首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A population of fast muscle fibers from aging mice is dependent on external Ca(2+) to maintain tetanic force during repeated contractions. We hypothesized that age-related denervation in muscle fibers plays a role in initiating this contractile deficit, and that prevention of denervation by IGF-1 overexpression would prevent external Ca(2+)-dependent contraction in aging mice. IGF-1 overexpression in skeletal muscle prevents age-related denervation, and prevented external Ca(2+)-dependent contraction in this work. To determine if the effects of IGF-1 overexpression are on muscle or nerve, aging mice were injected with a tetanus toxin fragment-C (TTC) fusion protein that targets IGF-1 to spinal cord motor neurons. This treatment prevented external Ca(2+)-dependent contraction. We also show evidence that injections of the IGF-1-TTC fusion protein prevent age-related alterations to the nerve terminals at the neuromuscular junctions. We conclude that the slow age-related denervation of fast muscle fibers underlies dependence on external Ca(2+) to maintain tetanic force in a population of muscle fibers from senescent mice.  相似文献   

2.
Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca(2+) to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. Using biophysical approaches, we previously showed that store-operated Ca(2+) entry (SOCE) is compromised in aged skeletal muscle but not in young ones. While important, a missing component from previous studies is whether or not SOCE function correlates with contractile function during aging. Here we test the contribution of extracellular Ca(2+) to contractile function of skeletal muscle during aging. First, we demonstrate graded coupling between SR Ca(2+) release channel-mediated Ca(2+) release and activation of SOCE. Inhibition of SOCE produced significant reduction of contractile force in young skeletal muscle, particularly at high frequency stimulation, and such effects were completely absent in aged skeletal muscle. Our data indicate that SOCE contributes to the normal physiological contractile response of young healthy skeletal muscle and that defective extracellular Ca(2+) entry through SOCE contributes to the reduced contractile force characteristic of aged skeletal muscle.  相似文献   

3.
Store-operated Ca(2+) entry (SOCE) occurs in diverse cell types in response to depletion of Ca(2+) within the endoplasmic/sarcoplasmic reticulum and functions both to refill these stores and to shape cytoplasmic Ca(2+) transients. Here we report that in addition to conventional SOCE, skeletal myotubes display a physiological mechanism that we term excitation-coupled Ca(2+) entry (ECCE). ECCE is rapidly initiated by membrane depolarization. Like excitation-contraction coupling, ECCE is absent in both dyspedic myotubes that lack the skeletal muscle-type ryanodine receptor 1 and dysgenic myotubes that lack the dihydropyridine receptor (DHPR), and is independent of the DHPR l-type Ca(2+) current. Unlike classic SOCE, ECCE does not depend on sarcoplasmic reticulum Ca(2+) release. Indeed, ECCE produces a large Ca(2+) entry in response to physiological stimuli that do not produce substantial store depletion and depends on interactions among three different Ca(2+) channels: the DHPR, ryanodine receptor 1, and a Ca(2+) entry channel with properties corresponding to those of store-operated Ca(2+) channels. ECCE may provide a fundamental means to rapidly maintain Ca(2+) stores and control important aspects of Ca(2+) signaling in both muscle and nonmuscle cells.  相似文献   

4.
Skeletal muscle weakness and decreased exercise capacity are major symptoms reported by patients with congestive heart failure (CHF). Intriguingly, these skeletal muscle symptoms do not correlate with the decreased heart function. This suggests that CHF leads to maladaptive changes in skeletal muscles, and as reported most markedly in slow-twitch muscles. We used rats at 6 weeks after infarction to measure expression of key proteins involved in SR Ca(2+) release and uptake in slow-twitch soleus muscles. We also measured force and myoplasmic free [Ca(2+)] ([Ca(2+)](i)) in intact single fibers of soleus muscles. CHF rats showed clear signs of severe cardiac dysfunction with marked increases in heart weight and left ventricular end-diastolic pressure compared with sham operated rats (Sham). There were small, but significant, changes in the content of proteins involved in cellular Ca(2+) handling in CHF muscles: slight increases in SR Ca(2+) release channels (ie, the ryanodine receptors) and in SR Ca(2+)-ATPase. Tetanic force and [Ca(2+)](i) were not significantly different between CHF and Sham soleus fibers under resting conditions. However, during the stimulation period there was a decrease in tetanic force without changes in [Ca(2+)](i) in CHF fibers that was not observed in Sham fibers. The fatigue-induced changes recovered rapidly. We conclude that CHF soleus fibers fatigue more rapidly than Sham fibers because of a reversible fatigue-induced decrease in myofibrillar function.  相似文献   

5.
Although ATP is the immediate source of energy for muscle contraction other nucleoside triphosphates (NTP) can substitute for ATP as substrates for myosin and as sources of energy for contraction of skinned muscle fibers. However, experiments with skinned skeletal muscle fibers in the presence of substitute NTP indicate significant differences with respect to cross-bridge kinetics, force generation, and Ca(2+) regulation. In this study the length dependence of Ca(2+) sensitivity of skinned bovine cardiac muscle was analyzed in the presence of MgATP, MgCTP, MgUTP, and MgITP. Ca(2+) regulation in the presence of MgCTP and MgUTP was essentially the same as in the presence of MgATP, although the maximum force generated (at sarcomere length 2.4 microm) was about 25% less. However, the length dependence of Ca(2+) sensitivity was eliminated in the presence of MgUTP. With MgITP the maximum force generated (at sarcomere length 2.4 microm) was about the same as in the presence of MgATP, but there was an impairment of relaxation such that at pCa 8 the force developed was about 50-60% of that developed at pCa 5. Moreover, the Ca(2+)-dependent component showed no length-dependent sensitivity. Thus length modulation of Ca(2+) sensitivity is a function of the myosin substrate. Taken in conjunction with other data, the results are consistent with the hypothesis that length-dependence of Ca(2+) sensitivity is modulated at a step upstream from the force-generating reaction.  相似文献   

6.
Both troponin C (TnC) and calmodulin share a remarkably similar tertiary motif that may be common to other Ca2(+)-binding proteins with activator activity. TnC plays a critical role in regulating muscle contraction and is particularly well-suited for structural analysis by site-directed mutation. Fast-twitch skeletal muscle TnC has two low-affinity Ca2(+)-binding sites (sites I and II), while in cardiac and slow-twitch skeletal muscle TnC site I is inactive. Recently, using protein engineering, we directly demonstrated that binding of Ca2+ to the low-affinity site(s) initiates muscle contraction. In the present study, we use mutagenesis to determine whether either of the low-affinity sites in cardiac TnC can trigger contraction in slow-twitch skeletal muscle fibers. In one Ca2(+)-binding mutant, Ca2(+)-binding to the dormant low-affinity site I was restored (CBM+I). In a second mutant, site I was activated while site II was inactivated (CBM+I-IIA). Both proteins had the predicted CA2(+)-binding characteristics, and both were able to associate with troponin I and troponin T to form a troponin complex and integrate into permeabilized slow-twitch skeletal muscle fibers. A comparison of NMR spectra shows the aromatic regions in the two proteins to be qualitatively similar without divalent cations but markedly different with Ca2+. Mutant CBM+I supported force generation in skinned slow skeletal muscle fibers but had Sr2+ and Ca2+ sensitivities similar to fast skeletal TnC. Mutant CBM+I-IIA was unable to restore Ca2(+)-dependent contraction to TnC-depleted skinned slow muscle fibers. The data directly demonstrate that low-affinity sites I and II have distinct functions and that only site II in cardiac TnC can trigger muscle contraction in slow-twitch skeletal muscle fibers. This principle of distinct, modular activities for Ca2(+)-binding sites in the same protein may apply to other members of the TnC/calmodulin family.  相似文献   

7.
Quantitative analysis of Ca(2+) fluctuations in the endoplasmic/sarcoplasmic reticulum (ER/SR) is essential to defining the mechanisms of Ca(2+)-dependent signaling under physiological and pathological conditions. Here, we developed a unique class of genetically encoded indicators by designing a Ca(2+) binding site in the EGFP. One of them, calcium sensor for detecting high concentration in the ER, exhibits unprecedented Ca(2+) release kinetics with an off-rate estimated at around 700 s(-1) and appropriate Ca(2+) binding affinity, likely attributable to local Ca(2+)-induced conformational changes around the designed Ca(2+) binding site and reduced chemical exchange between two chromophore states. Calcium sensor for detecting high concentration in the ER reported considerable differences in ER Ca(2+) dynamics and concentration among human epithelial carcinoma cells (HeLa), human embryonic kidney 293 cells (HEK-293), and mouse myoblast cells (C2C12), enabling us to monitor SR luminal Ca(2+) in flexor digitorum brevis muscle fibers to determine the mechanism of diminished SR Ca(2+) release in aging mice. This sensor will be invaluable in examining pathogenesis characterized by alterations in Ca(2+) homeostasis.  相似文献   

8.
Triclosan (TCS), a high-production-volume chemical used as a bactericide in personal care products, is a priority pollutant of growing concern to human and environmental health. TCS is capable of altering the activity of type 1 ryanodine receptor (RyR1), but its potential to influence physiological excitation-contraction coupling (ECC) and muscle function has not been investigated. Here, we report that TCS impairs ECC of both cardiac and skeletal muscle in vitro and in vivo. TCS acutely depresses hemodynamics and grip strength in mice at doses ≥12.5 mg/kg i.p., and a concentration ≥0.52 μM in water compromises swimming performance in larval fathead minnow. In isolated ventricular cardiomyocytes, skeletal myotubes, and adult flexor digitorum brevis fibers TCS depresses electrically evoked ECC within ~10-20 min. In myotubes, nanomolar to low micromolar TCS initially potentiates electrically evoked Ca(2+) transients followed by complete failure of ECC, independent of Ca(2+) store depletion or block of RyR1 channels. TCS also completely blocks excitation-coupled Ca(2+) entry. Voltage clamp experiments showed that TCS partially inhibits L-type Ca(2+) currents of cardiac and skeletal muscle, and [(3)H]PN200 binding to skeletal membranes is noncompetitively inhibited by TCS in the same concentration range that enhances [(3)H]ryanodine binding. TCS potently impairs orthograde and retrograde signaling between L-type Ca(2+) and RyR channels in skeletal muscle, and L-type Ca(2+) entry in cardiac muscle, revealing a mechanism by which TCS weakens cardiac and skeletal muscle contractility in a manner that may negatively impact muscle health, especially in susceptible populations.  相似文献   

9.
In this study, we investigated the effect of aging on intracellular Ca2+ stores, as sarcoendoplasmic reticulum (SR) and mitochondria, and the influence of these compartments on contraction of rat colon smooth muscle [Bitar, K.N., 2003. Aging and neural control of the GI tract V. Aging and gastrointestinal smooth muscle: from signal transduction to contractile proteins. Am. J. Physiol. Gastrointest. Liver. Physiol. 284(1), G1-G7; Marijic, J., Li, Q.X., Song, M., Nishimaru, K., Stefani, E., Toro, L., 2001. Decreased expression of voltage-and Ca2+-activated K+ channels in coronary smooth muscle during aging. Circ. Res. 88, 210-234; Rubio, C., Moreno, A., Briones, A. Ivorra, M.D., D'Ocon, P., Vila, E., 2002. Alterations by age of calcium handling in rat resistance arteries. J. Cardiovasc. Pharmacol. 40(6), 832-840]. Calcium stores and contraction were evaluated by simultaneous measurements of fluorescence and tension in smooth muscle strips loaded with fura-2. Results showed that activation of muscarinic receptors by methylcholine (MCh, 10 microM), induced a greater contraction in aged rats than in adult animals. The inhibition of Ca2+ ATPase by thapsigargin (TG, 1 microM) did not prevent the refilling of SR either in adult or aged rats. MCh, in the presence of TG, induced an increase in transient fluorescence, indicating a release of Ca2+ from TG-insensitive compartment. The mitochondrial uncoupler, FCCP (5 microM), caused a greater increase in intracellular Ca2+ and tension in aged rats, indicating that mitochondria may accumulate more Ca2+ during aging. The present results show that changes in intracellular Ca2+ stores, such as mitochondria and SR, affect contraction and may cause dysfunctions during aging that could culminate in severe alterations of Ca2+ homeostasis and cell damage.  相似文献   

10.
Ca(2+) release from cardiac sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs) is regulated by dyadic cleft [Ca(2+)] and intra-SR free [Ca(2+)] ([Ca(2+)](SR)). Robust SR Ca(2+) release termination is important for stable excitation-contraction coupling, and partial [Ca(2+)](SR) depletion may contribute to release termination. Here, we investigated the regulation of SR Ca(2+) release termination of spontaneous local SR Ca(2+) release events (Ca(2+) sparks) by [Ca(2+)](SR), release flux, and intra-SR Ca(2+) diffusion. We simultaneously measured Ca(2+) sparks and Ca(2+) blinks (localized elementary [Ca(2+)](SR) depletions) in permeabilized ventricular cardiomyocytes over a wide range of SR Ca(2+) loads and release fluxes. Sparks terminated via a [Ca(2+)](SR)-dependent mechanism at a fixed [Ca(2+)](SR) depletion threshold independent of the initial [Ca(2+)](SR) and release flux. Ca(2+) blink recovery depended mainly on intra-SR Ca(2+) diffusion rather than SR Ca(2+) uptake. Therefore, the large variation in Ca(2+) blink recovery rates at different release sites occurred because of differences in the degree of release site interconnection within the SR network. When SR release flux was greatly reduced, long-lasting release events occurred from well-connected junctions. These junctions could sustain release because local SR Ca(2+) release and [Ca(2+)](SR) refilling reached a balance, preventing [Ca(2+)](SR) from depleting to the termination threshold. Prolonged release events eventually terminated at a steady [Ca(2+)](SR), indicative of a slower, [Ca(2+)](SR)-independent termination mechanism. These results demonstrate that there is high variability in local SR connectivity but that SR Ca(2+) release terminates at a fixed [Ca(2+)](SR) termination threshold. Thus, reliable SR Ca(2+) release termination depends on tight RyR regulation by [Ca(2+)](SR).  相似文献   

11.
The cytosolic free Ca(2+) transients elicited by muscle fiber excitation are well characterized, but little is known about the free [Ca(2+)] dynamics within the sarcoplasmic reticulum (SR). A targetable ratiometric FRET-based calcium indicator (D1ER Cameleon) allowed us to investigate SR Ca(2+) dynamics and analyze the impact of calsequestrin (CSQ) on SR [Ca(2+)] in enzymatically dissociated flexor digitorum brevis muscle fibers from WT and CSQ-KO mice lacking isoform 1 (CSQ-KO) or both isoforms [CSQ-double KO (DKO)]. At rest, free SR [Ca(2+)] did not differ between WT, CSQ-KO, and CSQ-DKO fibers. During sustained contractions, changes were rather small in WT, reflecting powerful buffering of CSQ, whereas in CSQ-KO fibers, significant drops in SR [Ca(2+)] occurred. Their amplitude increased with stimulation frequency between 1 and 60 Hz. At 60 Hz, the SR became virtually depleted of Ca(2+), both in CSQ-KO and CSQ-DKO fibers. In CSQ-KO fibers, cytosolic free calcium detected with Fura-2 declined during repetitive stimulation, indicating that SR calcium content was insufficient for sustained contractile activity. SR Ca(2+) reuptake during and after stimulation trains appeared to be governed by three temporally distinct processes with rate constants of 50, 1-5, and 0.3 s(-1) (at 26 °C), reflecting activity of the SR Ca(2+) pump and interplay of luminal and cytosolic Ca(2+) buffers and pointing to store-operated calcium entry (SOCE). SOCE might play an essential role during muscle contractures responsible for the malignant hyperthermia-like syndrome in mice lacking CSQ.  相似文献   

12.
L-type Ca(2+) currents determine the shape of cardiac action potentials (AP) and the magnitude of the myoplasmic Ca(2+) signal, which regulates the contraction force. The auxiliary Ca(2+) channel subunits alpha(2)delta-1 and beta(2) are important regulators of membrane expression and current properties of the cardiac Ca(2+) channel (Ca(V)1.2). However, their role in cardiac excitation-contraction coupling is still elusive. Here we addressed this question by combining siRNA knockdown of the alpha(2)delta-1 subunit in a muscle expression system with simulation of APs and Ca(2+) transients by using a quantitative computer model of ventricular myocytes. Reconstitution of dysgenic muscle cells with Ca(V)1.2 (GFP-alpha(1C)) recapitulates key properties of cardiac excitation-contraction coupling. Concomitant depletion of the alpha(2)delta-1 subunit did not perturb membrane expression or targeting of the pore-forming GFP-alpha(1C) subunit into junctions between the outer membrane and the sarcoplasmic reticulum. However, alpha(2)delta-1 depletion shifted the voltage dependence of Ca(2+) current activation by 9 mV to more positive potentials, and it slowed down activation and inactivation kinetics approximately 2-fold. Computer modeling revealed that the altered voltage dependence and current kinetics exert opposing effects on the function of ventricular myocytes that in total cause a 60% prolongation of the AP and a 2-fold increase of the myoplasmic Ca(2+) concentration during each contraction. Thus, the Ca(2+) channel alpha(2)delta-1 subunit is not essential for normal Ca(2+) channel targeting in muscle but is a key determinant of normal excitation and contraction of cardiac muscle cells, and a reduction of alpha(2)delta-1 function is predicted to severely perturb normal heart function.  相似文献   

13.
Ca(2+)-regulated structural changes in troponin   总被引:3,自引:0,他引:3       下载免费PDF全文
Troponin senses Ca2+ to regulate contraction in striated muscle. Structures of skeletal muscle troponin composed of TnC (the sensor), TnI (the regulator), and TnT (the link to the muscle thin filament) have been determined. The structure of troponin in the Ca(2+)-activated state features a nearly twofold symmetrical assembly of TnI and TnT subunits penetrated asymmetrically by the dumbbell-shaped TnC subunit. Ca ions are thought to regulate contraction by controlling the presentation to and withdrawal of the TnI inhibitory segment from the thin filament. Here, we show that the rigid central helix of the sensor binds the inhibitory segment of TnI in the Ca(2+)-activated state. Comparison of crystal structures of troponin in the Ca(2+)-activated state at 3.0 angstroms resolution and in the Ca(2+)-free state at 7.0 angstroms resolution shows that the long framework helices of TnI and TnT, presumed to be a Ca(2+)-independent structural domain of troponin are unchanged. Loss of Ca ions causes the rigid central helix of the sensor to collapse and to release the inhibitory segment of TnI. The inhibitory segment of TnI changes conformation from an extended loop in the presence of Ca2+ to a short alpha-helix in its absence. We also show that Anapoe, a detergent molecule, increases the contractile force of muscle fibers and binds specifically, together with the TnI switch helix, in a hydrophobic pocket of TnC upon activation by Ca ions.  相似文献   

14.
The aim of this study was to investigate how sarcoplasmic reticulum (SR) Ca(2+) content and systolic Ca(2+) are controlled when Ca(2+) entry into the cell is varied. Experiments were performed on voltage-clamped rat and ferret ventricular myocytes loaded with fluo-3 to measure intracellular Ca(2+) concentration ([Ca(2+)](i)). Increasing external Ca(2+) concentration ([Ca(2+)](o)) from 1 to 2 mmol/L increased the amplitude of the systolic Ca(2+) transient with no effect on SR Ca(2+) content. This constancy of SR content is shown to result because the larger Ca(2+) transient activates a larger Ca(2+) efflux from the cell that balances the increased influx. Decreasing [Ca(2+)](o) to 0.2 mmol/L decreased systolic Ca(2+) but produced a small increase of SR Ca(2+) content. This increase of SR Ca(2+) content is due to a decreased release of Ca(2+) from the SR resulting in decreased loss of Ca(2+) from the cell. An increase of [Ca(2+)](o) has two effects: (1) increasing the fraction of SR Ca(2+) content, which is released on depolarization and (2) increasing Ca(2+) entry into the cell. The results of this study show that the combination of these effects results in rapid changes in the amplitude of the systolic Ca(2+) transient. In support of this, the changes of amplitude of the transient occur more quickly following changes of [Ca(2+)](o) than following refilling of the SR after depletion with caffeine. We conclude that the coordinated control of increased Ca(2+) entry and greater fractional release of Ca(2+) is an important factor in regulating excitation-contraction coupling.  相似文献   

15.
16.
钙稳态失衡在致结肠平滑肌收缩性改变中的作用   总被引:16,自引:0,他引:16  
Dai Y  Liu XG  Xie PY  Liu JX  Li JX 《中华内科杂志》2003,42(9):615-617
目的 探讨应激大鼠结肠平滑肌收缩时细胞内外钙离子 (Ca2 +)利用异常、细胞内钙稳态失衡在导致其收缩性改变中的作用。方法 建立寒冷 束缚应激大鼠排便异常的动物模型 ;测定离体结肠环形平滑肌收缩张力 ;差速离心制备结肠平滑肌肌浆网 ,测定肌浆网Ca2 + ATP酶活性。结果 应激大鼠结肠平滑肌收缩活性明显增强 ,并受Ca2 +通道阻滞剂显著抑制。应激大鼠结肠平滑肌肌浆网Ca2 + ATP酶活性降低 5 6 % (P <0 .0 5 )。结论 应激大鼠结肠环形平滑肌收缩活性显著增强 ,可能和肌细胞收缩时细胞外Ca2 +内流增加 ,肌浆网贮存Ca2 +释放减少、Ca2 + ATP酶活性降低等因素导致细胞内钙稳态失衡有关  相似文献   

17.
The decline in muscular strength with age is disproportionate to the loss in total muscle mass that causes it. Knocking out JP45, an integral protein of the junctional face membrane of the skeletal muscle sarcoplasmic reticulum (SR), results in decreased expression of the voltage-gated Ca(2+) channel, Ca(v)1.1; excitation-contraction uncoupling (ECU); and loss of muscle force (Delbono et al., 2007). Here, we show that Ca(v)1.1 expression, charge movement, SR Ca(2+) release, in vitro contractile force, and sustained forced running remain stable in male JP45KO mice at 12 and 18 months. They also exhibit the level of ECU reported for 3-4-month mice (Delbono et al., 2007). No further decline at later ages was recorded. Preserved ECC was not related to increased expression of any protein that directly or indirectly interacts with JP45 at the triad junction. However, maintained muscle force and physical performance were associated with ablation of JP45 expression in the brain, spontaneous and significantly diminished food intake and less tendency toward obesity when exposed to a high-fat diet compared to WT. We propose that (1) endogenously generated restriction in food intake overcomes the deleterious effects of JP45 ablation on ECC and skeletal muscle force mainly through downregulation of neuropeptide-Y expression in the hypothalamic arcuate nucleus; and (2) the JP45KO mouse constitutes an invaluable model to examine the mechanisms controlling food intake as well as skeletal muscle function with aging.  相似文献   

18.
A deletion mutation Delta K210 in cardiac troponin T (cTnT) was recently found to cause familial dilated cardiomyopathy (DCM). To explore the effect of this mutation on cardiac muscle contraction under physiological conditions, we determined the Ca(2+)-activated force generation in permeabilized rabbit cardiac muscle fibers into which the mutant and wild-type cTnTs were incorporated by using our TnT exchange technique. The free Ca(2+) concentrations required for the force generation were higher in the mutant cTnT-exchanged fibers than in the wild-type cTnT-exchanged ones, with no statistically significant differences in maximal force-generating capability and cooperativity. Exchanging the mutant cTnT into isolated cardiac myofibrils also increased the free Ca(2+) concentrations required for the activation of ATPase. In contrast, a deletion mutation Delta E160 in cTnT that causes familial hypertrophic cardiomyopathy (HCM) decreased the free Ca(2+) concentrations required for force generation, just as in the case of the other HCM-causing mutations in cTnT. The results indicate that cTnT mutations found in the two distinct forms of cardiomyopathy (i.e., HCM and DCM) change the Ca(2+) sensitivity of cardiac muscle contraction in opposite directions. The present study strongly suggests that Ca(2+) desensitization of force generation in sarcomere is a primary mechanism for the pathogenesis of DCM associated with the deletion mutation Delta K210 in cTnT.  相似文献   

19.
Urocortin has been shown to produce vasodilatation in several arteries, but the precise mechanism of its action is still poorly understood. Here we demonstrate the role of store operated Ca2+ entry (SOCE) regulated by Ca2+-independent phospholipase A2 (iPLA2) in phenylephrine hydrochloride (PE)-induced vasoconstriction, and we present the first evidence that urocortin induces relaxation by the modulation of SOCE and iPLA2 in rat coronary artery. Urocortin produces an endothelium independent relaxation, and its effect is concentration-dependent (IC50 approximately = 4.5 nmol/L). We show in coronary smooth muscle cells (SMCs) that urocortin inhibits iPLA2 activation, a crucial step for SOC channel activation, and prevents Ca2+ influx evoked by the emptying of the stores via a cAMP and protein kinase A (PKA)-dependent mechanism. Lysophophatidylcholine and lysophosphatidylinositol, products of iPLA2, exactly mimic the effect of the depletion of the stores in presence of urocortin. Furthermore, we report that long treatment with urocortin downregulates iPLA2 mRNA and proteins expression in rat coronary smooth muscle cells. In summary, we propose a new mechanism of vasodilatation by urocortin which involves the regulation of iPLA2 and SOCE via the stimulation of a cAMP/PKA-dependent signal transduction cascade in rat coronary artery.  相似文献   

20.
Store-operated Ca(2+) channels (SOCCs) were first identified in non-excitable cells by the observation that depletion of Ca(2+) stores caused increased influx of extracellular Ca(2+). Recent studies have suggested that SOCCs might be related to the transient receptor potential (TRPC) gene family. The mechanism of cardiac pacemaking involves voltage-dependent pacemaker current; in addition there is growing evidence that intracellular sarcoplasmic reticulum (SR) Ca(2+) release plays an important role. In the present short review we assess preliminary evidence for Ca(2+) entry related to SR store depletion and expression of TRPCs in pacemaker tissue. These newer findings suggest that Ca(2+) entry and inward current triggered by store depletion might also contribute to the pacemaker current. Many hormones, drugs and interventions such as ischaemia and stretch, which alter Ca(2+) handling, will also modulate pacemaker firing thought their effect on SOCCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号