首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differences in the acetylcholine (ACh)-induced endothelium-dependent relaxation and hyperpolarization of the mesenteric arteries of Wistar Kyoto rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP) were studied. Relaxation was impaired in preparations from SHRSP and tendency to reverse the relaxation was observed at high concentrations of ACh in these preparations. Relaxation was partly blocked by NG-nitro-L-arginine (L-NOARG, 100 microM) and, in the presence of L-NOARG, tendency to reverse the relaxation was observed in response to higher concentrations of ACh, even in preparations from WKY. The relaxation remaining in the presence of L-NOARG was also smaller in preparations from SHRSP. The tendency to reverse the relaxation observed at higher concentrations of ACh in preparations from SHRSP or WKY in the presence of L-NOARG were abolished by indomethacin (10 microM). Elevating the K+ concentration of the incubation medium decreased relaxation in the presence of both indomethacin and L-NOARG. Relaxation in the presence of L-NOARG and indomethacin was reduced by the application of both apamin (5 microM) and charybdotoxin (0.1 microM). This suggests that the relaxation induced by ACh is brought about by both endothelium-derived relaxing factor (EDRF, nitric oxide (NO)) and hyperpolarizing factor (EDHF), which activates Ca2+-sensitive K+ channels. Electrophysiological measurement revealed that ACh induced endothelium-dependent hyperpolarization of the smooth muscle of both preparations in the presence of L-NOARG and indomethacin; the hyperpolarization being smaller in the preparation from SHRSP than that from WKY. These results suggest that the release of both NO and EDHF is reduced in preparations from SHRSP. In addition, indomethacin-sensitive endothelium-derived contracting factor (EDCF) is released from both preparations; the release being increased in preparations from SHRSP.  相似文献   

2.
3.
1. The 5-hydroxytryptamine (5-HT) induced-contraction in ring preparations of basilar arteries from Wistar-Kyoto rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP) was pharmacologically characterized in vitro. 2. Contractile responses to 5-HT (1 nM-100 nM) and their pD2 values in arteries from SHRSP at 6 months of age were significantly greater than those in age-matched WKY, although the maximum response did not differ between the two groups. 3. There were no significant differences in contractile responses to U-44619, endothelin-1, neuropeptide Y, and angiotensin II between WKY and SHRSP arteries. 4. Spiperone (1 nM-1 microM, a 5-HT2 receptor antagonist), produced biphasic displacement of the 5-HT curves in WKY and SHRSP arteries. The response to high concentrations of 5-HT was concentration-dependently antagonized by spiperone, while the response to low concentrations of 5-HT was resistant to blockade by spiperone, and the spiperone-resistant contractile responses induced by 5-HT were greater in SHRSP than in WKY. Ketanserin (1-100 nM, 5-HT2) also produced a biphasic shift of the 5-HT curves for both arteries. 5. Methiothepin (10 and 100 nM, 5-HT1 and 5-HT2) potently inhibited 5-HT-induced contractions in both groups. In addition, methiothepin (100 nM) produced a parallel shift to the right of the component of 5-HT-induced contractile responses that was resistant to blockade by spiperone in both groups. 6. The contractile effects of 5-HT in WKY and SHRSP arteries were not affected by MDL 72222 (1 microM, 5-HT3) and SDZ 205-557 (1 microM, 5-HT4). In addition, cocaine (10 microM), pargyline (50 microM), prazosin (10 microM), indomethacin (3 microM) and SQ 29,548 (1 microM) did not affect the contractile effects of 5-HT in either artery. 7. Contractile responses to 5-carboxamidotryptamine, CGS 12066B, pindolol and propranolol were greater in SHRSP arteries than in WKY arteries, whereas contractions in response to 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), alpha-methyl-5-HT and 2-methyl-5-HT did not differ between the two groups. Cisapride failed to contract basilar arteries in both groups. Furthermore, a correlation analysis showed a highly significant correlation between the pD2 values of 5-HT agonists in WKY and SHRSP arteries and their published binding affinities at the 5-HT1B subtype. 8. These findings suggest that 5-HT elicits vasoconstriction in rat basilar arteries by stimulation of a mixed receptor population of 5-HT2 and 5-HT1-like receptors (similar to the 5-HT1B receptor subtype), and that the contraction mediated by 5-HT1-like receptors is enhanced in the basilar artery from SHRSP.  相似文献   

4.
We investigated, in mesenteric arteries from hypertensive rats (SHRs), the possible changes in neurogenic nitric oxide (NO) release produced by endothelin-1 (ET-1), and the mechanisms involved in this process. The contractile response induced by electrical field stimulation (EFS; 200 mA, 0.3 ms, 1-16 Hz, for 30 s) in deendotheliumized mesenteric segments was abolished by tetrodotoxin and phentolamine. The NO synthase inhibitor N(G)-nitro-L-arginine (L-NAME, 10 microM) increased the contractions caused by EFS. ET-1 enhanced the contraction induced by EFS, which was unaltered by the subsequent addition of L-NAME. The ETA antagonist-receptor BQ-123 (1 microM) inhibited the effect of ET-1 on EFS response, whereas the ETB antagonist-receptor BQ-788 (3 microM) partially blocked it, and the subsequent addition of L-NAME restored the contractile response in both cases. SOD (25 unit/ml) decreased the response to EFS, and the subsequent addition of L-NAME increased this response. ET-1 did not modify the decrease in EFS response induced by SOD, and the addition of L-NAME increased the response. None of these drugs altered the response to exogenous noradrenaline (NA) or basal tone except SOD, which increased the basal tone, an effect blocked by phentolamine (1 microM). In arteries preincubated with [3H]NA, ET-1 did not modify the tritium efflux evoked by EFS, which was diminished by SOD. ET-1 did not alter basal tritium efflux, whereas SOD significantly increased the efflux. These results suggest that EFS of SHR mesenteric arteries releases neurogenic NO, the metabolism of which is increased in the presence of ET-1 by the generation of superoxide anions.  相似文献   

5.
Hypertension-associated alterations of the nitric oxide (NO) pathway were analyzed in middle cerebral arteries (MCA) from normotensive (WKY) and hypertensive (SHR) rats. The vasoconstrictor response to prostaglandin F2alpha (PGF(2 alpha), 30 and 100 microM) was smaller in MCA from SHR than from WKY. Endothelium-dependent relaxations to bradykinin (1 nM-10 microM) or acetylcholine (10 microM) were similar in MCA from both strains, whereas the endothelium-independent response to sodium nitroprusside (1 nM-0.1 mM) was smaller in MCA from SHR. L-arginine (L-Arg, 10 microM) similarly inhibited the vasoconstrictor responses in both strains; however, the inhibitory effect of 100 microM of L-Arg was greater in MCA from SHR. N(omega)-nitro-L-arginine methyl ester (L-NAME, 100 microM), but not aminoguanidine (100 microM) or 7-nitroindazole (10 microM), increased basal tone, potentiated the PGF(2 alpha)-induced vasoconstrictor responses and reduced the bradykinin-elicited relaxation in a similar way in MCA from WKY and SHR. N(omega)-nitro-L-arginine methyl ester also antagonized the inhibitory effect of 10 microM of L-Arg. Incubation for 5 h with lipopolysaccharide (10 microg/ml) similarly reduced the response to PGF(2 alpha) in MCA from WKY and SHR; this reduction was antagonized by dexamethasone (1 microM). Cerebral arteries expressed endothelial (eNOS) and neuronal (nNOS) NO synthase similarly in both strains, but inducible NOS (iNOS) expression was more evident in SHR. Lipopolysaccharide increased iNOS expression in both strains to a similar level. The basal constitutive NOS (cNOS) and iNOS activities were similar in arteries from WKY and SHR. Lipopolysaccharide increased iNOS activity only in arteries from SHR. These results indicate that hypertension did not impair endothelial NO production by NOS activation but induced an up-regulation of basal iNOS expression.  相似文献   

6.
The aim of the present study was to assess the ability of ouabain to induce vasomotor responses and interfere with the myogenic tone in isolated segments of middle cerebral arteries from male Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) subjected to different pressures and no-flow conditions using a pressure myograph. At 60 mmHg, ouabain (1 nM-1 mM) caused relaxations at concentrations of 10 microM and up in segments from WKY while 1 nM ouabain produced a relaxation that was unaltered by the remaining concentrations in SHR segments. The relaxations were higher in SHR than in WKY arteries. Endothelium removal practically abolished the relaxation in arteries from both strains, whereas 10 microM L-NAME (an inhibitor of nitric oxide synthase) had no effect. When arteries were pressurized from 20-120 mmHg, myogenic activity developed in 3 out of 10 WKY arteries while SHR arteries did not show myogenic tone. Endothelium removal did not alter the effects of pressure increase in both strains, and incubation of segments in a Ca(2+)-free medium to abolish myogenic tone, shifted the pressure-response curve of WKY segments to the left; pressure-response curves from SHR were not modified. Although ouabain (0.1 mM) did not alter the pressure-response curve from WKY segments, curves obtained from SHR were shifted to the left. These results suggest that: 1) ouabain produces vasodilation in pressurized middle cerebral arteries of WKY and SHR which is positively modulated by an endothelial factor distinct from nitric oxide; and 2) only WKY arteries develop myogenic activity while the diameter of SHR arteries is passively enhanced with increases in intraluminal pressure. This passive increase is facilitated by ouabain. Therefore, hypertension modifies the mechanical properties of cerebral arteries resulting in a loss in the capacity for autoregulation.  相似文献   

7.
Endothelium-dependent relaxation (EDR) in the blood vessels of spontaneously hypertensive rats (SHR) and the role of nitric oxide (NO) in the initiation of hypertension are reviewed. EDR was impaired in blood vessels of SHR depending on age and degree of hypertension when compared with those of normotensive rats. The cause of the impairment varied among the type of blood vessels: a decrease in the production of NO and endothelium-derived relaxing factor (EDRF) and an increase in the production of endothelium-derived contracting factor (EDCF) are the main causes of the impairment in large arteries, while a decrease in endothelium-dependent hyperpolarization and increased release of EDCF are the main causes of the impairment in small arteries. Interactions among these endothelium-derived factors and changes in the interactions are also causes of impairment. Superoxide may be involved in the impairment of EDR by destroying NO. The endothelium depresses smooth muscle contraction, including spontaneous tone developed in vascular smooth muscle, and the depressing effect of the endothelium is impaired in the preparations from SHR. The endothelium of blood vessels of SHR are structurally injured as demonstrated by scanning electron microscopy. Antihypertensive treatment prevented these functional and structural changes. Chronic treatment with inhibitors of NO production in normotensive rats impaired EDR and elevated blood pressure. The impairment of EDR is a secondary change due to continued hypertension, and early initiation of antihypertensive therapy is recommended.  相似文献   

8.
The conversion of nitric oxide (NO*) into its congeners nitrosonium (NO(+)) and nitroxyl (HNO/NO(-)) ions may have important consequences for signal transduction and physiological responses. Manganese-containing superoxide dismutase (MnSOD) may convert NO. into its redox congeners. In our current work, we have examined the mechanism of sodium nitroprusside (SNP)-induced relaxation of arteries, with or without endothelium, from both normotensive and spontaneously hypertensive (SH) rats in the absence and presence of MnSOD. SNP induced a greater degree of relaxation in normotensive than in SH rats. MnSOD antagonized SNP-induced relaxation and effect was greater in normotensive than hypertensive rats. However, MnSOD even potentiated SNP-induced relaxation in mesenteric arteries with endothelium from SH rats. Our results indicate that HNO/NO(-)-mediated relaxation is more effective in mesenteric artery smooth muscle from SH rats than from normotensive rats and that vascular dysfunction in SH rats is not solely endothelium-derived but involves changes in vascular smooth muscles.  相似文献   

9.
In endothelium-denuded guinea-pig isolated basilar artery preparations, hydroxocobalamin (30, 100 and 300 μM) concentration-dependently inhibited the vasodilator responses to exogenous nitric oxide (NO), whereas the vasodilator responses to nitrergic nerve stimulation were slightly reduced by high (100 and 300 μM) but not by the low (30 μM) concentration of hydroxocobalamin. Vasodilatation in response to sodium nitroprusside (10–100 nM) was totally abolished by 300 μM hydroxocobalamin. In endothelium-intact preparations, vasodilator responses to acetylcholine (0.3–3 μM) were significantly reduced or abolished by hydroxocobalamin (30–300 μM). The mean reduction by hydroxocobalamin of relaxations to acetylcholine was significantly greater than that of the equivalent response evoked by nitrergic nerve stimulation. The findings suggest that the nitrergic transmitter in the guinea-pig basilar artery may be quantitatively less susceptible than the endothelium-derived relaxing factor to the NO scavenger hydroxocobalamin.  相似文献   

10.
1. The effects of cross-fostering genetically hypertensive (GH) with normotensive (N) Wistar rats on the structure of mesenteric resistance arteries (MRA) in young (6 week old) and adult (18 week old) rats were investigated to see whether the abnormal remodelling known to exist in GH rats could be prevented by changing the maternal environment. 2. Genetically hypertensive and normotensive rat pups were reared either by their natural mothers or a foster mother of the opposite strain (NX and GHX) with fostering done within 24 h of birth. 3. Blood pressure (BP) was measured from age 6-18 weeks; at 6 and 18 weeks MRA structure was assessed. 4. At the time of death, intra-arterial mean BP was measured (via the femoral artery), after which MRA were fixed by perfusion (at the systolic BP of the rat) via the abdominal aorta, first with 75% Tyrode's solution containing heparin and papaverine, followed by 2% glutaraldehyde in 75% Tyrode's solution. Arteries were dissected out, processed and embedded in Technovit (Heraeus Kulzer, Werheim, Germany) and serial sections were cut and stained with Giemsa. 5. Stereological techniques were used to determine media width, lumen diameter and medial cross-sectional area (CSA); in addition, the ratio of media width to lumen diameter was calculated. Smooth muscle cell density was also calculated. 6. In MRA from 6-week-old rats, GH rats compared with N rats had increased media width and CSA and an increased ratio of media width to lumen diameter. 7. There were no significant changes in structure in the GHX group compared with GH rats. The NX group compared with N rats had increased media width and CSA and lumen diameter, but no change in the ratio of media width to lumen diameter. Smooth muscle cell density, reduced in GH compared with N rats, was increased (P < 0.001) in the NX group, but not changed in the GHX group compared with GH rats. 8. In 18-week-old GH rats compared with N rats, the MRA had a decreased media width and medial CSA and smaller lumen diameter, but there was no change in the ratio of media width to lumen diameter. 9. In the GHX group compared with GH rats, media width and CSA were reduced; in the NX group compared with N rats, media width was increased, lumen decreased and the ratio of media width to lumen diameter increased. Smooth muscle cell density was increased (P < 0.001) in the GHX group, but not in the NX group. 10. Changing the maternal environment significantly affected BP in GHX and NX groups up to 9-10 weeks of age but, in adult rats, the BP differences were no longer present. Thus, structural changes were seen at 6 weeks of age in MRA from NX rats and also at 18 weeks in GHX and NX rats (even though the BP differences were no longer significant); structural remodelling occurred independently of BP.  相似文献   

11.
The selectivity of endothelium-derived relaxing factor (EDRF) and nitric oxide (NO) on smooth muscle relaxation was examined and compared. EDRF released from was examined and compared. EDRF released from bovine pulmonary arterial endothelium (BPAE) in culture and NO were superfused over vascular, tracheal, gastrointestinal and uterine smooth muscle. EDRF relaxed vascular smooth muscle but not tracheal, gastrointestinal or uterine smooth muscle. NO relaxed vascular and gastrointestinal smooth muscle but not tracheal or uterine smooth muscle. There was a differential selectivity between the relaxant effect of EDRF and NO on smooth muscle.  相似文献   

12.
The effects of NG-nitro- -arginine ( -NNA) on mean arterial pressure and the effects of both -NNA and methylene blue on isolated aorta tone, were studied in order to elucidate potential alterations in vasodilator resting nitric oxide (NO) tone in genetic hypertension. -NNA produced a significantly greater increase of mean arterial pressure in spontaneously hypertensive rats (SHR) than in Wistar Kyoto (WKY) rats; in both cases, -arginine completely inhibited the -NNA hypertensive effect. Neither ganglion blockade with hexamethonium nor cyclooxygenase inhibition with indomethacin significantly modified the effect of -NNA in both rat strains. In intact aorta rings, after submaximally contraction with KCl (25 mM), both -NNA and methylene blue induced strong dose-dependent contractions. The maximum contractions were, however, significantly greater in WKY rats than in SHR. The mechanical elimination of endothelium markedly inhibited both -NNA and methylene blue maximum contractions. In intact rings, -arginine completely inhibited the -NNA effects in both rat strains; in rubbed rings, the -arginine inhibitory effects were strong in WKY rats but not important and erratic in SHR. -Arginine had no effect on the contractions induced only by KCl in any of the preparations. In WKY rat-rubbed rings, sodium nitroprusside was significantly more effective in relaxing the contractions in response to 25 mM KCl than the contractions in response to methylene blue. These results indicate that contractions induced by -NNA and methylene blue in isolated aorta are principally due to the inhibition of an important endothelial resting vasodilator NO tone. They also show that hypertension reduces the resting vasodilator NO tone in isolated rat aorta, in spite of enhancing the total vasodilator NO tone in anaesthetized rat.  相似文献   

13.
Aminopeptidases and dopamine (DA) exhibit asymmetries in the brain that are reflected in the peripheral response to unilateral striatal DA depletions (experimental hemiparkinsonism). This might be due to asymmetries in the autonomic innervation of the peripheral vessels. Nitric oxide (NO) is released through vascular sympathetic activation. A similar pathway could be postulated for aminopeptidases. Angiotensin II, metabolized by aminopeptidase A (AP A), interacts with NO and dopamine in the control of blood pressure. Moreover, plasma AP A activity and NO concentrations are elevated in hypertensive rats in which sympathetic activity is increased. We hypothesize that plasma AP A activity and NO concentrations may reflect a central asymmetry of the sympathetic activity. Therefore, we analyzed the effect of unilateral depletions of brain DA by injecting 6-hydroxydopamine into the left or right striatum and measuring plasma AP A, NO and systolic blood pressure (SBP) in normotensive and hypertensive rats. Changes in plasma AP A and NO in opposite directions may reflect an asymmetry in the function of the nigrostriatal system. Our results also revealed an inverse correlation between AP A and NO, in normotensive rats lesioned or sham operated in the right side and hypertensive rats lesioned in the left one. We concluded that the observed changes in plasma NO and AP A after left or right striatal DA depletions may be due to asymmetries in the peripheral autonomic innervation of the vessels.  相似文献   

14.
  1. Relaxing factors released by the endothelium and their relative contribution to the endothelium-dependent relaxation produced by bradykinin (BK) in comparison with different vasodilator agents were investigated in human omental resistance arteries.
  2. BK produced an endothelium-dependent relaxation of arteries pre-contracted with the thromboxane A2 agonist, U46619. The B2 receptor antagonist, Hoe 140 (0.1, 1 and 10 μM), produced a parallel shift to the right of the concentration-response curve to BK with a pA2 of 7.75.
  3. Neither the cyclo-oxygenase inhibitor, indomethacin (10 μM) alone, the nitric oxide synthase inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME, 300 μM) alone, the nitric oxide scavenger, oxyhaemoglobin (Hb, 10 μM) alone, nor the combination of L-NAME plus Hb affected the concentration-response curve to BK. Conversely, the combination of indomethacin with either L-NAME or Hb attenuated but did not abolish the BK-induced relaxation. By contrast, the relaxations produced by the Ca2+ ionophore, calcimycin (A23187), and by the inhibitor of sarcoplasmic reticulum Ca2+-ATPase, thapsigargin (THAPS), were abolished in the presence of indomethacin plus L-NAME. Also, the presence of indomethacin plus L-NAME produced contraction of arteries with functional endothelium.
  4. The indomethacin plus L-NAME resistant component of BK relaxation was abolished in physiological solution (PSS) containing 40 mM KCl and vice versa. However, in the presence of KCl 40 mM, indomethacin plus L-NAME did not affect the nitric oxide donor, S-N-acetylpenicillamine-induced relaxation.
  5. The indomethacin plus L-NAME resistant component of the relaxation to BK was significantly attenuated by the K+ channel blocker tetrabutylammonium (TBA, 1 mM). However, it was not affected by other K+ channel blockers such as apamin (10 μM), 4-aminopyridine (100 μM), glibenclamide (10 μM), tetraethylammonium (10 mM) and charybdotoxin (50 nM).
  6. In the presence of indomethacin plus L-NAME, the relaxation produced by BK was not affected by the phospholipase A2 inhibitor, quinacrine (10 μM) or by the inhibitor of cytochrome P450, SKF 525a (10 μM). Another cytochrome P450 inhibitor, clotrimazole (10 μM) which also inhibits K+ channels, inhibited the relaxation to BK.
  7. These results show that BK induces endothelium-dependent relaxation in human small omental arteries via multiple mechanisms involving nitric oxide, cyclo-oxygenase derived prostanoid(s) and another factor (probably an endothelium-derived hyperpolarizing factor). They indicate that nitric oxide and cyclo-oxygenase derivative(s) can substitute for each other in producing relaxation and that the third component is not a metabolite of arachidonic acid, formed through the cytochrome P-450 pathway, in these arteries.
  相似文献   

15.
Although serotonin has been shown to inhibit peripheral sympathetic outflow, serotonin regulation on renal sympathetic outflow has not yet been elucidated. This study investigated which 5-HT receptor subtypes are involved. Wistar rats were anesthetized (sodium pentobarbital; 60 mg/kg, i.p.), and prepared for in situ autoperfused rat kidney, which allows continuous measurement of systemic blood pressure (SBP), heart rate (HR) and renal perfusion pressure (PP). Electrical stimulation of renal sympathetic nerves resulted in frequency-dependent increases in PP (18.3 ± 1.0, 43.7 ± 2.7 and 66.7 ± 4.0 for 2, 4 and 6 Hz, respectively), without altering SBP or HR. 5-HT, 5-carboxamidotryptamine (5-HT1/7 agonist) (0.00000125–0.1 μg/kg each) or l-694,247 (5-HT1D agonist; 0.0125 μg/kg) i.a. bolus inhibited vasopressor responses by renal nerve electrical stimulation, unlike i.a. bolus of agonists α-methyl-5-HT (5-HT2), 1-PBG (5-HT3), cisapride (5-HT4), AS-19 (5-HT7), CGS-12066B (5-HT1B) or 8-OH-DPAT (5-HT1A) (0.0125 μg/kg each). The effect of l-694,247 did not affect the exogenous norepinephrine-induced vasoconstrictions, whereas was abolished by antagonist LY310762 (5-HT1D; 1 mg/kg) or l-NAME (nitric oxide; 10 mg/kg), but not by indomethacin (COX1/2; 2 mg/kg) or glibenclamide (ATP-dependent K+ channel; 20 mg/kg). These results suggest that 5-HT mechanism-induced inhibition of rat vasopressor renal sympathetic outflow is mainly mediated by prejunctional 5-HT1D receptors via nitric oxide release.  相似文献   

16.
Isolated perfused kidneys from 4- to 6-month-old spontaneously hypertensive rats (SHR, Japanese strain) exhibit increased "vascular reactivity" to 5-hydroxytryptamine (5-HT) and a slower rate of development of tachyphylaxis to this substance when compared with kidneys from normotensive Wistar-Kyoto (WKY) rats. We investigated the possibility that the reduced rate of development of tachyphylaxis could be related to a interaction of 5-HT with adrenergic mechanisms or with endogenous 5-HT. Tachyphylaxis was induced by repeated administration of 5-HT to kidneys from SHR and WKY rats. This procedure did not affect vasoconstrictor responses evoked by norepinephrine. The development of tachypylaxis to 5-HT in kidneys from SHR and WKY rats was not changed by chemical sympathectomy with 6-hydroxydopamine. Treatment of SHR with para-chlorophenylalanine did not affect their blood pressure or the development of tachyphylaxis to 5-HT. These results indicate that delayed tachyphylaxis to 5-HT in kidneys of SHR is not due to an interference with adrenergic mechanisms and does not depend on endogenous 5-HT levels. The phenomenon represents an unusual modification of vascular smooth muscle exposed to chronic high pressure, but it is unlikely that the vasoconstrictor effects of 5-HT contribute to the maintenance of hypertension in the SHR.  相似文献   

17.
BACKGROUND AND PURPOSE: The present study was designed to assess whether cyclooxygenase-2 (COX-2) activation is involved in the effects of chronic aldosterone treatment on endothelial function of mesenteric resistance arteries (MRA) from Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). EXPERIMENTAL APPROACH: Relaxation to acetylcholine was measured in MRA from both untreated and aldosterone-treated strains. Vasomotor responses to prostacyclin and U46619 were also analysed. Release of 6-oxo-prostaglandin (PG)F1alpha and thromboxane B2 (TxB2) was determined by enzyme immunoassay. COX-2 protein expression was measured by western blot. KEY RESULTS: Aldosterone reduced acetylcholine relaxation in MRA from both strains. In MRA from both aldosterone-treated strains the COX-1/2 or COX-2 inhibitor (indomethacin and NS-398, respectively), TxA2 synthesis inhibitor (furegrelate), prostacyclin synthesis inhibitor (tranylcypromine) or TxA2/ PGH2 receptor antagonist (SQ 29 548), but not COX-1 inhibitor SC-560, increased acetylcholine relaxation. In untreated rats this response was increased only in SHR. Prostacyclin elicited a biphasic vasomotor response: lower concentrations elicited relaxation, whereas higher concentrations elicited contraction that was reduced by SQ 29 548. Aldosterone increased the acetylcholine-stimulated production of 6-oxo-PGF(1alpha) and TxB2 in MRA from both strains. COX-2 expression was higher in both strains of rats treated with aldosterone. CONCLUSIONS AND IMPLICATIONS: Chronic treatment with aldosterone impaired endothelial function in MRA under normotensive and hypertensive conditions by increasing COX-2-derived prostacyclin and thromboxane A2. As endothelial dysfunction participates in the pathogenesis of many cardiovascular disorders we hypothesize that anti-inflammatory drugs, specifically COX-2 inhibitors, could ameliorate vascular damage in patients with elevated aldosterone production.  相似文献   

18.
1. Nonsteroidal anti-inflammatory drugs have been reported to exacerbate hypertension and to interfere with the effectiveness of some anti-hypertensive therapies. In this study, we tested the effects of a gastric-sparing, nitric oxide-releasing derivative of aspirin (NCX-4016) on hypertension in rats. 2. Hypertension was induced by administering L-NAME in the drinking water (400 mg l(-1)). Groups of rats were treated daily with aspirin, NCX-4016 or vehicle. 3. NCX-4016 significantly reduced blood pressure relative to the aspirin-treated group over the 2-week period of treatment. Aspirin and, to a lesser extent, NCX-4016 suppressed whole blood thromboxane synthesis. 4. In anaesthetized rats, acute intravenous administration of NCX-4016 caused a significant fall in mean arterial pressure in hypertensive rats, but was devoid of such effects in normotensive controls. 5. In vitro, NCX-4016 relaxed phenylephrine-pre-contracted aortic rings obtained from both normotensive and hypertensive rats, and significantly reduced their responsiveness to the contractile effects of phenylephrine. 6. These results suggest that NCX-4016 reduces blood pressure in hypertensive rats, not simply through the direct vasodilatory actions of the nitric oxide released by this compound, but also through possible interference with the effects of endogenous pressor agents. These properties, added to its anti-thrombotic effects, suggest that NCX-4016 may be a safer alternative to aspirin for use by hypertensive patients.  相似文献   

19.
1 The pharmacological effects of endothelium-derived relaxing factor (EDRF), nitric oxide (NO) and prostacyclin on human and rabbit platelets were examined. 2 EDRF is released from porcine aortic endothelial cells, cultured on microcarriers and treated with indomethacin, in sufficient quantities to inhibit platelet aggregation induced by 9,11-dideoxy-9 alpha, 11 alpha-methano epoxy-prostaglandin F2 alpha (U46619) and collagen. 3 The anti-aggregating activity of EDRF was potentiated by M&B 22948, a selective inhibitor of cyclic GMP phosphodiesterase, and by superoxide dismutase (SOD) and was inhibited by haemoglobin and Fe2+. 4 Both NO and prostacyclin inhibited platelet aggregation. 5 The anti-aggregatory activity of NO, but not that of prostacyclin, was potentiated by M&B 22948 and by SOD and was inhibited by haemoglobin and Fe2+. Thus NO is a potent inhibitor of platelet aggregation whose activity on platelets mimics that of EDRF. 6 It is likely that the inhibitory effect of NO on platelets represents the action of endogenous EDRF and therefore this substance, together with prostacyclin, is a regulator of platelet-vessel wall interactions.  相似文献   

20.
The present study was designed to explore whether there are any effects on neurogenic responses in penile small arteries during the development of hypertension in a one-kidney, one-clip (1K1C) model, a non-renin-dependent model of renovascular hypertension. Five weeks after surgery, male Sprague-Dawley rats were given vehicle, bendroflumethiazide (7.5 mg/kg/day), or L-arginine (2 g/kg/day) in their drinking water for five weeks. Experiments were performed on penile small artery rings (150-200 microm) mounted on microvascular myographs for electrical field stimulation (EFS), and erectile tissue was processed for immunohistochemistry. Maximal neurogenic contractions were unmodified in penile preparations. Relaxations induced by EFS were reduced in the presence of ADMA. In 1K1C rats, neurogenic vasorelaxation mediated by nitric oxide (NO) was unaltered, while relaxation resistant to NO synthase inhibition was blunted. L-arginine and bendroflumethiazide lowered blood pressure in 1K1C rats, but vasodilation was still blunted in the penile arteries. Immunoreactivity for factor VIII and neuronal NO synthase was unaltered in penile arteries from 1K1C animals. Endothelium-dependent vasorelaxation evoked by acetylcholine was also blunted in preparations from 1K1C rats, while exogenous NO relaxation was unaffected. Plasma concentrations and urinary excretion of ADMA did not differ among the experimental animals. Our findings indicate that the reduced release of a non-NO vasodilatory neurotransmitter accounts for the impaired neurogenic vasodilation of the penile arteries. Although ADMA inhibits penile vasorelaxation, it is unlikely to affect erectile function in 1K1C rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号