首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Objective Pioglitazone, a thiazolidinedione antidiabetic, inhibits cytochrome P450 (CYP) 2C8 and CYP3A4 enzymes in vitro. Repaglinide, a meglitinide analogue antidiabetic, is metabolised by CYP2C8 and CYP3A4. In patients with type 2 diabetes, the pioglitazone-repaglinide combination has acted synergistically on glycaemic parameters. Our aim was to determine whether pioglitazone increases the plasma concentrations of repaglinide. Methods In a randomized, 2-phase cross-over study, 12 healthy volunteers received 30 mg pioglitazone or placebo once daily for 5 days. On day 5, they ingested a single 0.25 mg dose of repaglinide 1 h after the last pretreatment dose. Plasma repaglinide and pioglitazone, and blood glucose concentrations were measured for 12 h. Results During the pioglitazone phase, the mean peak plasma repaglinide concentration (Cmax) and the total area under the concentration-time curve [AUC(0-∞)] of repaglinide were 100% (range 53–157%, P=0.99) and 90% (range 63–120%, P=0.22), respectively, of those during the placebo phase. Also the half-life of repaglinide was unaffected, but the median peak time of repaglinide was shortened from 40 min to 20 min by pioglitazone (P=0.014). The short-term pioglitazone administration did not modify the blood glucose-lowering effect of a single dose of repaglinide. Conclusions Pioglitazone does not increase the plasma concentrations of repaglinide, indicating that the inhibitory effect of pioglitazone on CYP2C8 and CYP3A4 is very weak in vivo, probably due to its extensive plasma protein binding. The synergistic effect of repaglinide and pioglitazone on the glycaemic parameters, seen in patients with type 2 diabetes during their long-term use, is unlikely to be caused by inhibition of repaglinide metabolism by pioglitazone.  相似文献   

2.
Many dietary supplements are promoted to patients with osteoarthritis (OA) including the three naturally derived compounds, glucosamine, chondroitin and diacerein. Despite their wide spread use, research on interaction of these antiarthritic compounds with human hepatic cytochrome P450 (CYP) enzymes is limited. This study aimed to examine the modulatory effects of these compounds on CYP2C9, a major CYP isoform, using in vitro biochemical assay and in silico models. Utilizing valsartan hydroxylase assay as probe, all forms of glucosamine and chondroitin exhibited IC50 values beyond 1000 μM, indicating very weak potential in inhibiting CYP2C9. In silico docking postulated no interaction with CYP2C9 for chondroitin and weak bonding for glucosamine. On the other hand, diacerein exhibited mixed‐type inhibition with IC50 value of 32.23 μM and Ki value of 30.80 μM, indicating moderately weak inhibition. Diacerein's main metabolite, rhein, demonstrated the same mode of inhibition as diacerein but stronger potency, with IC50 of 6.08 μM and Ki of 1.16 μM. The docking of both compounds acquired lower CDOCKER interaction energy values, with interactions dominated by hydrogen and hydrophobic bondings. The ranking with respect to inhibition potency for the investigated compounds was generally the same in both in vitro enzyme assay and in silico modeling with order of potency being diacerein/rhein > various glucosamine/chondroitin forms. In vitroin vivo extrapolation of inhibition kinetics (using 1 + [I]/Ki ratio) demonstrated negligible potential of diacerein to cause interaction in vivo, whereas rhein was predicted to cause in vivo interaction, suggesting potential interaction risk with the CYP2C9 drug substrates.  相似文献   

3.
Abstract: The cytochrome P450 enzyme CYP2C8 appears to have a major role in pioglitazone metabolism. The present study was conducted to further clarify the role of individual CYPs and of the CYP2C8/9 polymorphisms in the primary metabolism of pioglitazone in vitro. Pioglitazone (2–400 μM) was incubated with isolated cytochrome P450 enzymes or human liver microsomes, some of them carrying either the CYP2C8*3/*3 genotype (and also the CYP2C9*2/*2 genotype) or the CYP2C8*1/*1 genotype (five samples each). The formation of the primary pioglitazone metabolite M‐IV was monitored by HPLC. Enzyme kinetics were estimated assuming a single binding site. Mean intrinsic clearance of pioglitazone to the metabolite M‐IV was highest for CYP2C8 and CYP1A2 with 58 pmol M‐IV/min/nmol CYP P450/μM pioglitazone each, 53 for CYP2D6*1, 40 for CYP2C19*1, and 34 for CYP2C9*2, respectively. CYP2A6, CYP2B6, CYP2C9*1, CYP2C9*3, CYP2E1, CYP3A4 and CYP3A5 did not form quantifiable amounts of M‐IV. CYP2C8*1/*1 microsomes (25 ± 4 pmol M‐IV/min/mg protein/μM pioglitazone) showed lower intrinsic clearance of pioglitazone than CYP2C8*3/*3 microsomes (35 ± 9, p = 0.04). In all samples, metabolite formation showed substrate inhibition, while pioglitazone did not inhibit CYP2C8‐mediated paclitaxel metabolism. CYP2C8, CYP1A2 and CYP2D6 are major CYPs forming M‐IV in vitro. The higher activity of CYP2C8*3/CYP2C9*2 microsomes may result from a contribution of CYP2C9*2, or from differences in CYP2C8 expression. The evidence for substrate‐specific inhibitory effects of pioglitazone on CYP2C‐mediated metabolism needs to be tested in further studies.  相似文献   

4.
1.?Fusidic acid (FA) is widely used for the treatment of infections of sensitive osteomyelitis or skin and soft tissue caused by bacteria. However, the role of cytochrome P450s (CYPs) in the metabolism of FA is unclear. In the present study, we screened the main CYPs for the metabolism of FA and studied its interactions with isoform-selective substrates in vitro.

2.?The main CYP450s were screened according to the inhibitory effect of specific inhibitors on the metabolism of FA in human liver microsomes (HLMs) or recombinant CYP isoforms. Enzyme kinetic parameters including Ki, Ki′, Vmax, and IC50 were calculated to determine the potential of FA to affect CYP-mediated metabolism of isoform-selective substrates.

3.?FA metabolism rate was inhibited by 49.8% and 83.1% under CYP2D6, CYP3A4 selective inhibitors in HLMs. In recombinant experiment, the inhibitory effects on FA metabolism were 83.3% for CYP2D6 and 58.9% for CYP3A4, respectively. FA showed inhibition on CYP2D6 and CYP3A4 with Kis of 13.9 and 38.6?μM, respectively. Other CYP isoforms including CYP1A2, CYP2A6, CYP2C9, CYP2E1, and CYP2C19 showed minimal or no effect on the metabolism of FA.

4.?FA was primarily metabolized by CYP2D6 and CYP3A4 and showed a noncompetitive inhibition on CYP2D6 and a mixed competitive inhibition on CYP3A4. Drug–drug interactions between FA and other chemicals, especially with substrates of CYP2D6 and CYP3A4, are phenomena that clinicians need to be aware of and cautious about.  相似文献   

5.
Purpose. To evaluate an interaction between simvastatin and itraconazole in in vitro studies and to attempt a quantitative prediction of in vivo interaction in humans. Methods. The inhibitory effect of itraconazole on simvastatin metabolism was evaluated using human liver microsomes and the Ki values were calculated for the unbound drug in the reaction mixture. A physiologically-based pharmacokinetic model was used to predict the maximum in vivo drug-drug interaction. Results. Itraconazole competitively inhibited the metabolism of simvastatin to M-1 and M-2 with Ki values in the nM range. The area under the curve (AUC) of simvastatin after concomitant dosing with itraconazole was predicted to increase ca. 84-101-fold compared with that without administration of itraconazole. Taking into consideration the fact that this method predicts the maximum interaction, this agrees well with the clinical observation of a 19-fold increase. A similar prediction, based on the Ki value without taking into account the drug adsorption to microsomes, led to an underevaluation of the interaction. Conclusions. It was demonstrated that the competitive inhibition of CYP3A4-mediated simvastatin metabolism by itraconazole is the main cause of the drug interaction and that a Ki value corrected for drug adsorption to microsomes is the key factor in quantitatively predicting the maximum in vivo drug interactions.  相似文献   

6.
Abstract: Timolol has been widely used in the treatment of glaucoma. Topically applied, timolol may cause adverse cardiovascular effects due to systemic absorption through the nasolacrimal duct. Timolol is mainly metabolized by cytochrome P450 2D6 (CYP2D6) in the liver. The aim of the present study was to characterize further the metabolism of timolol in vitro. Especially the effect of several drugs such as selective serotonin reuptake inhibitors on the metabolism of timolol was evaluated. In human liver microsomes, four timolol metabolites were identified, in cryo‐preserved hepatocytes nine. In both in vitro experiments, the hydroxy metabolite M1 was the main metabolite. The in vivo half‐life predicted for timolol was 3.7 hr. in cryo‐preserved hepatocytes, corresponding to the half‐life of timolol in humans in vivo. Fluoxetine, paroxetine, sertraline, citalopram and fluvoxamine inhibited the formation of M1 in microsomes with IC50 values of 1.4, 2.0, 3.5, 21 and 20 μM, respectively. In human cryo‐preserved hepatocytes, the IC50 values for fluoxetine, paroxetine and fluvoxamine were 0.7, 0.5 and 5.9 μM, respectively. In conclusion, compounds known to be potent CYP2D6 inhibitors inhibited timolol metabolism in in vitro experiments. The present results strongly suggest that fluoxetine and paroxetine may significantly affect the metabolism of timolol also in vivo and may thus potentiate the adverse cardiovascular effects of topically administered timolol.  相似文献   

7.

Purpose

Quantitative prediction of complex drug-drug interactions (DDIs) is challenging. Repaglinide is mainly metabolized by cytochrome-P-450 (CYP)2C8 and CYP3A4, and is also a substrate of organic anion transporting polypeptide (OATP)1B1. The purpose is to develop a physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics and DDIs of repaglinide.

Methods

In vitro hepatic transport of repaglinide, gemfibrozil and gemfibrozil 1-O-β-glucuronide was characterized using sandwich-culture human hepatocytes. A PBPK model, implemented in Simcyp (Sheffield, UK), was developed utilizing in vitro transport and metabolic clearance data.

Results

In vitro studies suggested significant active hepatic uptake of repaglinide. Mechanistic model adequately described repaglinide pharmacokinetics, and successfully predicted DDIs with several OATP1B1 and CYP3A4 inhibitors (<10% error). Furthermore, repaglinide-gemfibrozil interaction at therapeutic dose was closely predicted using in vitro fraction metabolism for CYP2C8 (0.71), when primarily considering reversible inhibition of OATP1B1 and mechanism-based inactivation of CYP2C8 by gemfibrozil and gemfibrozil 1-O-β-glucuronide.

Conclusions

This study demonstrated that hepatic uptake is rate-determining in the systemic clearance of repaglinide. The model quantitatively predicted several repaglinide DDIs, including the complex interactions with gemfibrozil. Both OATP1B1 and CYP2C8 inhibition contribute significantly to repaglinide-gemfibrozil interaction, and need to be considered for quantitative rationalization of DDIs with either drug.  相似文献   

8.
1.?A novel bio-pharmacokinetic/pharmacodynamic (PK/PD) system was established and assessed in predicting the PK parameters and PD effects of the model drug cyclophosphamide (CP) considering the interrelationships between drug metabolism, pharmacological effects and dynamic blood circulation processes in vitro.

2.?The system contains a peristaltic pump, a reaction chamber with rat liver microsomes (RLMs) encapsulated in pluronic F127–acrylamide–bisacrylamide (FAB) hydrogels, an effector cell chamber and a recirculating pipeline. The metabolism and pharmacological effects of CP (5, 10 and 20?mM) were measured by HPLC and MTT assay. A mathematical model based on mass balance was used to predict the in vitro clearance of CP. In vivo clearance of CP was estimated by in vitro to in vivo extrapolations (IVIVE) and simulations using Simcyp® software.

3.?The predicted in vivo clearance of CP at concentrations of 5, 10 and 20?mM was 11.36, 10.12 and 10.68?mL/min/kg, respectively, within two-fold differences compared with the reported 11.1?mL/min/kg. The survival ratio of effector cells during the metabolism and circulation of CP was significantly enhanced.

4.?This system may serve as an alternative approach to predict in vivo metabolism, pharmacological effects and toxicity of drugs, ensuring an efficient drug screening process.  相似文献   

9.
The Simcyp® Population-Based ADME Simulator was used to predict median drug clearances and their associated variance from in vitro data. Fifteen drugs satisfied the entry criteria for the study and the relevant information (in vitro metabolism data and in vivo human clearance values) were collated from the literature. Predicted values of median clearances fell within 2-fold of observed values for 73% of the drugs (oral route) and 78% of the drugs (intravenous route) when microsomal binding was disregarded, and for 93% (oral) and 100% (intravenous) when it was considered. Irrespective of whether microsomal binding was considered, the predicted fold variability fell within 2-fold of the observed variability for 80% (oral) and 67% (intravenous) of the drugs.  相似文献   

10.
Although being a drug therapeutically used for a long time, the enzymatic metabolism of selegiline has not been adequately studied. In the current work we have studied the cytochrome P450 (CYP)‐catalyzed oxidative metabolism of selegiline to desmethylselegiline and l‐methamphetamine and the effects of selegiline, desmethylselegiline and l‐methamphetamine on hepatic CYP enzymes in human liver microsomes in vitro. The apparent Km values for desmethylselegiline and l‐methamphetamine formation were on an average 149 μM and 293 μM, and the apparent Vmax values, 243 pmol/min./mg and 1351 pmol/min./mg, respectively. Furafylline and ketoconazole, the known reference inhibitors for CYP1A2 and CYP3A4, respectively, inhibited the formation of desmethylselegiline with Ki value of 1.7 μM and 15 μM. Ketoconazole inhibited also the formation of l‐methamphetamine with Ki of 18 μM. Fluvoxamine, an inhibitor of CYP1A2, CYP2C19 and CYP3A4, inhibited the formation of desmethylselegiline and l‐methamphetamine with Ki values of 9 and 25 μM, respectively. On the basis of these results we suggest that CYP1A2 and CYP3A4 contribute to the formation of desmethylselegiline and that CYP3A4 participates in the formation of l‐methamphetamine. In studies with CYP‐specific model activities, both selegiline and desmethylselegiline inhibited the CYP2C19‐mediated S‐mephenytoin 4′‐hydroxylation with average IC50 values of 21 μM and 26 μM, respectively. The Ki for selegiline was determined to be around 7 μM. Selegiline inhibited CYP1A2‐mediated ethoxyresorufin O‐deethylation with a Ki value of 76 μM. Inhibitory potencies of selegiline, desmethylselegiline and l‐methamphetamine towards other CYP‐model activities were much lower. On this basis, selegiline and desmethylselegiline were shown to have a relatively high affinity for CYP2C19, but no evidence about selegiline metabolism by CYP2C19 was obtained.  相似文献   

11.
4‐{(R)‐(3‐Aminophenyl)[4‐(4‐fluorobenzyl)‐piperazin‐1‐yl]methyl}‐N,N‐diethylbenzamide (AZD2327) is a highly potent and selective agonist of the δ ‐opioid receptor. AZD2327 and N‐deethylated AZD2327 (M1) are substrates of cytochrome P450 3A (CYP3A4) and comprise a complex multiple inhibitory system that causes competitive and time‐dependent inhibition of CYP3A4. The aim of the current work was to develop a physiologically based pharmacokinetic (PBPK) model to predict quantitatively the magnitude of CYP3A4 mediated drug–drug interaction with midazolam as the substrate. Integrating in silico, in vitro and in vivo PK data, a PBPK model was successfully developed to simulate the clinical accumulation of AZD2327 and its primary metabolite. The inhibition of CYP3A4 by AZD2327, using midazolam as a probe drug, was reasonably predicted. The predicted maximum concentration (Cmax) and area under the concentration–time curve (AUC) for midazolam were increased by 1.75 and 2.45‐fold, respectively, after multiple dosing of AZD2327, indicating no or low risk for clinically relevant drug–drug interactions (DDI). These results are in agreement with those obtained in a clinical trial with a 1.4 and 1.5‐fold increase in Cmax and AUC of midazolam, respectively. In conclusion, this model simulated DDI with less than a two‐fold error, indicating that complex clinical DDI associated with multiple mechanisms, pathways and inhibitors (parent and metabolite) can be predicted using a well‐developed PBPK model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.

BACKGROUND AND PURPOSE

Imatinib, a cytochrome P450 2C8 (CYP2C8) and CYP3A4 substrate, markedly increases plasma concentrations of the CYP3A4/5 substrate simvastatin and reduces hepatic CYP3A4/5 activity in humans. Because competitive inhibition of CYP3A4/5 does not explain these in vivo interactions, we investigated the reversible and time-dependent inhibitory effects of imatinib and its main metabolite N-desmethylimatinib on CYP2C8 and CYP3A4/5 in vitro.

EXPERIMENTAL APPROACH

Amodiaquine N-deethylation and midazolam 1′-hydroxylation were used as marker reactions for CYP2C8 and CYP3A4/5 activity. Direct, IC50-shift, and time-dependent inhibition were assessed with human liver microsomes.

KEY RESULTS

Inhibition of CYP3A4 activity by imatinib was pre-incubation time-, concentration- and NADPH-dependent, and the time-dependent inactivation variables KI and kinact were 14.3 µM and 0.072 min−1 respectively. In direct inhibition experiments, imatinib and N-desmethylimatinib inhibited amodiaquine N-deethylation with a Ki of 8.4 and 12.8 µM, respectively, and midazolam 1′-hydroxylation with a Ki of 23.3 and 18.1 µM respectively. The time-dependent inhibition effect of imatinib was predicted to cause up to 90% inhibition of hepatic CYP3A4 activity with clinically relevant imatinib concentrations, whereas the direct inhibition was predicted to be negligible in vivo.

CONCLUSIONS AND IMPLICATIONS

Imatinib is a potent mechanism-based inhibitor of CYP3A4 in vitro and this finding explains the imatinib–simvastatin interaction and suggests that imatinib could markedly increase plasma concentrations of other CYP3A4 substrates. Our results also suggest a possibility of autoinhibition of CYP3A4-mediated imatinib metabolism leading to a less significant role for CYP3A4 in imatinib biotransformation in vivo than previously proposed.  相似文献   

13.
Repaglinide is an antidiabetic drug metabolised by cytochrome P450 (CYP) 2C8 and CYP3A4 enzymes. To clarify the mechanisms of observed repaglinide drug interactions, we determined the contribution of the two enzymes to repaglinide metabolism at different substrate concentrations, and examined the effect of fibrates and rifampicin on CYP2C8, CYP3A4 and repaglinide metabolism in vitro. We studied repaglinide metabolism using pooled human liver microsomes, recombinant CYP2C8 and recombinant CYP3A4 enzymes. The effect of quercetin and itraconazole on repaglinide metabolism, and of gemfibrozil, bezafibrate, fenofibrate and rifampicin on CYP2C8 (paclitaxel 6alpha-hydroxylation) and CYP3A4 (midazolam 1-hydroxylation) activities and repaglinide metabolism were studied using human liver microsomes. At therapeutic repaglinide concentrations (<0.4 microM), CYP2C8 and CYP3A4 metabolised repaglinide at similar rates. Quercetin (25 microM) and itraconazole (3 microM) inhibited the metabolism of 0.2 microM repaglinide by 58% and 71%, and that of 2 microM repaglinide by 56% and 59%, respectively. The three fibrates inhibited CYP2C8 (Ki: bezafibrate 9.7 microM, gemfibrozil 30.4 microM and fenofibrate 92.6 microM) and repaglinide metabolism (IC50: bezafibrate 37.7 microM, gemfibrozil 111 microM and fenofibrate 164 microM), but had no effect on CYP3A4. Rifampicin inhibited CYP2C8 (Ki 30.2 microM), CYP3A4 (Ki 18.5 microM) and repaglinide metabolism (IC50 13.7 microM). In conclusion, both CYP2C8 and CYP3A4 are important in the metabolism of therapeutic concentrations of repaglinide in vitro, but their predicted contributions in vivo are highly dependent on the scaling factor used. Gemfibrozil is only a moderate inhibitor of CYP2C8 and does not inhibit CYP3A4; inhibition of CYP-enzymes by parent gemfibrozil alone does not explain its interaction with repaglinide in vivo. Rifampicin competitively inhibits both CYP2C8 and CYP3A4, which can counteract its inducing effect in humans.  相似文献   

14.
Abstract: The selective serotonin re-uptake inhibitor, fluvoxamine, is a very potent inhibitor of CYP1A2, and accordingly causes pharmacokinetic interactions with drugs metabolised by CYP1A2, such as caffeine, theophylline, imipramine, tacrine and clozapine. Interaction between caffeine and fluvoxamine has been described in vivo, leading to lowering of total clearance of caffeine by 80% during fluvoxamine intake. The main purpose of the present study was to evaluate this interaction in vitro in human liver microsomes. A high-performance liquid chromatography method was developed in order to assay 1, 3-dimethylxanthine, 1, 7-dimethylxanthine, 3, 7-dimethylxanthine and 1, 3, 7-trimethyluric acid formed from caffeine by human liver microsomes. The limit of detection was 0.06 nmol · mg protein?1 · hr?1. As expected, fluvoxamine was a very potent inhibitor of the formation of the N-demethylated caffeine metabolites, displaying Ki values of 0.08–0.28 μM. The formation of 1, 7-dimethylxanthine was virtually abolished by 10 μM of fluvoxamine, indicating that the N3-demethylation of caffeine is almost exclusively catalysed by CYP1A2. The CYP3A4 inhibitors, ketoconazole and bromocriptine, inhibited 1, 3, 7-trimethyluric acid formation with K s of 0.75 μM and 5 μM, respectively, thus further supporting the involvement of CYP3A4 in the 8-hydroxylation of caffeine. The study shows that fluvoxamine, as expected, is a potent inhibitor of the metabolism of caffeine in vitro.  相似文献   

15.
LY2603618 is a selective inhibitor of deoxyribonucleic acid damage checkpoint kinase 1 (CHK1) and has been in development for the enhancement of chemotherapeutic agents. The study described was to assess the potential interaction between LY2603618 and cytochrome P450 isoform 2D6 (CYP2D6) substrate desipramine in patients with cancer. Before clinical investigation, in silico simulations (using Simcyp®) were conducted. An open‐label, two‐period, fixed‐sequence study was planned in 30 patients with advanced or metastatic cancers, in which a 50 mg oral dose of desipramine was administered alone and in combination with 275 mg of LY2603618 (i.v. infusion). An interim analysis was planned after 15 patients completed both periods. Ratios of geometric least squares means (LSMs) of primary pharmacokinetic (PK) parameters and 90% repeated confidence intervals (RCIs) between desipramine plus LY2603618 and desipramine alone were calculated. Lack of an interaction was declared if the 90% RCI fell between 0.8 and 1.25. The LSM ratios (90% RCI) for areas under the plasma concentration–time curve from time zero to tlast (AUC[0‐tlast]) and to infinity (AUC[0‐∞]) and maximum plasma concentration (Cmax) were 1.14 (1.04, 1.25), 1.09 (0.99, 1.21) and 1.16 (1.05, 1.29). In silico simulations were predictive of clinical results. Single doses of 275 mg LY2603618 administered with 50 mg desipramine were generally well tolerated. In conclusion, no clinically significant interaction was observed between LY2603618 and desipramine in patients with cancer. In silico predictions of clinical results demonstrated that mechanistic and physiologically based PK approaches may inform clinical study design in cancer patients. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Telaprevir, a chronic hepatitis C virus (HCV) protease inhibitor, is known to be a cytochrome P450 (CYP) 3A4/5 substrate and inhibitor. In the present study, the in vitro inhibitory effect of telaprevir on the metabolism of tacrolimus in human liver microsomes was investigated using 13‐O‐demethyltacrolimus (M‐I) as a monitor metabolite. Telaprevir inhibited M‐I formation in a time‐dependent fashion with rate of enzyme inactivation (kinact) and concentration to reach 50% of kinact (KI) values of 0.113 min‐1 and 0.511 µm , respectively. Using the inhibition parameters generated, in vitro–in vivo extrapolations were performed to evaluate the clinical relevance of the effect of telaprevir on the area under the curve versus time (AUC) of tacrolimus. When 750 mg of telaprevir was administered orally, the intestinal wall availability (Fg) of tacrolimus was estimated to be increased 3.7‐ to 7.0‐fold. The hepatic intrinsic clearance (CLint) of tacrolimus was also estimated to be decreased 4.4‐ to 19‐fold. These results suggest that the increased AUC of tacrolimus in the presence of telaprevir was caused by intestinal and hepatic metabolism inhibition. In addition, the inhibitory effect of telaprevir on the hepatic uptake of tacrolimus was also examined using human cryopreserved hepatocytes. However, no significant inhibitory effect was noted, suggesting that the effect of telaprevir on hepatic transporters did not contribute to the increase in tacrolimus exposure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Repaglinide and Metformin are used to treat Type 2 diabetes. Repaglinide with poor water solubility has relatively low oral bioavailability (56%) and undergoes hepatic first-pass metabolism. The oral bioavailability of metformin HCl is also low (about 50-60%). The purpose of this study was to prepare nanoemulsion formulations containing metformin HCl or repaglinide alone or in combination and characterize them in vitro and in vivo. Nanoemulsion formulations containing metformin HCl and/or repaglinide were successfully prepared and in vitro characterized. In addition, in vivo efficacy of nanoemulsion formulations was evaluated in a streptozotocin-nicotinamide-induced diabetic rat model. Biochemical, histopathological, and immunohistochemical evaluations were also performed. The mean droplet size and zeta potential values of nanoemulsion formulations were in the range of 110.15±2.64-120.23±2.16 nm and -21.95 – -24.33 mV, respectively. The percent entrapment efficiency values of nanoemulsion formulations were in the range of 93.600%-96.152%. All nanoemulsion formulations had a PDI of ≤0.223. A statistically significant decrease was observed in the blood glucose values of the diabetic rats treated with nanoemulsion formulations containing active substance/substances, compared to diabetic rats (control) (p<0.05). Nanoemulsion formulations (especially nanoemulsion containing metformin HCl and repaglinide combination) have a better antidiabetic activity and are more effective in reducing oxidative stress caused by diabetes.  相似文献   

18.
As patients with type 2 diabetes receiving oral antidiabetic drugs are often concomitantly treated with other drugs, they are of increased risk for drug interactions. Drugs have to be taken up into hepatocytes before their intracellular drug action or before they are metabolized, and therefore, uptake transporters are important modulators of drug pharmacokinetics and drug effects. To gain more insights into the role of uptake transporters for drug interactions, we investigated whether frequently prescribed oral antidiabetic drugs interact with the transport of drugs, mediated by the hepatic uptake transporters OATP1B1 (gene symbol SLCO1B1), OATP1B3 (gene symbol SLCO1B3) and OATP2B1 (gene symbol SLCO2B1). Using HEK293 cells recombinantly over‐expressing these uptake transporters, we analysed whether glibenclamide, glimepiride, nateglinide and pioglitazone influence the transport of the model transport substrate bromosulfophthalein. Furthermore, we investigated the influence of the same oral antidiabetic drugs and of repaglinide and rosiglitazone on the uptake of the HMG‐CoA‐reductase inhibitor atorvastatin. The oral antidiabetic drugs glibenclamide, glimepiride and nateglinide inhibited the transport of the model substrate bromosulfophthalein, particularly the OATP2B1‐mediated uptake. The OATP‐mediated atorvastatin uptake was inhibited in a similar manner. For glibenclamide, inhibitory constants (Ki values) of 13.6 μM, 8.1 μM and 0.5 μM for OATP1B1‐, OATP1B3‐ and OATP2B1‐mediated BSP uptake were determined. In conclusion, these in vitro results demonstrate that several oral antidiabetic drugs may influence hepatic OATP‐mediated drug uptake. The in vivo consequences of these results have to be analysed in further studies.  相似文献   

19.
Organoselenium compounds have important pharmacological properties. However, these compounds can cause toxicity, typically related to oxidation of endogenous thiols. The aim of this study was to investigate whether 2,2′‐dithienyl diselenide (DTDS) has potential toxicity in vitro and in vivo. Therefore, sulfhydryl‐containing enzyme activities, δ‐aminolevulinic acid dehydratase (δ‐ALA‐D) and Na+–K+‐ATPase were used to predict DTDS toxicity in rat brain homogenate in vitro. In in vivo experiments, a DTDS administration (50 or 100 mg kg?1, p.o.) to rats was performed and toxicological parameters were determined. DTDS inhibited δ‐ALA‐D (IC50 2 µm ) and Na+–K+‐ATPase (IC50 17 µm ) activities in vitro. The inhibitory effect of DTDS on δ‐ALA‐D and Na+–K+‐ATPase activities was restored by dithiothreitol. DTDS (5–25 µm ) elicited a thiol oxidase‐like activity. In vivo, DTDS (50 and 100 mg kg?1) caused systemic toxicity, evidenced by a decrease in water and food intakes and body weight gain, as well as the death of rats. DTDS at the dose of 100 mg kg?1 increased plasma alanine and aspartate aminotransferase activities and decreased urea levels. At 50 and 100 mg kg?1, it increased lipid peroxidation levels. At the highest dose, DTDS inhibited δ‐ALA‐D activity. By contrast, Na+–K+‐ATPase activity and antioxidant defense were not altered in the brains of rats exposed to DTDS. In conclusion, interaction with the cisteinyl residues seems to mediate the inhibitory effect of DTDS on sulfhydryl‐containing enzymes in vitro. In addition, high oral doses of DTDS induce toxicity in rats. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Objectives Ketoconazole is extensively used as an index inhibitor of cytochrome P450‐3A (CYP3A) activity in vitro and in vivo, but the mechanism of ketoconazole inhibition of CYP3A still is not clearly established. Methods Inhibition of metabolite formation by ketoconazole (seven concentrations from 0.01 to 1.0 µm ) was studied in human liver microsomes (n = 4) at six to seven substrate concentrations for triazolam, midazolam, and testosterone, and at two substrate concentrations for nifedipine. Key findings Analysis of multiple data points per liver sample based on a mixed competitive–noncompetitive model yielded mean inhibition constant Ki values in the range of 0.011 to 0.045 µm . Ketoconazole IC50 increased at higher substrate concentrations, thereby excluding pure noncompetitive inhibition. For triazolam, testosterone, and midazolam α‐hydroxylation, mean values of α (indicating the ‘mix’ of competitive and noncompetitive inhibition) ranged from 2.1 to 6.3. However, inhibition of midazolam 4‐hydroxylation was consistent with a competitive process. Determination of Ki and α based on the relation between 50% inhibitory concentration values and substrate concentration yielded similar values. Pre‐incubation of ketoconazole with microsomes before addition of substrate did not enhance inhibition, whereas inhibition by troleandomycin was significantly enhanced by pre‐incubation. Conclusions Ketoconazole inhibition of triazolam α‐ and 4‐hydroxylation, midazolam α‐hydroxylation, testosterone 6β‐hydroxylation, and nifedipine oxidation appeared to be a mixed competitive–noncompetitive process, with the noncompetitive component being dominant but not exclusive. Quantitative estimates of Ki were in the low nanomolar range for all four substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号