首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biofilms, likely the predominant mode of device-related microbial infection, exhibit resistance to antimicrobial agents. Evidence suggests that Candida biofilms have dramatically reduced susceptibility to antifungal drugs. We examined antifungal susceptibilities of Candida albicans and Candida parapsilosis biofilms grown on a bioprosthetic model. In addition to conventional agents, we determined if new antifungal agents (triazoles, amphotericin B lipid formulations, and echinocandins) have activities against Candida biofilms. We also explored effects of preincubation of C. albicans cells with subinhibitory concentrations (sub-MICs) of drugs to see if they could modify subsequent biofilm formation. Finally, we used confocal scanning laser microscopy (CSLM) to image planktonic- and biofilm-exposed blastospores to examine drug effects on cell structure. Candida biofilms were formed on silicone elastomer and quantified by tetrazolium and dry weight (DW) assays. Susceptibility testing of fluconazole, nystatin, chlorhexidine, terbenafine, amphotericin B (AMB), and the triazoles voriconazole (VRC) and ravuconazole revealed resistance in all Candida isolates examined when grown as biofilms, compared to planktonic forms. In contrast, lipid formulations of AMB (liposomal AMB and AMB lipid complex [ABLC]) and echinocandins (caspofungin [Casp] and micafungin) showed activity against Candida biofilms. Preincubation of C. albicans cells with sub-MIC levels of antifungals decreased the ability of cells to subsequently form biofilm (measured by DW; P < 0.0005). CSLM analysis of planktonic and biofilm-associated blastospores showed treatment with VRC, Casp, and ABLC resulted in morphological alterations, which differed with each agent. In conclusion, our data show that Candida biofilms show unique susceptibilities to echinocandins and AMB lipid formulations.  相似文献   

2.
OBJECTIVES: The aim of this study was to assess the resistance of Candida albicans biofilms to both antifungal and antimicrobial agents in vitro. METHODS: Biofilms of C. albicans were grown on denture acrylic discs in a constant depth film fermentor and maintained with artificial saliva. The MIC of fluconazole, miconazole and chlorhexidine for C. albicans was first determined. Using these data, 72 h biofilms were exposed to these agents at different MIC levels. In order to assess growth, biofilms were removed from the fermentor, incubated in the test agent for various periods, the biofilms disrupted and the viable yeast cells present determined. The MIC for these cells was then also determined. In a separate experiment, biofilms of various ages (2-72 h) were exposed to sub-biofilm MIC concentrations for two different periods. RESULTS: C. albicans biofilms were found to be highly resistant to fluconazole and miconazole compared with the same cells grown in suspension (>/=1024 x MIC). In contrast, chlorhexidine inhibited the growth of C. albicans biofilms at a concentration up to 8 x MIC. When the susceptibility of biofilms over time was investigated, higher reductions were observed for chlorhexidine and miconazole than fluconazole for biofilms of 2 and 6 h. CONCLUSIONS: We have shown in this study that the susceptibility of C. albicans to antifungal and antimicrobial agents changes throughout biofilm development.  相似文献   

3.
Micafungin (FK-463), a member of the new candin family of antifungal agents, was highly active against clinical isolates of Candida albicans and Candida dubliniensis. The in vitro activity of micafungin suggested that it was more potent than fluconazole, flucytosine, amphotericin B or voriconazole against C. albicans, and comparable or moderately less effective against C. dubliniensis isolates when high-resolution medium (HR) was used. Lower MICs of micafungin were recorded when RPMI 2% or AM3 2% media were used, indicating an influence of the growth medium on the MIC.  相似文献   

4.
The treatment of vulvovaginal candidiasis (VVC) due to Candida glabrata is challenging, with limited therapeutic options. Unexplained disappointing clinical efficacy has been reported with systemic and topical azole antifungal agents in spite of in vitro susceptibility. Given that the vaginal pH of patients with VVC is unchanged at 4 to 4.5, we studied the effect of pH on the in vitro activity of 11 antifungal agents against 40 C. glabrata isolates and compared activity against 15 fluconazole-sensitive and 10 reduced-fluconazole-susceptibility C. albicans strains. In vitro susceptibility to flucytosine, fluconazole, voriconazole, posaconazole, itraconazole, ketoconazole, clotrimazole, miconazole, ciclopirox olamine, amphotericin B, and caspofungin was determined using the CLSI method for yeast susceptibility testing. Test media were buffered to pHs of 7, 6, 5, and 4. Under conditions of reduced pH, C. glabrata isolates remained susceptible to caspofungin and flucytosine; however, there was a dramatic increase in the MIC(90) for amphotericin B and every azole drug tested. Although susceptible to other azole drugs tested at pH 7, C. albicans strains with reduced fluconazole susceptibility also demonstrated reduced susceptibility to amphotericin B and all azoles at pH 4. In contrast, fluconazole-sensitive C. albicans isolates remained susceptible at low pH to azoles, in keeping with clinical observations. In selecting agents for treatment of recurrent C. glabrata vaginitis, clinicians should recognize the limitations of in vitro susceptibility testing utilizing pH 7.0.  相似文献   

5.
A perfused biofilm fermentor, which allows growth-rate control of adherent microbial populations, was used to assess whether the susceptibility of Candida albicans biofilms to antifungal agents is dependent on growth rate. Biofilms were generated under conditions of glucose limitation and were perfused with drugs at a high concentration (20 times the MIC). Amphotericin B produced a greater reduction in the number of daughter cells in biofilm eluates than ketoconazole, fluconazole, or flucytosine. Similar decreases in daughter cell counts were observed when biofilms growing at three different rates were perfused with amphotericin B. In a separate series of experiments, intact biofilms, resuspended biofilm cells, and newly formed daughter cells were removed from the fermentor and were exposed to a lower concentration of amphotericin B for 1 h. The susceptibility profiles over a range of growth rates were then compared with those obtained for planktonic cells grown at the same rates under glucose limitation in a chemostat. Intact biofilms were resistant to amphotericin B at all growth rates tested, whereas planktonic cells were resistant only at low growth rates (≤0.13 h−1). Cells resuspended from biofilms were less resistant than intact biofilm populations but more resistant than daughter cells; the susceptibilities of both these cell types were largely independent of growth rate. Our findings indicate that the amphotericin B resistance of C. albicans biofilms is not simply due to a low growth rate but depends on some other feature of the biofilm mode of growth.  相似文献   

6.
OBJECTIVES: The aim of the present study was to expand the MIC database for Candida lusitaniae in order to further determine its antifungal susceptibility pattern. METHODS: The activities of amphotericin B, fluconazole, itraconazole, voriconazole and flucytosine were determined in vitro against 80 clinical isolates of C. lusitaniae. A set of 59 clinical isolates of Candida albicans and of 51 isolates of Candida glabrata was included to compare the susceptibilities to amphotericin B. The MICs were determined by Etest with RPMI 1640 agar, and with both this medium and antibiotic medium 3 (AM3) agar for testing of amphotericin B. RESULTS: All isolates were highly susceptible to fluconazole. The susceptibility to itraconazole was good; only 4% of isolates had dose-dependent susceptibility (MICs 0.25-0.5 mg/L). Voriconazole was very active in vitro (100% of isolates were inhibited at < or =0.094 mg/L). Flucytosine MICs ranged widely (0.004->32 mg/L). The set included 19% of flucytosine-resistant isolates. For amphotericin B, 100% of isolates were inhibited at < or =0.75 mg/L (MIC(50) 0.047 mg/L; MIC(90) 0.19 mg/L) and at < or =4 mg/L (MIC(50) 0.25 mg/L; MIC(90) 0.75 mg/L) on RPMI and on AM3, respectively. A single isolate was categorized as resistant to amphotericin B (MIC 0.75 and 4 mg/L on RPMI and on AM3, respectively). Amphotericin B thus appeared very active in vitro against C. lusitaniae. Whatever the test medium, the level of susceptibility of C. lusitaniae to amphotericin B did not differ much from those of C. albicans and C. glabrata. CONCLUSION: C. lusitaniae appears to be susceptible to amphotericin B, azole antifungal agents, and, to a lesser extent, flucytosine.  相似文献   

7.
Isavuconazole is the active component of the new azole antifungal agent BAL8557, which is entering phase III clinical development. This study was conducted to compare the in vitro activities of isavuconazole and five other antifungal agents against 296 Candida isolates that were recovered consecutively from blood cultures between 1995 and 2004 at a tertiary care university hospital. Microdilution testing was done in accordance with CLSI (formerly NCCLS) guideline M27-A2 in RPMI-1640 MOPS (morpholinepropanesulfonic acid) broth. The antifungal agents tested were amphotericin B, flucytosine, fluconazole, itraconazole, voriconazole, and isavuconazole. C. albicans was the most common species, representing 57.1% of all isolates. There was no trend found in favor of non-Candida albicans species over time. In terms of MIC(50)s, isavuconazole was more active (0.004 mg/liter) than amphotericin B (0.5 mg/liter), itraconazole (0.008 mg/liter), voriconazole (0.03 mg/liter), flucytosine (0.125 mg/liter), and fluconazole (8 mg/liter). For isavuconazole, MIC(50)s/MIC(90)s ranged from 000.2/0.004 mg/liter for C. albicans to 0.25/0.5 mg/liter for C. glabrata. Two percent of isolates (C. glabrata and C. krusei) were resistant to fluconazole; C. albicans strains resistant to fluconazole were not detected. There were only two isolates with MICs for isavuconazole that were >0.5 mg/liter: both were C. glabrata isolates, and the MICs were 2 and 4 mg/liter, respectively. In conclusion, isavuconazole is highly active against Candida bloodstream isolates, including fluconazole-resistant strains. It was more active than itraconazole and voriconazole against C. albicans and C. glabrata and appears to be a promising agent against systemic Candida infections.  相似文献   

8.
Candida albicans is implicated in many biomaterial-related infections. Typically, these infections are associated with biofilm formation. Cells in biofilms display phenotypic traits that are dramatically different from those of their free-floating planktonic counterparts and are notoriously resistant to antimicrobial agents. Consequently, biofilm-related infections are inherently difficult to treat and to fully eradicate with normal treatment regimens. Here, we report a rapid and highly reproducible microtiter-based colorimetric assay for the susceptibility testing of fungal biofilms, based on the measurement of metabolic activities of the sessile cells by using a formazan salt reduction assay. The assay was used for in vitro antifungal susceptibility testing of several C. albicans strains grown as biofilms against amphotericin B and fluconazole and the increased resistance of C. albicans biofilms against these antifungal agents was demonstrated. Because of its simplicity, compatibility with a widely available 96-well microplate platform, high throughput, and automation potential, we believe this assay represents a promising tool for the standardization of in vitro antifungal susceptibility testing of fungal biofilms.  相似文献   

9.
OBJECTIVES: Candidiasis can be associated with the formation of biofilms on bioprosthetic surfaces and the intrinsic resistance of Candida albicans biofilms to the most commonly used antifungal agents has been demonstrated. In this study, we report on the antifungal activity of caspofungin at two different concentrations, on C. albicans and Candida parapsilosis biofilms with different ages of maturation. METHODS: Fifteen strains of C. albicans (10 strains susceptible to fluconazole in vitro and five strains resistant to this antifungal agent) and six strains of C. parapsilosis (all were susceptible to fluconazole in vitro) were studied. The antifungal activity of caspofungin was assessed by looking for a significant inhibition of the metabolic activity of yeasts within biofilms. Biofilms of Candida were produced in vitro, on silicone catheters. RESULTS: Caspofungin used at MIC did not modify the metabolic activity of C. albicans, whatever the maturation age of the biofilms. The same concentration of caspofungin significantly reduced the metabolism (P相似文献   

10.
Thirty clinical isolates of Candida albicans were collected from blood or other sterile site infections. Biofilm dry weight and metabolic activity were measured for each isolate. Planktonic and sessile antifungal susceptibilities of each isolate were determined for amphotericin B deoxycholate, caspofungin, and voriconazole. Sessile susceptibilities were determined for the combination of caspofungin/voriconazole. No significant differences in biofilm dry weight or metabolic activity were found between bloodstream and other invasive isolates. Planktonic MIC90 values and sessile MIC90 (SMIC90) values were 0.25 and 2, 0.06 and >256, and 0.5 and 2 microg/mL for amphotericin, voriconazole, and caspofungin, respectively. The SMIC90 of the combination of caspofungin/voriconazole against sessile isolates was 0.5/2 microg/mL. Therefore, the source of invasive C. albicans clinical isolates did not affect in vitro biofilm formation. Susceptibility to antifungal agents decreased when C. albicans was associated with biofilm, and the combination of caspofungin/voriconazole did not appear to provide enhanced activity compared with caspofungin alone.  相似文献   

11.
OBJECTIVES: The antifungal drug susceptibilities of 351 isolates of Candida species, obtained through active laboratory-based surveillance in the period January 2002-December 2003, were determined (Candida albicans 51%, Candida parapsilosis 23%, Candida tropicalis 10%, Candida glabrata 9%, Candida krusei 4%). METHODS: The MICs of amphotericin B, flucytosine, fluconazole, itraconazole, voriconazole and caspofungin were established by means of the broth microdilution reference procedure of the European Committee on Antibiotic Susceptibility Testing. RESULTS AND CONCLUSIONS: Amphotericin B and flucytosine were active in vitro against all strains. A total of 24 isolates (6.8%) showed decreased susceptibility to fluconazole (MIC > or = 16 mg/L) and 43 (12.3%) showed decreased susceptibility to itraconazole (MIC > or = 0.25 mg/L). Voriconazole and caspofungin were active in vitro against the majority of isolates, even those that were resistant to fluconazole.  相似文献   

12.
OBJECTIVES: The aim of this study was to investigate the in vitro antifungal activity of an isothiosemicarbazone cyclic analogue against isolates of Candida spp. including fluconazole-resistant Candida albicans. METHODS: We investigated the activity of 2-cyclohexylidenhydrazo-4-phenyl-thiazole (EM-01D2) against 114 clinical isolates of Candida spp., representing five different species, by microdilution, according to the NCCLS method 27-A. The activity against C. albicans biofilms was also investigated. Toxicity in vitro was evaluated by MTT reduction assay. RESULTS: EM-01D2 demonstrated low toxicity, broad spectrum, fungicidal activity and was active against C. albicans and Candida krusei at concentrations lower than those shown by amphotericin B and fluconazole (P < 0.05). It maintained potent in vitro activity against fluconazole-resistant C. albicans isolates. Fungicidal activity occurred at concentrations 1-2 doubling dilutions greater than the corresponding MICs, and time-kill analysis indicated that a 99.9% loss of C. albicans viability occurred after 6 h of incubation in the presence of EM-01D2 at concentrations equal to four times the MIC. EM-01D2 was also active in inhibiting the growth of C. albicans ATCC 10231 biofilms, even though such inhibition occurred at concentrations higher than the MICs determined under planktonic growth conditions. However, when C. albicans biofilms were pre-exposed to subinhibitory concentrations of EM-01D2, a reduction of MIC50 of amphotericin B was observed. CONCLUSIONS: Based on these results, EM-01D2 could represent a template for the development of novel fungicidal agents.  相似文献   

13.
Fungal pathogens form biofilms that are highly recalcitrant to antimicrobial therapy. The expression of multidrug resistance pumps in young biofilms has been linked to increased resistance to azoles, but this mechanism does not seem to underlie the resistance of mature biofilms that is a model of in vivo infection. The mechanism of drug resistance of mature biofilms remains largely unknown. We report that biofilms formed by the major human pathogen Candida albicans exhibited a strikingly biphasic killing pattern in response to two microbicidal agents, amphotericin B, a polyene antifungal, and chlorhexidine, an antiseptic, indicating that a subpopulation of highly tolerant cells, termed persisters, existed. The extent of killing with a combination of amphotericin B and chlorhexidine was similar to that observed with individually added antimicrobials. Thus, surviving persisters form a multidrug-tolerant subpopulation. Interestingly, surviving C. albicans persisters were detected only in biofilms and not in exponentially growing or stationary-phase planktonic populations. Reinoculation of cells that survived killing of the biofilm by amphotericin B produced a new biofilm with a new subpopulation of persisters. This suggests that C. albicans persisters are not mutants but phenotypic variants of the wild type. Using a stain for dead cells, rare dark cells were visible in a biofilm after amphotericin B treatment, and a bright and a dim population were physically sorted from this biofilm. Only the dim cells produced colonies, showing that this method allows the isolation of yeast persisters. Given that persisters formed only in biofilms, mutants defective in biofilm formation were examined for tolerance of amphotericin B. All of the known mutants affected in biofilm formation were able to produce normal levels of persisters. This finding indicates that attachment rather than formation of a complex biofilm architecture initiates persister formation. Bacteria produce multidrug-tolerant persister cells in both planktonic and biofilm populations, and it appears that yeasts and bacteria have evolved analogous strategies that assign the function of survival to a small part of the population. In bacteria, persisters are dormant cells. It remains to be seen whether attachment initiates dormancy that leads to the formation of fungal persisters. This study suggests that persisters may be largely responsible for the multidrug tolerance of fungal biofilms.  相似文献   

14.
Disseminated candidiasis is associated with a high rate of morbidity and mortality. The presence of neutrophils and the timely administration of antifungal agents are likely to be critical factors for a favorable therapeutic outcome of this syndrome. The effect of neutropenia on the temporal profile of the burden of Candida albicans in untreated mice and those treated with amphotericin B was determined using a pharmacodynamic model of disseminated candidiasis. A mathematical model was developed to describe the rate and extent of the C. albicans killing attributable to neutrophils and to amphotericin B. The consequences of a delay in the administration of amphotericin B, flucytosine, or micafungin were studied by defining dose-response relationships. Neutrophils caused a logarithmic decline in fungal burden in treated and untreated mice. The combination of amphotericin B and neutrophils resulted in a high rate of Candida killing and a sustained anti-C. albicans effect. In neutropenic mice, 5 mg/kg of body weight of amphotericin B was required to prevent progressive logarithmic growth. An increased delay in drug administration resulted in a reduction in the maximum effect to a point at which no drug effect could be observed. Neutrophils and the timely initiation of antifungal agents are critical determinants in the treatment of experimental disseminated candidiasis.  相似文献   

15.
Antifungal susceptibilities (NCCLS, approved standard M27-A, 1997) were determined for the reference strain ATCC 90028 and 21 clinical isolates of Candida albicans with varying levels of fluconazole susceptibility using RPMI 1640 (RPMI) and 80% fresh human serum-20% RPMI (serum). Sixty-four percent (14 of 22) of the isolates tested demonstrated significant decreases (> or = 4-fold) in fluconazole MICs in the presence of serum, and the remaining eight isolates exhibited no change. Itraconazole and ketoconazole, two highly protein-bound antifungal agents, had MICs in serum that were increased or unchanged for 46% (10 of 22) and 41% (9 of 22) of the isolates, respectively. All 10 isolates tested against an investigational antifungal agent, LY303366, demonstrated significant increases in the MIC required in serum, while differences in amphotericin B MICs in the two media were not observed. Four of 10 isolates tested demonstrated fourfold higher flucytosine MICs in serum than in RPMI. Postantifungal effects (PAFEs) and 24-h kill curves were determined by standard methods for selected isolates. At the MIC, fluconazole, itraconazole, ketoconazole, flucytosine, and LY303366 kill curves and PAFEs in RPMI were similar to those in serum. Isolates of fluconazole-resistant C. albicans required lower MICs in serum than in RPMI, without relative increases in fungal killing or PAFEs. Isolates tested against amphotericin B demonstrated significantly reduced killing and shorter PAFEs in serum than in RPMI without observable changes in MIC. In conclusion, antifungal pharmacodynamics in RPMI did not consistently predict antifungal activity in serum for azoles and amphotericin B. Generally speaking, antifungal agents with high protein binding exhibited some form of reduced activity (MIC, killing, or PAFE) in the presence of serum compared to those with low protein binding.  相似文献   

16.
In this study, time-kill methods were used to evaluate the antifungal activity of amphotericin B and flucytosine, alone and in combination, against six isolates of Candida albicans and Cryptococcus neoformans. Five regimens were tested against each isolate: (1) flucytosine, (2) low-dose amphotericin B, (3) high-dose amphotericin B, (4) low-dose amphotericin B plus flucytosine, and (5) high-dose amphotericin B plus flucytosine. Low-dose amphotericin B and flucytosine, administered alone and simultaneously, demonstrated fungistatic activity against all sample isolates except C. albicans 90028, in which fungicidal activity was detected with the combination. High-dose amphotericin B, alone and in combination, resulted in a rapid fungicidal effect in all isolates. In both the low and high-dose combinations, indifferent activity was demonstrated against all tested isolates. By virtue of the absence of an antagonistic interaction between these two agents, complementary pharmacokinetic profiles, and non-overlapping toxicities, continued clinical use of these agents in combination may be considered.  相似文献   

17.
OBJECTIVES: Some manifestations of candidiasis are associated with the formation of biofilms on inert or biological surfaces and the intrinsic resistance of Candida albicans biofilms to the most commonly used antifungal agents has been demonstrated. In this study, we report on the influence of the growth of C. albicans in medium containing a sub-inhibitory concentration (MIC/2) of caspofungin, on subsequent fungal adherence to plastic coated with extracellular matrix (ECM) proteins. METHODS: Eleven strains of C. albicans were studied: six strains were susceptible to fluconazole in vitro and five strains were resistant to this antifungal agent. RESULTS: Caspofungin induced a decrease in the adherence of all the tested strains that were susceptible to fluconazole but induced a decrease in the adherence of only 60% of the fluconazole-resistant strains. CONCLUSIONS: This study demonstrated the anti-adherent activity of caspofungin but indicated a reduced effect in the case of in vitro fluconazole resistance. These results indicated a possible relationship between the efficiency of caspofungin to inhibit the first step of the development of C. albicans biofilm and the resistance of C. albicans to fluconazole in vitro.  相似文献   

18.
Biofilms formed by Candida albicans on small discs of catheter material were resistant to the action of five clinically important antifungal agents as determined by [3H]leucine incorporation and tetrazolium reduction assays. Fluconazole showed the greatest activity, and amphotericin B showed the least activity against biofilm cells. These findings were confirmed by scanning electron microscopy of the biofilms.  相似文献   

19.
In this study the effects of different antifungal agents on the binding of Candida albicans yeast cells to different supports were examined. Pre-treatment with amphotericin B or dithiothreitol (DTT) severely reduced the ability of C. albicans yeasts to bind to plastic, while the effects of pre-treatment with fluconazole, ketoconazole or flucytosine were less marked. Both DTT and amphotericin B reduced the binding of yeasts to bovine serum albumin (BSA) and amino acids at low concentrations, while the other antifungal agents were effective at concentrations several-fold higher than their MICs. These data suggest that DTT and amphotericin B affect the yeast cell wall components, and alter both hydrophobic interactions with plastic, and the more specific interactions with BSA and amino acids. By contrast, the effect of the azoles and flucytosine appears to be largely restricted to hydrophobic interactions.  相似文献   

20.
Catheter-related infections due to Candida albicans biofilms are a leading cause of fungal nosocomial bloodstream infection. In this paper, we describe the development of a model of catheter-associated infection with C. albicans biofilms and show that antifungal lock therapy with liposomal amphotericin B is an effective treatment strategy for these infections. Silicone catheters surgically placed in New Zealand White rabbits were infected with C. albicans, and the rabbits were randomized into three groups: (i) untreated controls, (ii) liposomal amphotericin B lock, and (iii) fluconazole lock. Upon completion of therapy, blood cultures were obtained and the catheters were removed for quantitative culture and scanning electron microscopic analyses. Quantitative cultures revealed that catheters treated with liposomal amphotericin B yielded 0 CFU, which was significant compared to the untreated controls (P < 0.001) and the fluconazole-treated group (P = 0.0079). Although fluconazole treatment tended to have lower CFU compared to untreated controls, there was no difference in mean colony counts between these two groups (1.128 +/- 0.764 and 1.841 +/- 1.141 log(10) CFU/catheter segment, respectively; P = 0.297). Scanning electron microscopy revealed abundant biofilm in the control and fluconazole groups, while the liposomal amphotericin B group was virtually cleared. These findings suggest a possible treatment strategy for the successful salvage of catheters infected with C. albicans biofilms and describe an animal model that may play an important role in the further study of C. albicans biofilm pathogenesis and evaluation of potential antibiofilm agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号