with the minor contributions (3%) from rUGT1A9. Moreover, the glucuronidation of CCA followed Michaelis‐Menten kinetics with a mean Km value of 372.9 μM and 296.4 μM for pooled HLMs and rUGT2B7, respectively, showing similar affinity for both. The formation of CAG was significantly inhibited by azidothymidine and gemfibrozil (well‐characterized UGT2B7 substrates) in a concentration‐dependent manner, or by fluconazole (a typical UGT2B7‐selective inhibitor) in a time‐dependent manner, for both HLMs and rUGT2B7, respectively. In addition, CCA inhibited azidothymidine glucuronidation (catalyzed almost exclusively by UGT2B7) by HLMs and rUGT2B7 in a concentration‐dependent manner, indicating that CCA is a substrate of UGT2B7. These results reveal that UGT2B7 is the major enzyme catalyzing clopidogrel glucuronidation in the human liver, and that there is the potential for drug‐drug interactions between clopidogrel and the other substrate drugs of UGT2B7.  相似文献   

10.
1.?Belinostat is a histone deacetylase inhibitor that has been approved for the treatment of peripheral T-cell lymphoma. This study aimed to identify the UDP-glucuronosyltransferase (UGT) enzymes responsible for belinostat glucuronidation through kinetic determination using recombinant enzymes with determined enzyme concentrations.

2.?The rate of glucuronidation was determined by incubation of belinostat with enzyme preparations. Kinetic parameters such as Km and Vmax were derived by fitting an appropriate model to the glucuronidation data. The role of active UGT enzymes to belinostat metabolism was evaluated using inhibition experiments and activity correlation analyses.

3.?Human liver microsomes generated a glucuronide metabolite (i.e. belinostat glucuronide) from belinostat. The glucuronide structure was confirmed by high-resolution mass spectrometry as well as the fragmentation pattern. Of 12 test UGT enzymes, only four (UGT1A1, 1A3, 2B4, and 2B7) showed metabolic activities toward belinostat. UGT1A1 was the most active enzyme, followed by UGT2B7, 1A3, and 2B4. Kinetic profiles for UGT1A1, 1A3, 2B4, and 2B7 were well described by Michaelis–Menten, Michaelis–Menten, Hill equation, and substrate inhibition equation, respectively.

4.?Glucuronidation of belinostat was markedly inhibited by emodin and apigenin (two potent inhibitors of UGT1A1), and by quinidine and diclofenac sodium (two selective inhibitors of UGT2B7). Belinostat glucuronidation was found to be significantly correlated with β-estradiol 3-O-glucuronidation and zidovudine glucuronidation.

5.?It was concluded that in addition to UGT1A1, UGT2B7 was also an important contributor to belinostat glucuronidation.  相似文献   

11.
Darexaban maleate is a novel oral direct factor Xa inhibitor. Darexaban glucuronide (YM-222714) was the major component in plasma after oral administration of darexaban to humans and is the pharmacologically active metabolite. Additionally, YM-222714 N-oxides were detected as minor metabolites in human plasma and urine. It is possible that YM-222714 N-oxides are formed by the N-oxidation of YM-222714 and/or the glucuronidation of darexaban N-oxides (YM-542845) in vivo. The former reaction is the pharmacological inactivation process. In this study, we identified the human enzymes responsible for YM-222714 N-oxidation and the uridine 5'-diphosphate (UDP)-glucuronosyltransferase (UGT) isoforms involved in YM-542845 glucuronidation in vitro. YM-222714 N-oxidation activity was detected in human liver microsomes (HLM), but not in human intestinal microsomes. In HLM, YM-222714 N-oxidation activities were significantly correlated with flavin-containing monooxygenase (FMO) marker enzyme activities (p<0.001) and inhibited by methimazole, a typical inhibitor of FMOs. Recombinant human FMO3 and FMO1 were capable of efficiently catalyzing YM-222714 N-oxidation, but not FMO5 or any recombinant human cytochrome P450 (CYP) isoforms. Considering the mRNA expression levels of FMO isoforms in human liver, these results strongly suggest that YM-222714 N-oxidation in HLM is mainly catalyzed by FMO3. In HLM, YM-542845 glucuronidation was strongly inhibited by typical substrates for UGT1A8, UGT1A9, and UGT1A10. Recombinant human UGT1A7, UGT1A8, UGT1A9, and UGT1A10 were capable of catalyzing YM-542845 glucuronidation, and UGT1A9 exhibited the highest intrinsic clearance. Considered together with the expression levels of UGT isoforms in human liver, these results strongly suggest that YM-542845 glucuronidation in HLM is mainly catalyzed by UGT1A9.  相似文献   

12.
A major metabolic pathway of haloperidol is glucuronidation catalyzed by UDP-glucuronosyltransferase (UGT). In this study, we found that two glucuronides were formed by the incubation of haloperidol with human liver microsomes (HLM) and presumed that the major and minor metabolites (>10-fold difference) were O- and N-glucuronide, respectively. The haloperidol N-glucuronidation was catalyzed solely by UGT1A4, whereas the haloperidol O-glucuronidation was catalyzed by UGT1A4, UGT1A9, and UGT2B7. The kinetics of the haloperidol O-glucuronidation in HLM was monophasic with K(m) and V(max) values of 85 μM and 3.2 nmol · min?1 · mg?1, respectively. From the kinetic parameters of the recombinant UGT1A4 (K(m) = 64 μM, V(max) = 0.6 nmol · min?1 · mg?1), UGT1A9 (K(m) = 174 μM, V(max) = 2.3 nmol · min?1 · mg?1), and UGT2B7 (K(m) = 45 μM, V(max) = 1.0 nmol · min?1 · mg?1), we could not estimate which isoform largely contributes to the reaction. Because the haloperidol O-glucuronidation in a panel of 17 HLM was significantly correlated (r = 0.732, p < 0.01) with zidovudine O-glucuronidation, a probe activity of UGT2B7, and the activity in the pooled HLM was prominently inhibited (58% of control) by gemfibrozil, an inhibitor of UGT2B7, we surmised that the reaction would mainly be catalyzed by UGT2B7. We could successfully estimate, using the concept of the relative activity factor, that the contributions of UGT1A4, UGT1A9, and UGT2B7 in HLM were approximately 10, 20, and 70%, respectively. The present study provides new insight into haloperidol glucuronidation, concerning the causes of interindividual differences in the efficacy and adverse reactions or drug-drug interactions.  相似文献   

13.
Objective We characterized the kinetics of indomethacin glucuronidation by recombinant UDP-glucuronosyltransferase (UGT) isozymes and human liver microsomes (HLM) and identified the human UGT isozymes involved. Methods Indomethacin glucuronidation was investigated using HLM and recombinant human UGT isozymes. Human UGTs involved in indomethacin glucuronidation were assessed in kinetic studies, chemical inhibition studies, and correlation studies. Results Among the UGT isozymes investigated, UGT1A1, 1A3, 1A9, and 2B7 showed glucuronidation activity for indomethacin, with UGT1A9 possessing the highest activity, followed by UGT2B7. Glucuronidation of indomethacin by recombinant UGT1A9 and 2B7 showed substrate inhibition kinetics with K m values of 35 and 32 μM, respectively. The glucuronidation of indomethacin was significantly correlated with morphine 3OH-glucuronidation (r = 0.69, p < 0.05) and 3′-azido-3′-deoxythymidine glucuronidation (r = 0.82, p < 0.05), a reaction mainly catalyzed by UGT2B7. Propofol inhibited indomethacin glucuronidation in HLM with an IC50 value of 248 μM, which is between the IC50 value in recombinant UGT1A9 (106 μM) and UGT2B7 (> 400 μM). Conclusions These findings suggest that UGT2B7 plays a predominant role in indomethacin glucuronidation in the human liver and that UGT1A9 is partially involved.  相似文献   

14.
  1. This study aimed to characterize the glucuronidation pathway of licochalcone A (LCA) in human liver microsomes (HLM).

  2. HLM incubation systems were employed to catalyze the formation of LCA glucuronide. The glucuronidation activity of commercially recombinant UDP-glucuronosyltransferase (UGT) isoforms toward LCA was screened. Kinetic analysis was used to identify the UGT isoforms involved in the glucuronidation of LCA in HLM.

  3. LCA could be metabolized to two monoglucuronides in HLM, including a major monoglucuronide, namely, 4-O-glucuronide, and a minor monoglucuronide, namely, 4′-O-glucuronide. Species-dependent differences were observed among the glucuronidation profiles of LCA in liver microsomes from different species. UGT1A1, UGT1A3, UGT1A7, UGT1A8, UGT1A9, UGT1A10 and UGT2B7 participated in the formation of 4-O-glucuronide, with UGT1A9 exhibiting the highest catalytic activity in this biotransformation. Only UGT1A1 and UGT1A3 were involved in the formation of 4′-O-glucuronide, exhibiting similar reaction rates. Kinetic analysis demonstrated that UGT1A9 was the major contributor to LCA-4-O-glucuronidation, while UGT1A1 played important roles in the formation of both LCA-4-O- and 4′-O-glucuronide.

  4. UGT1A9 was the major contributor to the formation of LCA-4-O-glucuronide, while UGT1A1 played important roles in both LCA-4-O- and 4′-O-glucuronidation.

  相似文献   

15.
AIMS: To characterize the kinetics of S-naproxen ('naproxen') acyl glucuronidation and desmethylnaproxen acyl and phenolic glucuronidation by human liver microsomes and identify the human UGT isoform(s) catalysing these reactions. METHODS: Naproxen and desmethylnaproxen glucuronidation were investigated using microsomes from six and five livers, respectively. Human recombinant UGTs were screened for activity towards naproxen and desmethylnaproxen. Where significant activity was observed, kinetic parameters were determined. Naproxen and desmethylnaproxen glucuronides were measured by separate high-performance liquid chromatography methods. RESULTS: Naproxen acyl glucuronidation by human liver microsomes followed biphasic kinetics. Mean apparent K(m) values (+/-SD, with 95% confidence interval in parentheses) for the high- and low-affinity components were 29 +/- 13 microm (16, 43) and 473 +/- 108 microm (359, 587), respectively. UGT 1A1, 1A3, 1A6, 1A7, 1A8, 1A9, 1A10 and 2B7 glucuronidated naproxen. UGT2B7 exhibited an apparent K(m) (72 microm) of the same order as the high-affinity human liver microsomal activity, which was inhibited by the UGT2B7 selective 'probe' fluconazole. Although data for desmethylnaproxen phenolic glucuronidation by human liver microsomes were generally adequately fitted to either the single- or two-enzyme Michaelis-Menten equation, model fitting was inconclusive for desmethylnaproxen acyl glucuronidation. UGT 1A1, 1A7, 1A9 and 1A10 catalysed both the phenolic and acyl glucuronidation of desmethylnaproxen, while UGT 1A3, 1A6 and 2B7 formed only the acyl glucuronide. Atypical glucuronidation kinetics were variably observed for naproxen and desmethylnaproxen glucuronidation by the recombinant UGTs. CONCLUSION: UGT2B7 is responsible for human hepatic naproxen acyl glucuronidation, which is the primary elimination pathway for this drug.  相似文献   

16.
Mycophenolic acid (MPA), the active metabolite of the immunosuppressant mycophenolate mofetil is primarily metabolized by glucuronidation. The nature of UDP-glucuronosyltransferases (UGTs) involved in this pathway is still debated. The present study aimed at identifying unambiguously the UGT isoforms involved in the production of MPA-phenyl-glucuronide (MPAG) and MPA-acylglucuronide (AcMPAG). A liquid chromatography-tandem mass spectrometry method allowing the identification and determination of the metabolites of mycophenolic acid was developed. The metabolites were characterized in urine and plasma samples from renal transplant patients under mycophenolate mofetil therapy and in vitro after incubation of mycophenolic acid with human liver (HLM), kidney (HKM), or intestinal microsomes (HIM). The UGT isoforms involved in MPAG or AcMPAG production were investigated using induced rat liver microsomes, heterologously expressed UGT (Supersomes), and chemical-selective inhibition of HLM, HKM, and HIM. The three microsomal preparations produced MPAG, AcMPAG, and two mycophenolate glucosides. Among the 10 UGT isoforms tested, UGT 1A9 was the most efficient for MPAG synthesis with a K(m) of 0.16 mM, close to that observed for HLM (0.18 mM). According to the chemical inhibition experiments, UGT 1A9 is apparently responsible for 55%, 75%, and 50% of MPAG production by the liver, kidney, and intestinal mucosa, respectively. Although UGT 2B7 was the only isoform producing AcMPAG in a significant amount, the selective inhibitor azidothymidine only moderately reduced this production (approximately -25%). In conclusion, UGT 1A9 and 2B7 were clearly identified as the main UGT isoforms involved in mycophenolic acid glucuronidation, presumably due to their high hepatic and renal expression.  相似文献   

17.
1. The human liver UDP-glucuronosyltransferase (UGT) isoforms involved in the glucuronidation of 7-ethyl-10-hydroxycamptothecin (SN-38), the active metabolite of irinotecan (CPT-11), have been studied using microsomes from human liver and insect cells expressing human UGTs (1A1, 1A3, 1A4, 1A6, 1A9, 2B7, 2B15). 2. The glucuronidation of SN-38 was catalysed by UGT1A1, UGT1A3, UGT1A6 and UGT1A9 as well as by liver microsomes. Among these UGT isoforms, UGT1A1 showed the highest activity of SN-38 glucuronidation at both low (1 microM) and high (200 microM) substrate concentrations. The ranking in order of activity at low and high substrate concentrations was UGT1A1 > UGT1A9 > UGT1A6 > UGT1A3 and UGT1A1 > UGT1A3 > UGT1A6 > or = UGT1A9, respectively. 3. The enzyme kinetics of SN-38 glucuronidation were examined by means of Lineweaver-Burk analysis. The activity of the glucuronidation in liver microsomes exhibits a monophasic kinetic pattern, with an apparent Km and Vmax of 35.9 microM and 134 pmol min(-1) mg(-1) protein, respectively. The UGT isoforms involved in SN-38 glucuronidation could be classified into two types: low-Km types such as UGT1A1 and UGT1A9, and high-Km types such as UGT1A3 and UGT1A6, in terms of affinity toward substrate. UGT1A1 had the highest Vmax followed by UGT1A3. Vmax of UGT1A6 and UGT1A9 were approximately 1/9 to 1/12 of that of UGT1A1. 4. The activity of SN-38 glucuronidation by liver microsomes and UGT1A1 was effectively inhibited by bilirubin. Planar and bulky phenols substantially inhibited the SN-38 glucuronidation activity of liver microsomes and UMT1A9, and/or UGT1A6. Although cholic acid derivatives strongly inhibited the activity of SN-38 glucuronidation by UGT1A3, the inhibition profile did not parallel that in liver microsomes. 5. These results demonstrate that at least four UGT1A isoforms are responsible for SN-38 glucuronidation in human livers, and suggest that the role and contribution of each differ substantially.  相似文献   

18.
Olanzapine is a widely used, newer antipsychotic agent, which is metabolized by various pathways: hydroxylation and N-demethylation by cytochrome P450, N-oxidation by flavin monooxygenase and direct glucuronidation. In vivo studies have pointed towards the latter pathway as being of major importance. Accordingly, the glucuronidation reaction was studied in vitro using cDNA-expressed human UDP-glucuronosyltransferase (UGT) enzymes and a pooled human liver microsomal preparation (HLM). Glucuronidated olanzapine was determined by HPLC after acid or enzymatic hydrolysis. The following UGT-isoenzymes were screened for their ability to glucuronidate olanzapine: 1A1, 1A3, 1A4, 1A6, 1A9, 2B7 and 2B15. Only UGT1A4 was able to glucuronidate olanzapine obeying saturation kinetics. The K(m) value was 227 micromol/l (SE 43), i.e. of the same order of magnitude as for other psychotropic drugs, and the V(max) value was 2370 pmol/(min mg) (SE 170). Glucuronidation was also mediated by the HLM preparation, but a saturation level was not reached. The olanzapine glucuronidation reaction was inhibited by several drugs known as substrates for UGT1A4, e.g. amitriptyline, trifluoperazine and lamotrigine. Thus, competition for glucuronidation by UGT1A4 represents a possibility for drug-drug interactions in subjects receiving several of these psychotropic drugs at the same time. Whether such possible interactions are of any clinical importance may await further studies in patients.  相似文献   

19.
1. The human liver UDP-glucuronosyltransferase (UGT) isoforms involved in the glucuronidation of 7-ethyl-10-hydroxycamptothecin (SN-38), the active metabolite of irinotecan (CPT-11), have been studied using microsomes from human liver and insect cells expressing human UGTs (1A1, 1A3, 1A4, 1A6, 1A9, 2B7, 2B15). 2. The glucuronidation of SN-38 was catalysed by UGT1A1, UGT1A3, UGT1A6 and UGT1A9 as well as by liver microsomes. Among these UGT isoforms, UGT1A1 showed the highest activity of SN-38 glucuronidation at both low (1 µM) and high (200 µM) substrate concentrations. The ranking in order of activity at low and high substrate concentrations was UGT1A1 > UGT1A9 > UGT1A6> UGT1A3 and UGT1A1 > UGT1A3 > UGT1A6 ≥ UGT1A9, respectively. 3. The enzyme kinetics of SN-38 glucuronidation were examined by means of Lineweaver-Burk analysis. The activity of the glucuronidation in liver microsomes exhibits a monophasic kinetic pattern, with an apparent K m and V max of 35.9 µM and 134pmol?min -1?mg -1 protein, respectively. The UGT isoforms involved in SN-38 glucuronidation could be classified into two types: low- K m types such as UGT1A1 and UGT1A9, and high- K m types such as UGT1A3 and UGT1A6, in terms of affinity toward substrate. UGT1A1 had the highest V max followed by UGT1A3. V max of UGT1A6 and UGT1A9 were approximately 1/9 to 1/12 of that of UGT1A1. 4. The activity of SN-38 glucuronidation by liver microsomes and UGT1A1 was effectively inhibited by bilirubin. Planar and bulky phenols substantially inhibited the SN-38 glucuronidation activity of liver microsomes and UGT1A9, and/or UGT1A6. Although cholic acid derivatives strongly inhibited the activity of SN-38 glucuronidation by UGT1A3, the inhibition profile did not parallel that in liver microsomes. 5. These results demonstrate that at least four UGT1A isoforms are responsible for SN-38 glucuronidation in human livers, and suggest that the role and contribution of each differ substantially.  相似文献   

20.
Human exposure to magnolol can reach a high dose in daily life. Our previous studies indicated that magnolol showed high affinities to several UDP-glucuronosyltransferases (UGTs) This study was designed to examine the in vitro inhibitory effects of magnolol on UGTs, and further to evaluate the possibility of the in vivo inhibition that might happen. Assays with recombinant UGTs and human liver microsomes (HLM) indicated that magnolol (10 μM) can selectively inhibit activities of UGT1A9 and extra-hepatic UGT1A7. Inhibition of magnolol on UGT1A7 followed competitive inhibition mechanism, while the inhibition on UGT1A9 obeyed either competitive or mixed inhibition mechanism, depending on substrates. The K(i) values for UGT1A7 and 1A9 are all in nanomolar ranges, lower than possible magnolol concentrations in human gut lumen and blood, indicating the in vivo inhibition on these two enzymes would likely occur. In conclusion, UGT1A7 and 1A9 can be strongly inhibited by magnolol, raising the alarm for safe application of magnolol and traditional Chinese medicines containing magnolol. Additionally, given that UGT1A7 is an extra-hepatic enzyme, magnolol can serve as a selective UGT1A9 inhibitor that will act as a new useful tool in future hepatic glucuronidation phenotyping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号