首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Postprandial triacylglycerol (TAG) metabolism is an important metabolic state that has been associated with cardiovascular disease. The magnitude of the postprandial TAG response is determined by dietary fat composition, which alters intestinal and hepatic TAG-rich lipoprotein (TRL) metabolism. Caco-2 cell monolayers are morphologically and physiologically similar to the human intestinal enterocytes, hence they are a good model to study intestinal lipoprotein metabolism. To date only the acute effect of fatty acid composition on intestinal TRL metabolism in Caco-2 cells has been investigated. Little is known of the effect of habitual, or chronic, dietary fat composition on intestinal TRL metabolism. Using the Caco-2 cell model, the present study investigated the acute-on-chronic effect of fatty acid composition on TRL metabolism. Caco-2 cells were grown in the presence of 0.05 mm-palmitic acid (PA; 16 : 0), -oleic acid (OA; 18 : 1n-9),-eicosapentaenoic acid (EPA; 20 : 5n-3) or no fatty acid (control) for 19 d, then one of four acute treatments (control (bovine serum albumin (BSA; 5 g/l)) or BSA (5 g/l) plus 0.5 mm-PA, -OA or -EPA) were administered for 22 h. Significant acutexchronic interactions for the effect of fatty acid composition on cellular TAG:secreted de novo TAG, and cellular de novo TAG:de novo phospholipid were observed. Thus the effect of a fatty acid was determined by the duration of exposure to the fatty acid intervention. Acute PA treatment increased de novo TAG synthesis, but chronic PA supplementation did not. Acute and chronic OA treatments increased de novo TAG secretion. For EPA, chronic supplementation had the greatest effect on TAG synthesis and secretion. The acute-on-chronic effects of fatty acids on apolipoprotein B metabolism were relatively minor compared with the changes noted for TRL lipid composition. The present study shows that the Caco-2 cell model is valuable for studying intestinal TRL metabolism and that fatty acids modulate this process, the nature of which can be determined by the length of exposure of the cell to the fatty acid.  相似文献   

2.
3.
Stearoyl-CoA desaturase (SCD) is a key enzyme that determines the composition and metabolic fate of ingested fatty acids, in particular the conversion of trans-vaccenic acid (TVA) to conjugated linoleic acid (CLA). The present study addressed the hypothesis that intestinal TVA absorption and biotransformation into CLA can be modulated by EPA and 3,10-dithia stearic acid (DSA) via altered SCD mRNA levels and desaturation indices (cis-9, trans-11-CLA:TVA and oleic acid:stearic acid ratios) in Caco-2 and T84 cells, two well-established in vitro models of the human intestinal epithelium. The study determined the effect of acute (3 h with 0.3 mm-EPA or 0.3 mm-DSA) and acute-on-chronic (1 week with 0.03 mm-EPA or -DSA, followed by respectively, 0.3 mm-EPA or -DSA for 3 h) treatments. In both cell lines, acute EPA treatment did not alter SCD desaturation indices, whereas the acute-on-chronic treatment affected these surrogate markers of SCD activity. This was associated with reduced sterol regulatory-element binding protein-1c and SCD mRNA levels. In contrast, acute and acute-on-chronic DSA treatments significantly reduced SCD desaturation indices without affecting SCD mRNA levels in Caco-2 cells. The present study on intestinal cells shows that the conversion rate of TVA to c9, t11-CLA is affected by other fatty acids present in the diet such as EPA, confirming previous observations in hepatic and mammary cell models.  相似文献   

4.
OBJECTIVES: To study the effects of two different mixtures of the main conjugated linoleic acid (CLA) isomers cis-9, trans-11 CLA and trans-10, cis-12 CLA on human immune function. DESIGN: Double-blind, randomized, parallel, reference-controlled intervention study. SUBJECTS AND INTERVENTION: Seventy-one healthy males aged 31-69 y received one of the following treatments: (1). mixture of 50% c9,t11 CLA and 50% t10,c12 CLA isomers (CLA 50:50); (2). mixture of 80% c9,t11 CLA and 20% t10,c12 CLA isomers (CLA 80:20); and (3). sunflower oil fatty acids (reference). The treatments were given as supplements in softgel capsules providing a total of 1.7 g (c9,t11+t10,c12) CLA fatty acids (50:50) or 1.6 g (c9,t11+t10,c12) CLA glycerides (80:20) per day in treatment groups for 12 weeks. RESULTS: Almost twice as many subjects reached protective antibody levels to hepatitis B when consuming CLA 50:50 fatty acids (15/24, 62%) compared with subjects consuming the reference substance (7/21, 33%, P=0.075). In subjects consuming CLA 80:20 glycerides this was 8/22 (36%). Other aspects of immune function, ie DTH responses, NK cell activity, lymphocyte proliferation and production of TNF-alpha, IL1-beta, IL6, IFN-gamma, IL2, IL4, and PGE(2), were not affected. CONCLUSION: This is the first study that suggests that CLA may beneficially affect the initiation of a specific response to a hepatitis B vaccination. This was seen in the CLA 50:50, but not in the CLA 80:20 group.  相似文献   

5.
Animal studies suggest that conjugated linoleic acid (CLA) may modulate the immune response, while studies in healthy human subjects have shown little effect and results are controversial. However, the effects of CLA may be more prominent in situations of immune imbalance, such as allergy. We studied the effects of the natural CLA isomer, cis-9, trans-11-CLA, on allergy symptoms and immunological parameters in subjects with birch pollen allergy. In a randomised, placebo-controlled study, forty subjects (20-46 years) with diagnosed birch pollen allergy received 2 g CLA/d in capsules, which contained 65.3 % cis-9, trans-11-CLA and 8.5 % trans-10, cis-12-CLA (n 20), or placebo (high-oleic acid sunflower-seed oil) (n 20) for 12 weeks. The supplementation began 8 weeks before the birch pollen season and continued throughout the season. Allergy symptoms and use of medication were recorded daily. Lymphocyte subsets, cytokine production, immunoglobulins, C-reactive protein, lipid and glucose metabolism and lipid peroxidation were assessed before and after supplementation. The CLA group reported a better overall feeling of wellbeing (P < 0.05) and less sneezing (P < 0.05) during the pollen season. CLA supplementation decreased the in vitro production of TNF-alpha (P < 0.01), interferon-gamma (P < 0.05) and IL-5 (P < 0.05). Total plasma IgE and birch-specific IgE concentrations did not differ between groups, whereas plasma IgA (P < 0.05), granulocyte macrophage colony-stimulating factor (P < 0.05) and eosinophil-derived neurotoxin (P < 0.05) concentrations were lower after CLA supplementation. Urinary excretion of 8-iso-PGF2alpha, a major F2-isoprostane (P < 0.01), and 15-keto-dihydro-PGF2alpha, a primary PGF2alpha metabolite (P < 0.05), increased in the CLA group. The results suggest that cis-9, trans-11-CLA has modest anti-inflammatory effects in allergic subjects.  相似文献   

6.
Isomers of conjugated linoleic acid (CLA) are found in beef, lamb and dairy products. Diets containing CLA reduce adipose mass in various depots of experimental animals. In addition, CLA delays the onset of diabetes in the ZDF rat model for obesity-linked type 2 diabetes mellitus. We hypothesize that there would be an inverse association of CLA with body weight and serum leptin in subjects with type 2 diabetes mellitus. In this double-blind study, subjects with type 2 diabetes mellitus were randomized into one of two groups receiving either a supplement containing mixed CLA isomers (CLA-mix; 8.0 g daily, 76% pure CLA; n = 12) or a supplement containing safflower oil (placebo; 8.0 g daily safflower oil, n = 9) for 8 wk. The isomers of CLA in the CLA-mix supplement were primarily c9t11-CLA ( approximately 37%) and t10c12-CLA ( approximately 39%) in free fatty acid form. Plasma levels of CLA were inversely associated with body weight (P < 0.05) and serum leptin levels (P < 0.05). When levels of plasma t10c12-CLA isomer were correlated with changes in body weight or serum leptin, t10c12-CLA, but not c9t11-CLA, was inversely associated with body weights (P < 0.05) and serum leptin (P < 0.02). These findings strongly suggest that the t10c12-CLA isomer may be the bioactive isomer of CLA to influence the body weight changes observed in subjects with type 2 diabetes. Future studies are needed to determine a causal relationship, if any, of t10c12-CLA or c9t11-CLA to modulate body weight and composition in subjects with type 2 diabetes. Furthermore, determining the ability of CLA isomers to influence glucose and lipid metabolism as well as markers of insulin sensitivity is imperative to understanding the role of CLA to aid in the management of type 2 diabetes and other related conditions of insulin resistance.  相似文献   

7.
Conjugated linoleic acid isomers and cancer   总被引:2,自引:0,他引:2  
We reviewed the literature regarding the effects of conjugated linoleic acid (CLA) preparations enriched in specific isomers, cis9, trans11-CLA (c9, t11-CLA) or trans10, cis12-CLA (t10, c12-CLA), on tumorigenesis in vivo and growth of tumor cell lines in vitro. We also examined the potential mechanisms by which CLA isomers may alter the incidence of cancer. We found no published reports that examined the effects of purified CLA isomers on human cancer in vivo. Incidence of rat mammary tumors induced by methylnitrosourea was decreased by c9, t11-CLA in all studies and by t10, c12-CLA in just a few that included it. Those 2 isomers decreased the incidence of forestomach tumors induced by benzo (a) pyrene in mice. Both isomers reduced breast and forestomach tumorigenesis. The c9, t11-CLA isomer did not affect the development of spontaneous tumors of the intestine or mammary gland, whereas t10, c12-CLA increased development of genetically induced mammary and intestinal tumors. In vitro, t10, c12-CLA inhibited the growth of mammary, colon, colorectal, gastric, prostate, and hepatoma cell lines. These 2 CLA isomers may regulate tumor growth through different mechanisms, because they have markedly different effects on lipid metabolism and regulation of oncogenes. In addition, c9, t11-CLA inhibited the cyclooxygenase-2 pathway and t10, c12-CLA inhibited the lipooxygenase pathway. The t10, c12-CLA isomer induced the expression of apoptotic genes, whereas c9, t11-CLA did not increase apoptosis in most of the studies that assessed it. Several minor isomers including t9, t11-CLA; c11, t13-CLA; c9, c11-CLA; and t7, c11-CLA were more effective than c9, t11-CLA or t10, c12-CLA in inhibiting cell growth in vitro. Additional studies with purified isomers are needed to establish the health benefit and risk ratios of each isomer in humans.  相似文献   

8.
Conjugated linoleic acid (CLA) supplements containing a variety of isomers reduce milk fat yield. We have recently identified trans-10, cis-12 CLA as the isomer responsible for inhibiting milk fat synthesis in dairy cows. Our objectives were to determine milk fat yield and fatty acid composition responses to different doses of trans-10, cis-12 CLA. Multiparous Holstein cows (n = 4) were used in a 4 x 4 Latin square design. Treatments consisted of a 5-d abomasal infusion of four doses of trans-10, cis-12 CLA, i.e., 0.0, 3.5, 7.0 and 14.0 g/d. Milk fat yield was decreased 25, 33, and 50%, and milk fat concentration was reduced 24, 37 and 46% when cows received 3.5, 7.0 and 14.0 g/d of trans-10, cis-12 CLA, respectively. Feed intake, milk yield, and milk protein content and yield were unaffected by treatment. Milk fatty acid composition revealed that de novo synthesized fatty acids (short and medium chain) were extensively reduced when cows received the two highest doses, but at the low dose (3.5 g/d), decreases in de novo synthesized fatty acids and preformed fatty acids were similar. Changes in milk fatty acid composition also demonstrated that (9)-desaturase activity was inhibited at the two high doses of trans-10, cis-12 CLA, but was unaffected by the low dose. Results indicate minimal quantities of trans-10, cis-12 CLA (0.016% of dietary dry matter) markedly inhibited milk fat synthesis (25% reduction) and that a curvilinear reduction in milk fat yield occurred with increasing quantities of trans-10, cis-12 CLA.  相似文献   

9.
We have previously shown that a diet containing a mixture of conjugated linoleic acid (CLA) isomers reduces the incidence of colon tumors in rats treated with 1,2-dimethylhydrazine (DMH). The present study examined which of the two main CLA isomers, trans-10,cis-12 CLA (t10c12) or cis-9,trans-11 CLA (c9t11), decreases colon tumor numbers and the mechanisms for this effect. Six-week-old, male Sprague-Dawley rats were intramuscularly injected with 15 mg/kg of DMH twice per week for 6 weeks and fed a control diet, 1% t10c12, or 1% c9t11 for 30 weeks. The experimental diets were initiated simultaneously with DMH injection. The tumor numbers were decreased and the apoptotic index was significantly increased in the colonic mucosa of the t10c12 and c9t11 groups, when the results were compared with those of the control group. The protein levels of Bcl-2 and cyclooxygenase-2 were significantly decreased, but Bax levels were increased in both of the CLA isomer groups. The thromboxane B(2) levels in colonic mucosa were substantially lower in the two CLA isomer groups than in the control group. However, there was no difference in these parameters between the CLA isomer groups. We have demonstrated that diets containing 1% t10c12 and c9t11 were equally effective in reducing tumor numbers and inducing apoptosis in the colonic mucosa of rats treated with DMH. These results indicate that Bcl-2 family protein levels are associated with CLA-induced apoptosis in the colonic mucosa of DMH-treated rats.  相似文献   

10.
C57BL/6J mice were divided into control group (C), CLA, c9t11, or t10c12 groups. CLA and t10c12 significantly increased α-tocopherol levels in the plasma and various tissues in experiment 1. The CLA and t10c12 groups also showed a significant increase in hepatic α-tocopherol transfer protein (α-TTP) levels. In experiment 2, mice were divided into control, CLA, R (rosiglitazone, a PPARγ agonist), or CLA+R groups. Vitamin E levels in the liver, epididymal fat pad, kidney, and plasma were increased by CLA, and this effect was reduced in the CLA+R group. t10,c12-CLA is the most active isomer in the CLA mixture in the regulation of tissue vitamin E status and α-TTP protein levels in mice. The increase in liver vitamin E status in CLA-fed mice is mainly due to the effect of PPARγ inhibition.  相似文献   

11.
Dietary conjugated linoleic acids (CLA) have been reported to have a number of isomer-dependent effects on lipid metabolism including reduction in adipose tissue deposition, changes in plasma lipoprotein concentrations and hepatic lipid accumulation. The aim of this study was to compare the effect of individual CLA isomers against lipogenic and high 'Western' fat background diets. Golden Syrian hamsters were fed a high-carbohydrate rodent chow or chow supplemented with 17.25 % fat formulated to represent the type and amount of fatty acids found in a typical 'Western' diet (including 0.2 % cholesterol). Diets were further supplemented with 0.25 % (w/w) rapeseed oil, cis9, trans11 (c9,t11)-CLA or trans10, cis12 (t10,c12)-CLA. Neither isomer had a significant impact on plasma lipid or lipoprotein concentrations. The t10,c12-CLA isomer significantly reduced perirenal adipose tissue depot mass. While adipose tissue acetyl CoA carboxylase and fatty acid synthase mRNA concentrations (as measured by quantitative PCR) were unaffected by CLA, lipoprotein lipase mRNA was specifically reduced by t10,c12-CLA, on both background diets (P < 0.001). This was associated with a specific reduction of sterol regulatory element binding protein 1c expression in perirenal adipose tissue (P = 0.018). The isomers appear to have divergent effects on liver TAG content with c9,t11-CLA producing lower concentrations than t10,c12-CLA. We conclude that t10,c12-CLA modestly reduces adipose tissue deposition in the Golden Syrian hamster independently of background diet and this may possibly result from reduced uptake of lipoprotein fatty acids, as a consequence of reduced lipoprotein lipase gene expression.  相似文献   

12.
Bee G 《The Journal of nutrition》2000,130(9):2292-2298
Conjugated linoleic acids (CLA) have been shown to affect fatty acid synthesis in various tissues. The objective of the study was to compare the effect of a commercial source of CLA with a linoleic acid-enriched oil (LA), supplied to 12 multiparous sows during gestation and lactation, on adipose tissue and milk fatty acid composition. The CLA isomers detected in the CLA oil were (in order of magnitude) c9,t11; t10,c12; c9,c11; t9,t11/t10,t12 and c10,c12 and amounted to 58.9 g/100 g fat. Biopsies were taken from the backfat on d 7 and 97 of gestation and milk samples were collected on d 2, 9, 16 and 23 after farrowing. Collection of colostrum and mature milk samples took place at 1100 h for sows who farrowed in the morning or at 1500 h for those who farrowed in the afternoon. All major CLA isomers in the supplement were transferred to the tissue and milk fat and, compared with the LA group, significantly increased saturated fatty acid and decreased monounsaturated fatty acid levels in the tissue and milk. These findings suggest a distinct involvement of CLA in the de novo fatty acid synthesis and desaturation process in the adipose tissue and mammary gland. Estimated transfer efficiency of dietary CLA isomers was 41-52% for the backfat and 55-69% for the mature milk. The incorporation and uptake efficiency seemed to be selective with the highest values found for c9,t11-CLA. Overall, dietary CLA supplementation of sows during gestation and lactation markedly altered backfat and milk fatty acid composition.  相似文献   

13.
BACKGROUND: We recently showed that trans-10,cis-12 (t10,c12) conjugated linoleic acid (CLA) causes insulin resistance in obese men. However, metabolic effects of the c9,t11 CLA isomer are still unknown in obese men. Because c9,t11 CLA is the predominant CLA isomer in foods and is included in dietary weight-loss products, it is important to conduct randomized controlled studies that use c9,t11 CLA preparations. OBJECTIVE: We investigated the effects of c9,t11 CLA supplementation on insulin sensitivity, body composition, and lipid peroxidation in a group at high risk for cardiovascular disease. DESIGN: In a randomized, double-blind, placebo-controlled study, 25 abdominally obese men received 3 g c9,t11 CLA/d or placebo (olive oil). Before and after 3 mo of supplementation, we assessed insulin sensitivity (hyperinsulinemic euglycemic clamp), lipid metabolism, body composition, and urinary 8-iso-prostaglandin F(2alpha) (a major F(2)-isoprostane) and 15-keto-dihydro-prostaglandin F(2alpha), markers of in vivo oxidative stress and inflammation, respectively. RESULTS: All subjects completed the study. Compared with placebo, c9,t11 CLA decreased insulin sensitivity by 15% (P < 0.05) and increased 8-iso-prostaglandin F(2alpha) and 15-keto-dihydro-prostaglandin F(2alpha) excretion by 50% (P < 0.01) and 15% (P < 0.05), respectively. The decreased insulin sensitivity was independent of changes in serum lipids, glycemia, body mass index, and body fat but was abolished after adjustment for changes in 8-iso-prostaglandin F(2alpha) concentrations. There were no differences between groups in body composition. CONCLUSIONS: A CLA preparation containing the purified c9,t11 CLA isomer increased insulin resistance and lipid peroxidation compared with placebo in obese men. Because c9,t11 CLA occurs in commercial supplements as well as in the diet, the present results should be confirmed in larger studies that also include women.  相似文献   

14.
The present study investigated whether consuming dairy products naturally enriched in cis-9, trans-11 (c9,t11) conjugated linoleic acid (CLA) by modification of cattle feed increases the concentration of this isomer in plasma and cellular lipids in healthy men. The study had a double-blind cross-over design. Subjects aged 34-60 years consumed dairy products available from food retailers for 1 week and then either control (0.17 g c9,t11 CLA/d; 0.31 g trans-vaccenic acid (tVA)/d) or CLA-enriched (1.43 g c9,t11 CLA/d; 4.71 g tVA/d) dairy products for 6 weeks. After 7 weeks washout, this was repeated with the alternate products. c9,t11 CLA concentration in plasma lipids was lower after consuming the control products, which may reflect the two-fold greater c9,t11 CLA content of the commercial products. Consuming the CLA-enriched dairy products increased the c9,t11 CLA concentration in plasma phosphatidylcholine (PC) (38 %; P = 0.035), triacylglycerol (TAG) (22 %; P < 0.0001) and cholesteryl esters (205 %; P < 0.0001), and in peripheral blood mononuclear cells (PBMC) (238 %; P < 0.0001), while tVA concentration was greater in plasma PC (65 %; P = 0.035), TAG (98 %; P = 0.001) and PBMC (84 %; P = 0.004). Overall, the present study shows that consumption of naturally enriched dairy products in amounts similar to habitual intakes of these foods increased the c9,t11 CLA content of plasma and cellular lipids.  相似文献   

15.
Commercial preparations of conjugated linoleic acid (CLA) contain both positional and geometric isomers of octadecadienoic acid, with cis-9,trans-11 CLA (c9t11) and trans-10,cis-12 CLA (t10c12) as the principal isomers. We showed previously that CLA reduced the incidence of colon tumors in rats treated with 1,2-dimethylhydrazine. In addition, our previous in vitro studies showed that t10c12 inhibited the growth of HT-29 and Caco-2 human colon cancer cells, whereas c9t11 had no effect on cell growth. In the present study, to examine the effects of the CLA isomers on cell cycle and cell cycle regulatory proteins, we treated HT-29 cells with various concentrations (0-4 micromol/L) of the individual CLA isomers. A DNA flow cytometric analysis revealed that t10c12 induced a G1 arrest, whereas c9t11 had no effect on the cell cycle. Western blot analysis of total cell lysates revealed no alteration in the protein expression of cyclin A, cyclin D, cyclin E, cyclin-dependent kinase (CDK) 2, or CDK4 due to t10c12 treatment. However, t10c12 substantially increased the protein expression and mRNA accumulation of the CDK inhibitor p21(CIP1/WAF1). The t10c12 isomer increased the association of p21(CIP1/WAF1) with CDK2 and proliferating cell nuclear antigen, but decreased the levels of phosphorylated retinoblastoma protein (Rb), with an increase in the levels of hypophosphorylated Rb protein. An in vitro kinase assay using histone H1 as a substrate showed that the activities of CDK2 were significantly decreased by t10c12. These results indicate that t10c12 exerts its growth inhibitory effects in colon cancer cells through the induction of G1 cell cycle arrest. The induction of p21(CIP1/WAF1) may be one of the mechanisms by which t10c12 inhibits cell cycle progression in HT-29 cells.  相似文献   

16.
Trans-fatty acid intake is associated with an increased risk of CHD and diabetes. The effects of single trans-fatty acid isomers are largely unexplored. The present study examined the effects of a 6-week supplementation with two trans-18 : 1 isomers (trans-11 and trans-12) in human subjects on immune cells, several inflammatory and immunological biomarkers (for example, IL, TNFalpha, C-reactive protein, adiponectin, intercellular adhesion molecule-1, prostacyclin, phagocytic process). Following a 2-week adaptation period without supplements, the test group (n 12) received vaccenic acid (trans-11-18:1) and trans-12-18 : 1 in equal amounts (6.0 g/d) for 6 weeks. The control group (n 12) consumed an oil without trans-fatty acids and conjugated linoleic acids (CLA). Samples were collected at the end of both periods. Trans-11- and trans-12-18 : 1 were significantly increased in cellular lipids. The endogenous synthesis of cis-9, trans-11-CLA from trans-11-18 : 1 was demonstrated via increased CLA in cellular lipids of the test group. Generally, trans-isomer supplementation did not affect either inflammatory biomarkers (for example, IL-6, IL-8, TNFalpha) or immune function (for example, phagocytosis) during the present study. The dietary supplementation of trans-11- and trans-12-18 : 1 (6 g/d) and their accumulation in leucocytes had no effects on biomarkers of inflammation and immune function. However, because of the limited data on the safety of trans-fatty acid intake and effects of individual trans isomers on human health (for example, trans-9-18 : 1, trans-10-18 : 1) at present, it is prudent to reduce trans-fat intake in general.  相似文献   

17.
Conjugated linoleic acid (CLA) isomers are potent inhibitors of mammary tumor cell growth. Evidence suggests that CLA modulates essential fatty acid (EFA) metabolism; however, it is not clear which parts of this pathway are important regulatory points modulated by CLA. Enriched mixtures of D9-cis,11-trans (D9c,11t)- and D10-trans,12-cis (D10t,12c)-18:2 were used to assess outcome measures of EFA metabolism pertaining to membrane phospholipid incorporation, tumor cell growth, and prostaglandin E2 (PGE2) synthesis in the MDA-MB-231 mammary tumor cell line. Tumor cells were treated with linoleic acid (LA), an equal mixture (Mix), or enriched preparations of D9c,11t- or D10t,12c-18:2. Treatment with Mix or the enriched mixture of D10t,12c-18:2 significantly inhibited the synthesis of arachidonic acid (AA) from LA, resulting in increased levels of LA and decreased levels of AA in membrane phosphatidylcholine and phosphatidylethanolamine (P < 0.05). LA and AA levels were not altered in cells treated with enriched D9c,11t-18:2 and were similar to those in LA control treated cells. All CLA treatments reduced [3H]thymidine uptake, an indicator of tumor cell growth, by more than one-half relative to LA controls. MDA-MB-231 cells challenged with AA in the presence of all CLA mixtures resulted in significantly reduced PGE2 synthesis relative to controls treated with LA (P < 0.05). It is evident that individual isomers exert inhibitory effects at specific steps of EFA metabolism, which correspondingly leads to a reduction in PGE2 synthesis and, ultimately, tumor growth.  相似文献   

18.
We previously demonstrated that a mixture of conjugated linoleic acid (CLA) isomers decreases colon cancer incidence in rats treated with 1,2-dimethylhydrazine. Our in vitro studies have also shown that CLA inhibits the growth of HT-29 cells, a human colon cancer cell line. When we compared the individual potencies of the two main isomers found in the mixture of CLA isomers (e.g., cis-9, trans-11 [c9t11] and trans-10, cis-12 [t10c12]), t10c12 CLA decreased viable cell numbers in a dose-dependent manner. By contrast, c9t11 CLA had no effect. Therefore, the present study examined whether the decreased cell growth is related to changes in secretion of insulin-like growth factor (IGF)-II and/or IGF-binding proteins (IGFBPs) that have been shown to regulate HT-29 cell proliferation. Cells were incubated in serum-free medium with various concentrations of the individual CLA isomers, and immunoblot analysis of 24-hour, serum-free, conditioned media using a monoclonal anti-IGF-II antibody was performed. HT-29 cells secreted both mature 7,500 apparent molecular weight (M(r)) and higher-M(r) forms of IGF-II. t10c12 CLA decreased the levels of the higher-M(r) and the mature form of IGF-II in a dose-dependent manner, whereas c9t11 CLA had no effect. Ligand blot analysis of conditioned medium using (125)I-IGF-II revealed that the production of IGFBP-2 and IGFBP-4 was also decreased by t10c12 CLA, whereas c9t11 CLA had no effect. Exogenous IGF-II abrogated the growth inhibition induced by t10c12 CLA. These results indicate that inhibition of HT-29 cell growth by t10c12 CLA may be mediated by decreasing IGF-II secretion in these cells.  相似文献   

19.
We evaluated the effect of cis-9, trans-11 (9c,11t) and trans-10, cis-12 (10t,12c) conjugated linoleic acid (CLA) on the immune system in C57BL/6J mice. Mice were fed experimental diets containing 0% CLA (controls), 1% 9c,11t-CLA, 1% 10t,12c-CLA or a 1:1 mixture (0.5% + 0.5%) of these two CLA isomers for 3 wk. Relative spleen weights of all CLA fed mice were greater than the controls. Spleen lymphocytes isolated from the mice fed 10t,12c-CLA produced more immunoglobulin (Ig)A and IgM but not IgG when stimulated with concanavalin A (ConA) compared with controls. IgA production from unstimulated spleen lymphocytes was greater in the 10t, 12c-CLA group than in controls. Conversely, 9c,11t-CLA did not affect the production of any of the Ig subclasses. Lymphocytes isolated from 9c,11t-CLA fed mice produced more tumor necrosis factor-alpha than the control group. The proportion of B cells in the spleen lymphocyte population was significantly lower in the 9c,11t-CLA group, and higher in the 10t,12c-CLA group than in the controls. Compared with the control group, the percentage of CD4(+) T cells was lower in the 10t,12c-CLA group, and the percentage of CD8(+) T cells was higher in the 9c,11t-CLA group. Furthermore, the percentage of CD8(+) T cells was higher in the 1:1 mixture group than in controls. The CD4(+)/CD8(+) ratio was lower in the 1:1 mixture group than in controls. These results suggest that 9c,11t and 10t,12c-CLA can stimulate different immunological effects and that the simultaneous intake of the two isomers can change the T cell population.  相似文献   

20.
Conjugated linoleic acid (CLA) reduces body fat reserves, and reduces atherogenesis and type II diabetes in animal experiments. It has been reported that CLA have isomeric-specificity, such as c9, t11 CLA with anticancer activity. The antiproliferative effects of two isomers of CLA (c9, t11-CLA, t9, t11-CLA) and their mixture on the human colon adenocarcinoma cell line Caco-2 were investigated in this paper. Caco-2 were incubated in serum-free medium. The antiproliferative effects of different concentrations (0, 25, 50, 100, 200 micromol/L) of linoleic acid (LA), c9, t11-CLA, t9, t11-CLA (the purity of LA and CLA was 96%) and a mixture of c9, t11-CLA and t9, t11- CLA (1:1 v/v) on caco-2 in various action time (1d, 2d, 3d, 4d) were tested in the present study. The antiproliferative effects of four substances in the same concentration and with the same action time were compared. All substances tested could inhibit Caco-2 cell proliferation. The higher anti-proliferation activity in the four materials is the mixture of CLA, then is t9,t11-CLA, c9,t11-CLA, and linoleic acid respectively. The activity is closely related to treatment time and concentration. The isomer t9, t11-CLA itself was found to have antiproliferative activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号