首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism by which negatively charged substances such as celite, kaolin, or ellagic acid contribute to the surface-dependent activation of Hageman factor (Factor XII) was studied. Kinetic studies of the proteolytic activation of (125)I-labeled human Hageman factor by human plasma kallikrein, plasma, activated Factor XI, and trypsin were performed in the presence and absence of high molecular weight kininogen and surface materials such as celite, kaolin, or ellagic acid. The results showed that surface-bound Hageman factor was 500 times more susceptible than soluble Hageman factor to proteolytic activation by kallikrein in the presence of high molecular weight kininogen. Surface binding of Hageman factor enhanced its cleavage by plasmin, activated Factor XI, and trypsin by 100-fold, 30-fold, and 5-fold, respectively. On a molar basis, trypsin was twice as potent as kallikrein in the cleavage of the surface-bound Hageman factor, while plasmin and activated Factor XI were an order of magnitude less potent than kallikrein. Kallikrein even at concentrations as low as 0.5 nM (i.e., 1/1000th of the concentration of prekallikrein in plasma) was very potent in the limited proteolysis of the surface-bound Hageman factor. These results suggest that substances classically known as "activating surfaces" promote the activation of Hageman factor indirectly by altering its structure such that it is much more susceptible to proteolytic activation by other plasma or cellular proteases.  相似文献   

2.
Data obtained in the past few years have defined the molecular mechanisms of contact activation of the Hageman factor pathways of plasma, i.e., the kinin-forming, intrinsic clotting and fibrinolytic systems. Involved are four molecules: Hageman factor, high molecular weight (MW) kininogen, prekallikrein and factor XI. High MW kininogen serves as a surface cofactor to assemble prekallikrein or factor XI in proximity to surface-bound Hageman factor. Reciprocal proteolytic activation of Hageman factor and prekallikrein represents an essential step in the rapid activation of the contact phase. Although Hageman factor does undergo cleavage and activation in the absence of prekallikrein or high MW kininogen, the rate is approximately 50 and 100 times slower than when these molecules are present. Once Hageman factor is activated on the surface, it cleaves and activates clotting factor XI. Activated Hageman factor (HFa) exhibits two molecular forms. One of these, alpha HFa, activates prekallikrein and factor XI, and the intrinsic clotting system on the surface. alpha HFa and clotting factor XI remain surface bound. The other form of activated Hageman factor, beta HFa, leaves the surface, going into solution where it readily activates additional prekallikrein but not factor XI. Of perhaps even greater importance, kallikrein rapidly dissociates from the surface. Thus the formation of bradykinin and fibrinolysis is disseminated whereas clotting via the intrinsic system remains localized. Reviewed here is the molecular mechanism of contact activation of the Hageman factor pathways and discussed in the interaction of Hageman factor with the negatively charged surface, prekallikrein, factor XI and high MW kininogen. The multiple forms of activated Hageman factor and their potential biologic significance are also discussed.  相似文献   

3.
The mechanisms by which human high molecular weight kininogen (HMKrK) contributes to the surface-dependent activation of the Hageman factor systems have been studied. The ability of various mixtures of purified human Hageman factor (coagulation factor XII), HMrK, prekallikrein, and kaolin to activate coagulation factor XI was determined with factor XIa (activated factor XI) clotting assays. Hageman factor, HMrK and prekallikrein were required for maximal rates of activation of factor XI. A certain optimal mixture of purified Hageman factor, HMrK, prekallikrein, and kaolin gave the same rapid initial rate of activation of purified factor XI as an equivalent aliquot of factor XI-deficient plasma. This suggests that potent, surface-mediated activation of factor XI in plasma is explicable in terms of Hageman factor, HMrK, and prekallikrein. By studying separately some of the surface-dependent reactions involving Hageman factor, it was found that HMrK accelerated by at least an order of magnitude the following reactions: (i) the activation of factor XI by activated Hageman factor; (ii) the activation of prekallikrein by activated Hageman factor; and (iii) the activation of Hageman factor by kallikrein. Stoichiometric rather than catalytic amounts of HMrK gave optimal activation of factor XI. These results are consistent with the hypothesis that HMrK and Hageman factor form a complex on kaolin which renders Hageman factor more susceptible to proteolytic activation by kallikrein and which facilitates the action of activated Hageman factor on its substrate proteins, factor XI and prekallikrein.  相似文献   

4.
Chang  JJ; Scott  CF; Colman  RW 《Blood》1986,67(3):805-810
High molecular weight (HMW) kininogen, the cofactor for activation of the contact system of plasma proteolysis, transports and optimally positions prekallikrein and factor XI on a negatively charged surface, allowing those zymogens to be activated by surface-bound factor XIIa. HMW kininogen circulates in plasma as a procofactor that, after cleavage by kallikrein or factor XIIa, gains ability to bind to the surface. The mechanism responsible for this increased affinity for the surface is unknown. We hypothesized that modification of arginine residues may prevent cleavage of HMW kininogen, since the initial kallikrein-induced cleavage sites on the HMW kininogen molecule are at the NH2 terminal and the COOH terminal of the bradykinin-containing portion of the molecule, each of which contains arginine. We found that modification with butanedione of four arginine residues in the HMW kininogen molecule prevented bradykinin release, which results from cleavage of HMW kininogen. Furthermore, HMW kininogen coagulant activity was lost, in proportion to the degree of arginine modification, until 6.6 residues had been modified. Complex formation with prekallikrein, however, was found to be uneffected by the modification of modified HMW kininogen. To account for the loss of coagulant activity, we also examined the ability of modified HMWKa (active cofactor) to bind to an activating surface. The affinity of modified HMWKa for kaolin was tenfold less than the affinity of unmodified HMWKa. These data suggest that arginine residues play a critical role in the ability of HMW kininogen to function as an activation cofactor, both by preventing the cleavages that produce HMWKa as well as by decreasing the affinity of HMWKa for the surface.  相似文献   

5.
Prekallikrein and Factor XI have been reported to circulate as complexes with the coagulation cofactor high molecular weight (HMW)-kininogen. In this study we have shown that native HMW-kininogen possesses a strong binding site for prekallikrein and Factor XI with association constants of 3.4 x 10(7) M-1 and 4.2 x 10(8) M-1, respectively. The diminished binding of prekallikrein relative to Factor XI may, in part, account for the ability of kallikrein to leave the surface and interact with other molecules of Hageman factor and HMW-kininogen. Prekallikrein and Factor XI appear to compete for binding to HMW-kininogen, suggesting a single (or closely overlapping) binding site(s). The purified light chain derived from kinin-free HMW-kininogen is shown to compete with native MHW-kininogen for binding to Hageman factor substrates and direct binding of the isolated light chain to prekalikrein and Factor XI is demonstrated. This binding of the light chain to prekallikrein and Factor XI appears to be essential to the function of HMW-kininogen as a coagulation cofactor and further digestion of the light chain with excess kallikrein destroys its coagulant activity.  相似文献   

6.
In this article we have reviewed the current knowledge regarding the involvement of Factor XII in contact activation. Clearly in the past decade an overwhelming amount of data and hypotheses have been published regarding the central role of this zymogen in the initiation and further propagation of contact activation reactions. Therefore we feel that it will be helpful to conclude this article with a figure that summarizes those interactions and reactions that are generally believed to reflect the major molecular events occurring during surface-dependent contact activation. The contact factors are capable of very efficient interation with each other, provided a suitable negatively charged surface is present. Such surfaces are thought to stimulate the interactions between the contact factors through binding of the proteins and thus bringing the proteins together. Factor XII readily binds to the negatively charged surface, but for the binding of prekallikrein and Factor XI, the cofactor HMW kininogen is likely to be necessary. Bound at the surface, the zymogens Factor XII and prekallikrein are thought to be involved in a so-called reciprocal activation mechanism in which Factor XIIa activates prekallikrein to kallikrein, which in turn converts Factor XII to Factor XIIa. The formation of Factor XIIa is further promoted by the fact that surface-bound Factor XII is likely more susceptible to proteolytic cleavage and by the fact that the activated Factor XIIa is capable of auto-activating its own zymogen Factor XII. However, the latter effect, although undoubtedly contributing to the formation of Factor XIIa at the surface, seems to be of less importance than the reciprocal activation mechanism. This is underscored by the fact that Factor XII activation is rather slow in prekallikrein-deficient plasma. Surface-bound Factor XIIa is then responsible for the activation of Factor XI to Factor XIa, thereby propagating the initial trigger. Presumably, Factor XIa must leave the surface in order to be able to become involved in the activation of blood coagulation Factor IX.  相似文献   

7.
In 1969, Ogston et al. reported that the normal activation of fibrinolysis by surface contact requires, in addition to Hageman factor and plasminogen, a HF cofactor which is present in the euglobulin fraction and other factor(s) present in the supernatant. It has also been suggested that the glass-treated plasma is deficient in HF cofactor, In our laboratory the glass-treated plasma was found not to be deficient in HF or in a streptokinase-activated proactivator or in plasminogen. The glass-treated plasma was found deficient in prekallikrein in kininogen and in clotting factors XI, IX, VIII and V. The results presented indicate that HF cofactor activity is not different from that of kallikrein and that HF cofactor does not act as a plasminogen proactivator. Furthermore, the results indicate that the "other factors' present in the supernatant are not involved in contact-activated fibrinolysis.  相似文献   

8.
Studies on Hageman factor have revealed that this protein of approximately 80,000 MW is activated in both solid and fluid phase. In solid phase, the molecule interacts with negatively charged particles without undergoing cleavage. Enzymatic activity is acquired, presumably following a conformational change in the structure of Hageman factor. In fluid phase, the enzymes kallikrein, plasmin, and plasma thromboplastin antecedent (clotting Factor XI) all activated Hageman factor, and in human plasma, the Hageman factor is readily cleaved during this activation. Evidence is presented indicating that kallikrein is the most important fluid phase activator and that the activation with kallikrein is essential for the normal function of the intrinsic clotting, fibrinolytic and kinin forming systems. Information on the role of these systems in immunopathology awaits careful analyses of the function of individual components and means of their accurate detection and quantitation.  相似文献   

9.
Levels of components of the contact activation, coagulation, and complement systems and their main inhibitors were measured in 45 critically ill patients during 61 episodes of uncomplicated bacteremia or bacterial shock. Levels of Hageman factor (factor XII), prekallikrein, high-molecular-weight kininogen, factor XI, factor VII, total hemolytic complement, alternative pathway activity, and C3 were within the normal range during uncomplicated bacteremia (n = 29), but during fatal bacterial shock (n = 13) a significant decrease by 40%-50% was observed in all measurements. During nonfatal bacterial shock (n = 19) a moderate decrease was observed in most of these measurements. The capacity of plasma to inactivate kallikrein was significantly higher during bacteremia than during bacterial shock because of a significant increase in the level of C1 esterase inhibitor. Levels of antithrombin III and alpha 2-macroglobulin were below normal in all groups. Thus increased inhibition of the contact activation and complement systems is beneficial during bacteremia.  相似文献   

10.
Prekallikrein and high-molecular-weight kininogen were found associated in normal human plasma at a molecular weight of 285,000 as assessed by gel filtration on Sephadex G-200. The molecular weight of prekallikrein in plasma that is deficient in high-molecular-weight kininogen was 115,000. This prekallikrein could be isolated at a molecular weight of 285,000 after plasma deficient in high-molecular-weight kininogen was combined with plasma that is congenitally deficient in prekallikrein. Addition of purified 125I-labeled prekallikrein and high-molecular-weight kininogen to the respective deficient plasma yielded a shift in the molecular weight of prekallikrein, and complex formation could be demonstrated by incubating prekallikrein with high-molecular weight kininogen. This study demonstrates that prekallikrein and high-molecular-weight kininogen are physically associated in plasma as a noncovalently linked complex and may therefore be adsorbed together during surface activation of Hageman factor. The complex is disrupted when these proteins are isolated by ion exchange chromatography.  相似文献   

11.
Hojima  Y; Cochrane  CG; Wiggins  RC; Austen  KF; Stevens  RL 《Blood》1984,63(6):1453-1459
A large number of negatively charged macromolecules, including DNA, glycosaminoglycans, and proteoglycans, were tested as possible activators of the contact (Hageman factor) system in vitro. Activation was assessed by conversion of prekallikrein to kallikrein, as determined by amidolytic assay and by cleavage of 125I-Hageman factor into 52,000- and 28,000-dalton fragments. Of particular interest to these studies, heparin proteoglycan and glycosaminoglycan from rat peritoneal mast cells, and squid chondroitin sulfate E, which is representative of the glycosaminoglycan from cultured mouse bone marrow derived mast cells, induced the reciprocal activation between Hageman factor and prekallikrein. In addition, naturally occurring heparin glycosaminoglycans from pig mucosa, bovine lung, and rat mast cells also induced activation. In contrast, native connective tissue matrix glycosaminoglycans and proteoglycans from several sources were inactive, although when one such chondroitin sulfate was further sulfated in vitro, it gained activity. When the negative charge of the activating agents was blocked by the addition of hexadimethrine bromide, the cleavage of 125I-Hageman factor in the presence of prekallikrein was prevented. The active negatively charged macromolecules induced cleavage of 125I-high molecular weight kininogen in normal plasma but not in Hageman factor-deficient or prekallikrein- deficient plasmas. Reconstitution of prekallikrein-deficient plasma with purified prekallikrein restored the kininogen cleavage upon addition of the active proteoglycans. These results suggest that both heparin from connective tissue mast cells and highly sulfated chondroitin sulfate E from cultured mouse bone marrow derived mast cells (which are considered synonomous with mucosal mast cells) could activate the contact system of plasma subsequent to an activation secretion response.  相似文献   

12.
To investigate the earliest steps of the intrinsic clotting pathway, Hageman factor (Factor XII) was exposed to Sephadex gels to which ellagic acid had been adsorbed; Hageman factor was then separated from the gels and studied in the fluid phase. Sephadex-ellagic acid-exposed Hageman factor, whether purified or in plasma, activated plasma thromboplastin antecedent, but only when high molecular weight kininogen was presnet. In the absence of plasma prekallikrein, maximal activation of plasma thromboplastin antecedent was slightly delayed in plasma, a delay not observed with similarly treated purified Hageman factor. Thus, high molecular weight kininogen was needed for expression of Hageman factor's clot-promoting properties and plasma prekallikrein played a minor role in the interaction of ellagic acid-treated Hageman factor and plasma thromboplastin antecedent.  相似文献   

13.
Incubation of normal human plasma with dextran sulfate for 7 min at 4 degrees C generates kallikrein amidolytic activity. No kallikrein activity is generated in factor XII or prekallikrein-deficient plasma and only small amounts (8%) in high molecular weight (HMW) kininogen- deficient plasma. Addition of specific antisera directed against prekallikrein or HMW kininogen to normal plasma blocked the generation of kallikrein activity by dextran sulfate. Thus, factor XII, prekallikrein, and HMW kininogen are essential components for optimal activation of prekallikrein. The role of limited proteolysis in the activation of prekallikrein induced by dextran sulfate was studied by adding 125I-prekallikrein to plasma. The generation of kallikrein activity paralleled the proteolytic cleavage of prekallikrein as judged on SDS gels in the presence of reducing agents. The same cleavage fragments were observed as obtained by activation of purified prekallikrein by beta-factor-XIIa. Addition of 131I-HMW kininogen and 125I-factor XII or 131I-HMW kininogen and 125I-prekallikrein to normal plasma followed by activation with dextran sulfate and analysis on SDS gels indicated that the observed cleavage of prekallikrein and HMW kininogen is fast compared to the observed cleavage of factor XII, which is much slower and less extensive. During the first minutes of incubation of normal plasma with dextran sulfate, mainly alpha-factor- XIIa is formed. During prolonged incubation, beta-factor-XIIa is also formed.  相似文献   

14.
The intrinsic pathway of blood coagulation is activated when factor XIa, one of the three contact-system enzymes, is generated and then activates factor IX. Factor XI has been shown to be efficiently activated in vitro by surface-bound factor XIIa after factor XI is transported to the surface by its cofactor, high molecular weight kininogen (HK). However, individuals lacking any of the three contact-system proteins--namely, factor XII, prekallikrein, and HK--do not suffer from bleeding abnormalities. This mystery has led several investigators to search for an "alternate" activation pathway for factor XI. Recently, factor XI has been reported to be autoactivated on the soluble "surface" dextran sulfate, and thrombin was shown to accelerate the autoactivation. However, it was also reported that HK, the cofactor for factor XIIa-mediated activation of factor XI, actually diminishes the thrombin-catalyzed activation rate of factor XI. Nonetheless, it was suggested that thrombin was a more efficient activator than factor XIIa. In this report we investigated the effect of fibrinogen, the major coagulation protein in plasma, on the activation rate of factor XI. Fibrinogen, the preferred substrate for thrombin in plasma, virtually prevented autoactivation of factor XI as well as the thrombin-mediated activation of factor XI, while having no effect on factor XIIa-catalyzed activation. HK dramatically curtailed the autoactivation of factor XI in addition to the thrombin-mediated activation. These data indicate that factor XI would not be autoactivated in a plasma environment, and thrombin would, therefore, be unlikely to potentiate the activation. We believe that the "missing pathway" for factor XI activation remains an enigma that warrants further investigation.  相似文献   

15.
A case of cross-reacting material-negative Fletcher trait with additional partial deficiency of Hageman factor (HF, Factor XII) is described. Although the patient presented with a recent history of frequent epistaxis, he had no other personal or family history of a tendency toward bleeding or infection. Similar to other cases of Fletcher trait, his plasma showed a markedly prolonged partial thromboplastin time which could be corrected by prolonged incubation with the surface-activator kaolin. Surface-induced fibrinolysis, amidolysis of α-N-benzoyl-proline-L -phenylalanine-L -arginine-p-nitro- anilide, and cold-promoted enhancement of factor VII activity, reactions requiring the presence in the plasma of Fletcher factor (pre-kallikrein), in addition to Hageman factor and Fitzgerald factor (high-molecular weight kininogen), were also defective. In vivo chemotaxis of polymorphonuclear leukocytes and monocytes (Rebuck's skin window technique) in response to skin abrasions was defective, but was normal when diphtheria-tetanus toxoid was also applied. In vitro leukocyte chemotaxis (Boyden chamber technique) in response to normal or patient's own serum activated with zymosan was normal. Together with previous observations that kallikrein generated chemotactic activity, possibly via activation of C5, the present observations suggest that prekallikrein activation may be important for in vivo leukocyte chemotactic response to skin abrasion. The inheritance of Fletcher trait in this patient is unclear. Although the father was an apparent heterozygote, the mother was completely normal for Fletcher factor procoagulant activity and antigen. The mild Hageman factor deficiency in the patient did not contribute significantly to the plasma defects described and was likely inherited from the father who had a low HF procoagulant activity.  相似文献   

16.
Properties of sulfatides in factor-XII-dependent contact activation   总被引:2,自引:0,他引:2  
Tans  G; Griffin  JH 《Blood》1982,59(1):69-75
Incubation of normal human plasma with low amounts of sulfatides resulted in the initiation of intrinsic coagulation and the appearance of kallikrein activity. The optimal initiation of procoagulant and kallikrein amidolytic activity was dependent on the presence of factor XII, high molecular weight kininogen, and prekallikrein. Since the activated partial thromboplastin clotting times in prekallikrein- deficient plasma approach normal values upon prolonged incubation with kaolin, this phenomenon of autocorrection was studied and found to be even more pronounced in the presence of sulfatides. Autocorrection was essentially completed in 5 min in the presence of sulfatides, whereas a preincubation of 15-20 min was required in the presence of kaolin. The limited proteolysis of 125I-factor XII in plasma during incubation with activating material or during clotting was determined. Cleavage of factor XII was more rapid and more extensive in the presence of sulfatides than in the presence of kaolin. In prekallikrein-deficient plasma, factor XII cleavage was completed within 5 min in the presence of sulfatides and within 15 min in the presence of kaolin. Thus, the appearance of factor-XII-dependent coagulant activity correlates with the limited proteolysis of factor XII when normal or prekallikrein- deficient plasma is activated by sulfatides or kaolin.  相似文献   

17.
Purified radiolabeled rabbit Hageman factor, prekallikrein, and high molecular weight kininogen were used to examine Hageman factor system molecular dynamics after the intravenous injection of heparin-like dextran sulfate polymer in the rabbit. Hageman factor system proteins rapidly disappeared from the circulation following dextran sulfate injection, as measured by radial immunodiffusion, by kaolin-releasable kinin formation, and by measuring circulating levels of radiolabeled Hageman factor, prekallikrein, and high molecular weight kininogen. 125I-Hageman factor was distributed mainly to lung, liver, and spleen following dextran sulfate injection. Proteolysis of circulating 125I-Hageman factor occurred at a site within a disulfide loop into fragments of 50,000 and 30,000 molecular weight. Proteolysis of 125I-prekallikrein also occurred with visualization of a 50,000 molecular weight fragment. Although extensive proteolysis of 131I-high molecular weight kininogen was observed, the cleavage fragments were not the same as those generated during contact activation in vitro. The major fragment of high molecular weight kininogen observed in vivo was at 80,000 molecular weight, in contrast to the 65,000 molecular weight fragment generated by kallikrein in vitro. These results indicate that high molecular weight kininogen can undergo proteolysis in vivo into fragments not known to be associated with kinin release.  相似文献   

18.
Poon  MC; Saito  H; Koopman  WJ 《Blood》1984,63(6):1309-1317
A 42-yr-old woman with systemic lupus erythematosus without bleeding diathesis developed a prolonged activated partial thromboplastin time that was not corrected by normal plasma. An inhibitor that acted rapidly and inactivated 0.5 U/ml plasma thromboplastin antecedent (PTA, factor XI) at a 1:200 plasma dilution was demonstrated. In addition to a low titer of PTA (less than 0.01 U/ml), plasma assayed at 20-fold dilution also showed low titers of Hageman (factor XII, 0.02 U/ml), Fletcher (plasma prekallikrein, 0.02 U/ml), and Fitzgerald (high molecular weight kininogen, less than 0.01 U/ml) factors. The titer of these factors, except PTA, returned to normal upon further plasma dilution or upon removal of the inhibitor by protein A adsorption. Thus, the inhibitor appeared to interfere with these clotting factor assays, possibly by inactivating PTA in the substrate plasmas in the test system. Its specificity was further confirmed. The inhibitor did not interfere with surface-induced proteolytic cleavage of Hageman factor. Surface-induced generation of plasma kallikrein activity (amidolysis of H-D-pro-phe-arg-pNa and cold-promoted factor VII activity enhancement) requires only Hageman, Fletcher, and Fitzgerald factors and was normal. Reactions requiring all 4 contact phase factors, including PTA, such as surface-induced generation of plasmin activity (amidolysis of H-D-val-leu-lys-pNa) and activated Christmas factor (factor IXa) activity, were defective. Furthermore, the inhibitor bound to agarose-protein A inactivated and removed PTA selectively from normal plasma. The inhibitor was an IgG-lambda autoantibody that precipitated PTA. The inactivated activated PTA (factor XIa) without the requirement for an additional cofactor. Furthermore, it inhibited surface-induced activation of PTA by interfering with its proteolytic cleavage upon glass surface exposure and with its binding onto the reactive surfaces.  相似文献   

19.
Reddigari  SR; Kaplan  AP 《Blood》1989,74(2):695-702
We developed a mouse monoclonal antibody (MoAb 115-21) to human high- molecular-weight kininogen (HK) that recognizes its prekallikrein binding site (residues 565 through 595 of HK). The corresponding synthesized 31-amino acid peptide (peptide IV) was recently shown to retain native HK's prekallikrein binding property. The same peptide bound factor XI also, although less avidly. Our MoAb recognizes purified HK, peptide IV, and the light chain moiety of HK (where the peptide IV resides), as shown by enzyme-linked immunosorbent assay (ELISA) and Western blotting experiments. The apparent dissociation constant for the HK and MoAb 115-21 interaction was 2.2 nmol/L. It does not recognize low-molecular-weight kininogen (LK) with which HK shares its heavy chain moiety or any antigens in human plasma congenitally deficient in kininogens. The binding of MoAb 115-21 to purified light chain of HK was competitively inhibited by peptide IV. In addition, the antibody inhibits HK-dependent clotting activity of normal human plasma and dextran sulfate-mediated activation of prekallikrein in plasma and retards cleavage of HK in normal plasma after contact activation with dextran sulfate. Also, purified Fab fragments of MoAb 115-21 inhibited the HK-dependent coagulant activity and dextran sulfate-mediated prekallikrein activation in normal plasma. Since the kd for HK-MoAb 115- 21 interaction is ten times lower than that of HK-prekallikrein, our data suggest that binding of MoAb 115-21 to HK's peptide IV site increases the free prekallikrein concentration in plasma and thus results in the decreased efficiency of factor XIIa-mediated activation of prekallikrein. Decreased levels of kallikrein thus formed may be responsible for the inhibition of HK-dependent clotting activity and the decrease in rate and extent of HK cleavage in normal plasma on contact activation with dextran sulfate. MoAb 115-21 may thus prove very useful, especially with its high affinity for HK, in further delineation of the role of HK and prekallikrein in contact activation and kinin-related human pathology.  相似文献   

20.
Veloso  D; Silver  LD; Hahn  S; Colman  RW 《Blood》1987,70(4):1053-1062
Of five IgGI/k murine monoclonal anti-human prekallikrein antibodies produced (MAbs), MAb 13G11 was selected for studying interaction of prekallikrein with factor XII and high-mol-wt kininogen (HMWK) during activation on a surface. Immunoblots from sodium dodecyl sulfate (SDS) gels showed that this MAb recognizes two variants (88 kd and 85 kd) of prekallikrein and kallikrein both in purified proteins and normal plasma. Under reducing conditions, kallikrein exhibits the epitope on the heavy chain but not on the light chains. Preincubation of MAb 13G11 with prekallikrein (added to prekallikrein-deficient plasma) or with normal plasma inhibited surface activation of prekallikrein 60% to 80%, as judged by amidolytic and coagulant assays. In normal plasma, inhibition by the Fab fragments was 87% of that with the entire MAb. Inhibition was not by competition between the MAb and HMWK, since neither binding of 13G11 to prekallikrein (coated on microtiter plates) was inhibited by an excess of HMWK, nor was hydrolysis of HMWK by kallikrein inhibited by 13G11. Using purified proteins in a system mimicking contact activation, inhibition by 13G11 of prekallikrein activation by factor XIIa, HMWK, and kaolin present was approximately 80%. Decreased inhibition (55% to 25%) occurred without HMWK or when kallikrein was used instead of prekallikrein. Kallikrein activity was not inhibited by 13G11 Fab fragments. These results indicate that the effect of 13G11 in plasma was neither dissociation of prekallikrein- HMWK complex nor a direct effect on kallikrein activity. Similar to the results in plasma, activation of prekallikrein, HMWK present, by factor XIIa bound to kaolin, was inhibited approximately 70% by 13G11. The results suggest a previously unrecognized site on the prekallikrein (heavy chain) required for its interaction with factor XIIa, either shared with the 13G11 epitope or located in very close proximity. The inhibition of kallikrein by intact 13G11 indicates that its binding site on the heavy chain is sterically related to the active site (light chain).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号