首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The selective, reversible acetylcholinesterase inhibitor 5,7-Dihydro-7-methyl-3- [2-[1-(phenylmethyl]-4-piperidinyl]ethyl]-6H-pyrrolo[3,2-f]-1,2-benzisoxazol3-6-one (CP-126,998) was labeled with C-11 iodomethane via base-promoted alkylation of the lactam nitrogen. [11C] CP-126,998 was synthesized in good radiochemical yield (13-29% non-decay corrected) and high specific radioactivity (177-418 GBq/micromol). In vivo mouse biodistribution studies reveal [11C] CP-126,998 to localize preferentially in striatal tissue, a region known to be rich in acetylcholinesterase. Competitive blocking studies using a variety of acetylcholinesterase inhibitors (diisopropylfluorophosphate, tacrine, CP-118,954) verified the specificity of the PET radiotracer for brain acetylcholinesterase.  相似文献   

2.
5,7-Dihydro-3-[2-[1-(2-fluorobenzyl)-4-piperidinyl]ethyl]-6H-pyrrolo[3,2,f]-1,2-benzisoxazol-6-one (2-flouro-CP-118,954; 1), a potent acetylcholinesterase (AChE) inhibitor, was prepared as a radioligand by reductive alkylation of CP-144,885 the debenzylated form of CP 118,954, with 2-[18F]fluorobenzaldehyde. The decay-corrected radiochemical yield was 25-30% and the effective specific activity was 41-53 GBq/micromol. Tissue distribution studies of 2-[18F]fluoro-CP-118,954 ([18F]1) in mice showed that the regional brain distribution correlated well with the known density of AChE in the mouse brain. A high level of uptake in the striatum was also shown at all time points in the olfactory tubercle, which is known to have dopaminergic neurons. Blocking studies showed that radioligand uptake in all brain regions was not altered by either the dopamine receptor antagonists or the sigma receptor agonist. On the other hand, radioligand uptake in both the striatum and the olfactory tubercle was significantly blocked (80%) by ligand 1. The low level of bone uptake over time suggested that [18F]1 underwent little in vivo metabolic defluorination. The lack of metabolite formation in the mouse brain indicated that the regional distribution was attributed to [18F]1. These results demonstrated that [18F]1 binds specifically and selectively to AChE in mice and appears to be a suitable radioligand for the in vivo mapping of AChE.  相似文献   

3.
Acetylcholinesterase (AChE) has been an important cholinergic factor for the diagnosis of Alzheimer's disease (AD), because of reduced AChE activity in the postmortem brains of AD patients. We previously developed 5,7-dihydro-3-(2-(1-(2-[(18)F]fluorobenzyl)-4-piperidinyl)ethyl)-6H-pyrrolo(3,2,f)-1,2-benzisoxazol-6-one (2-[(18)F]fluoro-CP-118,954) for in vivo studies of AChE in mice. In the present study, we automated the synthesis of 2-[(18)F]fluoro-CP-118,954 for the routine use and evaluated the radioligand by microPET and ex vivo Cerenkov luminescence imaging of mouse AChE. 4-[(18)F]Fluoro-donepezil, another AChE inhibitor, was used for comparison. Automated syntheses of 2-[(18)F]fluoro-CP-118,954 and 4-[(18)F]fluoro-donepezil resulted in high radiochemical yields (25-33% and 30-40%) and high specific activity (27.1-35.4 and 29.7-37.3 GBq/μmol). Brain microPET images of two ICR mice injected with 2-[(18)F]fluoro-CP-118,954 demonstrated high uptake in the striatum (ROI analysis: 5.1 %ID/g for the first 30 min and 4.1 %ID/g for another 30 min), and a blocking study with injection of CP-118,954 into one of the mice at 30 min after radioligand injection led to complete blocking of radioligand uptake in the striatum (ROI analysis: 1.9 %ID/g), whereas (18)F-labeled donepezil did not show specific uptake in the striatum. In another set of experiments, the brain tissues (striatum, parietal cortex, frontal cortex and cerebellum) were excised after brain microPET/CT imaging of mouse injected with 2-[(18)F]fluoro-CP-118,954, and a high striatal uptake was also detected in ex vivo optical and microPET images (ROI analysis: 1.4 %ID/g) and in γ-counting data (2.1 %ID/g at 50 min post-injection) of the brain tissues. Taken together, these results demonstrated that 2-[(18)F]fluoro-CP-118,954 specifically binds to AChE in mouse brains.  相似文献   

4.
OBJECTIVES: Alzheimer's disease (AD) is characterized by reduced acetylcholinesterase (AChE) activity in the post-mortem tissues of AD patients. Therefore, AChE has been an attractive target for the diagnosis of AD. In the present study, 5,7-dihydro-3-[2-(1-(phenylmethyl)-4-piperidinyl)ethyl]-6H-pyrrolo[3,2-f]-1,2-benzisoxazol-6-one (CP-118,954), a potent AChE inhibitor, was labelled with radioiodine and evaluated as an AChE imaging agent for SPECT. METHODS: Radioiodine-labelled CP-118,954 was prepared from CP-144,885 and [(125)I]iodobenzyl bromide, and anti-AChE activities of iodine-substituted CP-118,954 were measured. Metabolism studies were carried out in samples of blood and whole brain of mice injected with 2-[(123)I]iodo-CP-118,954 ((123)I-1). Tissue distribution studies were also performed in mice injected with I-1, and samples of blood, thyroid, stomach, and brain tissue (cerebellum, striatum and cortex) were removed, weighed and counted. RESULTS: Of the ligands, 2-iodo-CP-118,954 exhibited higher binding affinity for AChE (IC50=24 nM) than the other positional isomers. 2-[(125)I]Iodo-CP-118,954 was found to have a lipophilicity (log P=2.1) favouring brain permeability and metabolic stability in mouse brain, but a marginal target (striatum) to non-target (cerebellum) uptake ratio (1.1) in mouse brain. CONCLUSION: This result demonstrates that 2-[(125)I]iodo-CP-118,954 may be unsuitable for AChE imaging. These findings suggest that radioligands suitable for AChE imaging should have not only a specific structure but also a sub-nanomolar to low nanomolar IC50.  相似文献   

5.
We synthesized novel (18)F-labeled acetylcholinesterase (AChE) inhibitors, 3-[1-(3- and 4-[(18)F]fluoromethylbenzyl)piperidin-4-yl]-1-(1-methyl-1H-i ndol-3-yl )propan-1-ones ([(18)F]1 and [(18)F]2) and 3-[1-(4-[(18)F]fluorobenzyl)piperidin-4-yl]-1-(1-methyl-1H-i ndol-3-yl )propan-1-one ([(18)F]3) in high yields (decay-corrected, 25%-40%) and with high effective specific activities (>37 GBq/micromol). Tissue distribution studies of the [(18)F]1 and the [(18)F]3 in mice showed the nonspecific bindings in brain regions, with metabolic defluorination of the [(18)F]1. The result suggests that these radioligands may not be suitable agents for in vivo mapping of AChE, despite their potent in vitro anti-AChE activities.  相似文献   

6.
A carbon-11 labeled methoxyl analog of CP-101,606, (+/-)threo-1-(4-hydroxyphenyl)-2-[4-hydroxy-4-(p-[11C]methoxyphenyl)piperidino]-1-propanol [(+/-)[11C]1], was synthesized as a new subtype-selective PET radioligand for NMDA receptors. The in vitro binding studies using rat brain slices demonstrated that (+/-)[11C]1 shows an extremely high-specific binding to the NR2B subunit of NMDA receptors. In contrast to the in vitro binding, the in vivo binding to mouse and monkey brains showed no apparent specific localization of the radioactivity in any of the brain regions. Metabolism and physicochemical properties such as the lipophilicity of (+/-)[11C]1 seemed unlikely to affect the in vivo (+/-)[11C]1 binding. Among the various endogenous ligands acting at the NMDA receptors, polyamines (spermine and spermidine) and divalent cations (Mg(2+,) Zn(2+,) and Ca(2+)) strongly inhibited the in vitro (+/-)[11C]1 binding. Thus, the present studies point to the possibility that the polyamines and cations behave as endogenous inhibitors for (+/-)[11C]1 binding, leading to the loss of the specific binding in vivo.  相似文献   

7.
Nicotinic acetylcholine receptors (nAChR) are involved in many physiological functions and appear to be affected in neurodegenerative diseases like Alzheimer's disease and Parkinson's disease (PD). Here, we describe the in vitro evaluation of nAChRs in PD with 2-[18F]F-A85380, a ligand with high affinity to the beta2 nAChR subunit. Autoradiography with 2-[18F]F-A85380 in untreated rat brain corresponded to the known distribution of alpha4beta2 nAChRs with high uptake in the thalamus, moderate uptake in the striatum and cortex and low uptake in the cerebellum (47%, 43% and 19% of the thalamus, respectively). The localization of alpha4beta2 nAChRs in the striatum was investigated in rodents with unilateral lesion of the substantia nigra. 2-[18F]F-A85380 binding was significantly reduced in the striatum ipsilateral to the lesion side (to 64% of the contralateral side), indicating that a fraction of alpha4beta2 nAChRs is located on dopaminergic terminals, whereas another fraction resides on striatal interneurons or cortical afferents. Similarly, in human brain sections of PD patients, 2-[18F]F-A85380 uptake was significantly reduced not only in the caudate and putamen but also in the thalamus (approximately 30% of the binding of control brain in all three regions); within the striatum, nAChRs in the putamen were significantly more severely affected as in the caudate. The observed pattern of alpha4beta2* nAChR loss demonstrates the potential of 2-[18F]F-A85380 for further investigations of this positron emission tomography ligand for in vivo studies of alpha4beta2* nAChRs in PD.  相似文献   

8.
6-Methoxy-3-[2-[1-(phenylmethyl)-4-piperidinyl]ethyl]-1,2-benzisoxazole is a high affinity (K(i) = 8.2 nM) reversible inhibitor of acetylcholinesterase (AChE). The carbon-11 labeled form was prepared in high (>97%) radiochemical purity and with specific activities of 37+/-20 GBq/micromol at end of synthesis, by the alkylation of the desmethyl precursor with [11C]methyl trifluoromethanesulfonate in N,N-dimethyl-formamide at room temperature. In vivo studies in mice demonstrated good blood brain permeability but essentially uniform regional brain distribution. Thus, despite in vitro and in vivo activity as an AChE inhibitor, 6-[11C]methoxy-3-[2-[1-(phenylmethyl)-4-piperidinyl]ethyl]-1,2-benzis oxa zole does not appear to be a good candidate for in vivo imaging studies of AChE in the mammalian brain.  相似文献   

9.
As potential new ligands targeting the binding site of gamma-aminobutyric acid (GABA) receptor ionophore, trans-5-tert-butyl-2-(4'-fluoropropynylphenyl)-2-methyl-1,1-dioxo-1,3-dithiane (1) and cis/trans-5-tert-butyl-2-(4'-fluoropropynylphenyl)-2-methyl-1,1,3,3-tetroxo-1,3-dithiane (2) were selected for radiolabeling and initial evaluation as in vivo imaging agents for positron emission tomography (PET). Both compounds exhibited identical high in vitro binding affinities (K(i)=6.5 nM). Appropriate tosylate-substituted ethynyl precursors were prepared by multistep syntheses involving stepwise sulfur oxidation and chromatographic isolation of desired trans isomers. Radiolabeling was accomplished in one step using nucleophilic [(18)F]fluorination. In vivo biodistribution studies with trans-[(18)F]1 and trans-[(18)F]2 showed significant initial uptake into mouse brain and gradual washout, with heterogeneous regional brain distributions and higher retention in the cerebral cortex and cerebellum and lower retention in the striatum and pons-medulla. These regional distributions of the new radioligands correlated with in vitro and ex vivo measures of standard radioligands binding to the ionophore- and benzodiazepine-binding sites of GABA(A) receptor in rodent brain. A comparison of these results with previously prepared radiotracers for other neurochemical targets, including successes and failures as in vivo radioligands, suggests that higher-affinity compounds with increased retention in target brain tissues will likely be needed before a successful radiopharmaceutical for human PET imaging can be identified.  相似文献   

10.
We synthesized and evaluated 1-(4-fluorobenzyl)-4-[(5,6-dimethoxy-1-oxoindan-2-yl)methyl]piperidine (4-FDP), which is an analog of donepezil. The 4-[18F]FDP was prepared by reductive alkylation of debenzylated donepezil with 4-[18F]fluorobenzaldehyde in high radiochemical yield (decay-corrected, 40–52%) and with high effective specific activity (30–38 GBq/μmol). Tissue distribution studies in mice demonstrated nonspecific distribution of the 4-[18F]FDP in brain regions, suggesting that this radioligand may not be a suitable agent for in vivo studies of acetylcholinesterase (AChE), despite its potent in vitro biological activity.  相似文献   

11.
Regioselective fluorination of a completely protected phosgene derivative of 3,4-dihydroxy-phenyl-L-alanine (5-(benzyl-3',4'-carbonate)-oxazolidine-2,5-dione) with gaseous 18F-labeled acetylhypofluorite and [18F]F2 in acetonitrile is described. Fluorination with [18F]acetylhypofluorite yields 6-[18F]fluoro-L-dopa with 95% radiochemical purity; fluorination of the same substrate with [18F]F2 yields a mixture of all three structural isomers in a ratio of 70:16:14 for 6-, 5-, and 2-fluoro compounds. Radiochemical yield, relative to [18F] acetylhypofluorite, measured at the end of the synthesis, is (21 +/- 4)% (N = 8). The synthesis requires approximately 40 min (50 min if HPLC was done) and yields the final radiopharmaceutical in a two-step procedure. The specific activity of the final product was approximately 763 mCi/mmol at the end of a 40-min synthesis when 30-min irradiation was used.  相似文献   

12.
IntroductionThe utility of [18F]FPBM [2-(2′-((dimethylamino)methyl)-4′-(3-[18F]-fluoropropoxy)phenylthio)benzenamine], a selective serotonin transporter (SERT) tracer, and [18F]AV-133 [(+)-2-Hydroxy-3-isobutyl-9-(3-fluoropropoxy)-10-methoxy-1,2,3,4,6,7-hexahydro-11bH-benzo[a]quinolizine], a selective vesicular monoamine transporter 2 (VMAT2) tracer, were tested in the 6-hydroxydopamine (6-OHDA) unilateral lesioned rat model.MethodsPositron emission tomography (PET) imaging of three 6-OHDA unilateral lesioned male Sprague Dawley rats (Rats 1–3) were performed with [18F]FPBM and [18F]AV-133 to examine whether changes in SERT and VMAT2 binding, respectively, could be detected in the brain. The brains of the three rats were then removed and examined by in vitro autoradiography with [18F]FPBM and the dopamine transporter ligand, [125I]IPT [N-(3′-[125I]-iodopropen-2′-yl)-2-beta-carbomethoxy-3-beta-(4-chloro phenyl) tropane, for confirmation. Biodistribution of [18F]FPBM in a separate group of p-chloroamphetamine (PCA) treated rats were also performed.ResultsPET image analysis showed varying levels of SERT binding reduction (Rat 1=-11%, Rat 2=-4%, Rat 3=-43%; n=2) and a clear and definitive loss of VMAT2 binding (Rat 1=-87%, Rat 2=-72%, and Rat 3=-91%; n=1) in the left striatum when compared to the right (non-lesioned side) striatum. The results from PET imaging were corroborated with quantitative in vitro autoradiography. Rats treated with a selective serotonin toxin (p-chloroamphetamine) showed a significant reduction of [18F]FPBM uptake in the cortex and hypothalamus regions of the brain.ConclusionThe preliminary data suggest that [18F]FPBM and [18F]AV-133 may be useful for the examination of serotonergic and dopaminergic neuron integrity, respectively, in the living brain.  相似文献   

13.
INTRODUCTION: Fluoroethyl-desmethyl-ABP688 (FE-DABP688) is a novel derivative of the previously described positron emission tomography (PET) ligand 3-(6-methyl-pyridin-2-ylethynyl)-cyclohex-2-enone-O-[11C]-methyl-oxime. FE-DABP688 was radiolabeled with fluorine-18 and characterized as a PET imaging agent for the metabotropic glutamate receptor subtype 5 (mGluR5). METHODS: FE-DABP688 was radiolabeled by reacting 2-[18F]-fluoroethyl tosylate with the sodium salt of 3-(pyridin-2-ylethynyl)-cyclohex-2-enone-oxime in dry DMF. The in vitro affinity of [18F]-FE-DABP688 for mGluR5 was determined by Scatchard analysis of saturation binding data using rat whole-brain membranes (without cerebellum). Further in vitro characterization of the tracer involved plasma stability and lipophilicity testing. In vivo evaluation of [18F]-FE-DABP688 was performed by postmortem biodistribution experiments and PET studies in rats using the dedicated small-animal PET tomograph quad-HIDAC. RESULTS: The radiotracer was obtained in good radiochemical yields in an overall synthesis time of 150 min. The radiochemical yield after semipreparative HPLC was 25+/-8% (n>7, decay corrected), and specific activity was 30+/-5 GBq/micromol (n>7). [18F]-FE-DABP688 exhibited optimal lipophilicity with a logD value of 2.1+/-0.1 and high plasma stability. Saturation assays of [(18)F]-FE-DABP688 revealed a single high-affinity binding site with a dissociation constant (Kd) of 1.6+/-0.4 nM and a Bmax value of 119+/-24 fmol/mg protein. PET scanning indicated radioactivity uptake in mGluR5-rich regions such as the hippocampus, striatum and cortex, while radioactivity accumulation in the cerebellum, a region with negligible mGluR5 density, was significantly lower. Biodistribution studies showed a similar distribution pattern of [18F]-FE-DABP688 binding in the brain. The hippocampus-to-cerebellum and striatum-to-cerebellum ratios were 1.81+/-0.16 and 1.93+/-0.36, respectively. Blocking studies using coinjection of [18F]-FE-DABP688 and unlabeled 2-methyl-6-((3-methoxyphenyl)ethynyl)-pyridine (1 mg/kg) revealed more than 45% specific binding in the hippocampus and striatum, thus demonstrating the in vivo specificity of tracer binding. CONCLUSIONS: [18F]-FE-DABP688 may be a useful PET tracer for imaging mGluR5 in rodents.  相似文献   

14.
NNC 687 and NNC 756 [(+)-5-(2,3-dihydrobenzofuran-7-yl)-7-hydroxy-3-methyl-8-nitro-2,3,4,5-tetrahydro-1H-3-benzazepine and (+)-8-chloro-5-(2,3-dihydrobenzofuran-7-yl)-7-hydroxy-3-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine] are two new potent dopamine D-1 receptor antagonists. [11C]NNC 687 and [11C]NNC 756 were both prepared by N-methylation of the corresponding desmethyl compounds with [11C]methyl iodide. The reactions were performed in acetone with subsequent normal-phase semi-preparative HPLC and resulting in 50–60% radiochemical yield (from EOB and decay-corrected) with a total synthesis time of 30–35 min and a radiochemical purity higher than 99%. The specific radioactivity obtained at time of injection was about 1500 Ci/mmol (55 GBq/μmol). Autoradiographic examination of [11C]NNC 687 and [11C]NNC 756 binding in post-mortem human brain sections showed specific binding in the striatum, a region with high density of dopamine D-1 receptors. PET examination of the radioligands in a Cynomolgus monkey demonstrated accumulation of radioactivity predominantly in the striatum. The ratio between radioactivities in the striatum and the cerebellum was about 2 and 8 for [11C]NNC 687 and [11C]NNC 756 after 60 min. [11C]NNC 756 should have potential as PET ligand for examination of central dopamine D-1 receptors in man.  相似文献   

15.
The novel thiol-group-selective bifunctional 18F-labeling agent N-[6-(4-[18F]fluoro-benzylidene)aminooxyhexyl]maleimide ([18F]FBAM) has been developed. The bifunctional labeling precursor N-(6-aminoxyhexyl)maleimide containing a thiol-reactive maleimide group and a carbonyl-group-reactive aminooxy group was prepared in only three steps in a total chemical yield of 59%. Subsequent radiolabeling with 4-[18F]fluorobenzaldehyde gave the bifunctional 18F-labeling agent [18F]FBAM in a radiochemical yield of 29%. In a typical experiment, 3.88 GBq of [18F]fluoride could be converted into 723 MBq of [18F]FBAM within 69 min. Conjugation of [18F]FBAM with thiol groups was exemplified with the cysteine-containing tripeptide glutathione and with various apolipoproteins of human low-density lipoprotein (LDL) subfractions. The latter was evaluated with respect to the uptake of [18F]FBAM-LDL subfractions in human hepatoma cells (HepG2) in vitro. In vivo biodistribution studies in rats revealed high stability for [18F]FBAM-LDL subfractions. Moreover, the metabolic fate of [18F]FBAM-LDL subfractions in vivo was delineated by dynamic positron emission tomography studies using a dedicated small animal tomograph. Data were compared to former studies that used the NH2-reactive 18F-labeling agent N-succinimidyl-4-[18F]fluorobenzoate. The compound [18F]FBAM can be considered as an excellent prosthetic group for the selective and mild 18F labeling of thiol-group-containing biomolecules suitable for subsequent investigations in vitro and in vivo.  相似文献   

16.
We prepared N(3)-(2-[(18)F]fluoroethyl)-thymidine ([(18)F]NFT202) and examined its potential as a positron emission tomography (PET) ligand for imaging cellular proliferation. [(18)F]NFT202 was synthesized from 3',5'-di-O-toluoyl-N(3)-(2-p-toluenesulfoxyethyl)-thymidine in a two-step reaction. N(3)-(2-fluoroethyl)-[2-(14)C]thymidine ([(14)C]NFT202) was also synthesized from [2-(14)C]thymidine in a one-step reaction. Whereas [(18)F]NFT202 did not accumulate in mouse Lewis lung carcinoma tumors, 3'-[(18)F]3'-fluoro-3'-deoxythymidine ([(18)F]FLT) showed significantly high uptake. To clarify this unexpected result, we evaluated the cell uptake of [(14)C]NFT202 in vitro. The uptake was approximately eight times higher in thymidine kinase 1 (TK1)(+) clones (L-M cells) than in TK1-deficient mutant L-M(TK(-)) cells (P<.01, Student's t test). In addition, we observed a positive correlation between tracer uptake and the S-phase fraction. However, the net in vitro tumor cell uptake of [(14)C]NFT202 was lower than that of [2-(14)C]3'-fluoro-3'-deoxythymidine. [(14)C]NFT202 was not effectively incorporated into the DNA fraction and was indeed washed out from tumor cells. These results clearly showed that [(18)F]NFT202 did not surpass the performance of [(18)F]FLT. We therefore conclude that [(18)F]NFT202 is not a suitable PET ligand for imaging tumor cell proliferation.  相似文献   

17.
FAUC346 (N-[4-[4-(2-methoxyphenyl)piperazin-1-yl]butyl]benzo[b]thiophene-2-carboxamide), an in vitro D(3)-selective ligand, and its normethyl derivative have been synthesized from commercially available 1-(2-substituted-phenyl)piperazines. FAUC346 has been labeled using [(11)C]methyl triflate in acetone containing aqueous NaOH (5 Eq) at -10 degrees C for 1 min, purified on semipreparative reverse-phase high-performance liquid chromatography (HPLC) and formulated as an intravenous injectable solution using a Sep-Pak Plus C(18) device. Up to 5.5 GBq of [(11)C]FAUC346 (N-[4-[4-(2-[methyl-(11)C]methoxyphenyl)piperazin-1-yl]butyl]benzo[b]thiophene-2-carboxamide), with a specific radioactivity of 45-75 GBq/micromol, could be obtained in 30-35 min, including HPLC purification and formulation starting from 44.4 GBq of [(11)C]carbon dioxide. Preliminary pharmacological evaluation of [(11)C]FAUC346 in rat brain clearly demonstrated in vivo selectivity for D(3) receptors and the absence of radiolabeled metabolite within the brain. These encouraging results, however, could not be confirmed in nonhuman primates; therefore, this radioligand does not appear to have the required pharmacological profile for a positron emission tomography probe for imaging D(3) receptors.  相似文献   

18.
3-(4-Chlorobenzyl)-8-methoxy-1,2,3,4-tetrahydrochromeno[3,4-c]pyridin-5-one (1), a putative dopamine D(4) receptor antagonist (k(i) = 8.7 nM), was labeled by positron-emitter (11C) and its pharmacological evaluation was carried out with in vitro quantitative autoradiography and positron emission tomography (PET). 11C-Methylation of a corresponding desmethyl precursor (2) with [11C]CH(3)I gave [11C]1 with >or=98% of radiochemical purity after HPLC purification and 67-90 GBq/micromol of specific activity at the end of synthesis. The in vitro autoradiography using rat brain sections demonstrated that [11C]1 shows no specific binding to the D(4) receptors, but a high specific binding to sigma(1) receptors (IC(50) = 105 nM). In the PET study with monkey brain, [11C]1 was highly taken up by the brain and trapped in the brain for at least 90 min. The distribution pattern of radioactivity in the brain was striatum > thalamus > frontal cortex > cerebellum, which was same as the result of in vitro autoradiography. Pre-treatment with non-radioactive 1 (1 mg/kg) produced a significant reduction of radioactivity in all the regions including the cerebellum. Pre-treatment with (+)pentazocine (1 mg/kg), a selective sigma(1) receptor agonist, also reduced the radioactivity in the same regions to a similar extent. These results indicate that [11C]1 may have some specific binding to the sigma(1) receptors, which is consistent with the result of in vitro autoradiography.  相似文献   

19.
Two benzamide derivatives as dopamine D4 receptor antagonists, YM-50001(4) and N- [2-[4-(4-chlorophenyl]piperizin-1-yl]ethyl]-3-methoxybenzamide (9), were labeled by positron-emitter (11C), and their pharmacological specificities to dopamine D4 receptors were examined by quantitative autoradiography and positron emission tomography (PET). Radiosyntheses were accomplished by O-methylation of corresponding phenol precursors (5 and 10) with [11C]CH3I followed by HPLC purifications. In vitro binding on rat brain slices showed different distribution patterns and pharmacological properties between the two radioligands. The [11C]4 showed the highest binding in the striatum, which was inhibited not only by 10 microM 4 but also by 10 microM raclopride, a selective dopamine D2 receptor antagonist. In contrast, [11C]9 showed the highest binding in the cerebral cortex, which was inhibited by several D4 receptor antagonists (9, RBI-254, L-745,870), but not by any other receptor ligands (D1/D5, D2/D3, 5-HT1A, 5-HT2A, sigma1 and alpha1) tested. In vivo brain distribution of [11C]9 in rat showed the highest uptake in the frontal cortex, a region that has a high density of D4 receptors. These results indicate that the pharmacological property of [11C]9 matches the rat brain D4 receptors, but that of [11C]4 rather appears to match the rat brain D2 receptors. The results for the benzamide [11C]9 prompted us to further evaluate its potential as a PET radioligand for D4 receptors by employing PET on monkey brain. Unfortunately, in contrast to rats, neither specific binding nor differences in regional uptake of radioactivity were observed in monkey brain after intravenous 11C]9 injection. Based on that specific activities of radioligands might be critical in mapping the neurotransmitter receptors if they are only faintly expressed in the brain, 11C]9 with an extremely high specific activity (1810 GBq/micromol) was used for PET study. However, the effort to determine the specific binding for D4 failed. These results indicate that both of the benzamide derivatives would not be suitable radioligands for D4 receptors with PET.  相似文献   

20.
6-[18F]Fluoro-3-(2(S)-azetidinylmethoxy)pyridine (6-[18F]fluoro-A-85380 or 6-[18F]FA), a new tracer for positron emission tomography, was synthesized by no-carrier-added [18F] fluorination of 6-iodo-3-((1-tert-butoxycarbonyl-2(S)-azetidinyl)methoxy)pyridine followed by acidic deprotection. 6-[18F]FA followed the regional densities of brain nicotinic acetylcholine receptors (nAChRs) reported in the literature. Evidence of binding to nAChRs and high specificity of the binding in vivo was demonstrated by inhibition with nAChR selective ligands as well as with unlabeled 6-FA. A preliminary toxicology study of the 6-FA showed a relatively low biological effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号