首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selective motor nerve injury by lumbar 5 ventral root transection (L5 VRT) induces neuropathic pain, but the underlying mechanisms remain unknown. Previously, increased expression and secretion of brain-derived neurotrophic factor (BDNF) had been implicated in injury-induced neuropathic pain in the sensory system. In this study, as a step to examine potential roles of BDNF in L5 VRT-induced neuropathic pain, we investigated BDNF gene and protein expression in adult rats with L5 VRT. L5 VRT induced a dramatic upregulation of BDNF mRNA in intact sensory neurons in the ipsilateral L5 dorsal root ganglia (DRG), in non-neuronal cells in the ipsilateral sciatic nerve, and in motoneurons in the ipsilateral spinal cord. L5 VRT also induced de novo synthesis of BDNF mRNA in spinal dorsal horn neurons and in glial cells in the white matter of the ipsilateral spinal cord. Consistent with the mRNA expression pattern, BDNF protein was also mainly upregulated in all populations of sensory neurons in the ipsilateral L5 DRG and in spinal neurons and glia. Quantitative analysis by ELISA showed that the BDNF content in the DRG and sciatic nerve peaked on day 1 and remained elevated 14 days after L5 VRT. These results suggest that increased BDNF expression in intact primary sensory neurons and spinal cord may be an important factor in the induction of neuropathic pain without axotomy of sensory neurons.  相似文献   

2.
In situ hybridization analysis of cells expressing messenger RNAs (mRNAs) for the neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) and their high-affinity receptors (trk, trkB and trkC) in the rat embryo revealed a complex but specific expression pattern for each of these mRNAs. For all mRNAs a developmentally regulated expression was seen in many different tissues. BDNF and NT-3 mRNAs were expressed in the sensory epithelia of the cochlea and vestibule macula of the sacculus and utricle, and both trkB and trkC mRNA were expressed in the spiral and vestibule ganglia innervating these sensory structures. NGF and NT-3 mRNA were found in the iris, innervated by the sympathetic neurons of the superior cervical ganglion and sensory neurons from the trigeminal ganglion, which expressed both trk and trkC mRNAs. Both NGF and NT-3 mRNAs were also expressed in other target fields of the trigeminal ganglion, the epithelium of the whisker follicles (NT-3 mRNA) and in the epithelium of the nose, tongue and jaw. NT-3 mRNA was found in the cerebellar external granule layer and trkC mRNA in the Purkinje layer of the cerebellar primordia. These sites of synthesis are consistent with a target-derived neurotrophic interaction for NGF, BDNF and NT-3. However, in some cases mRNAs for both the neurotrophins and their high-affinity receptors were detected in the same tissue, including the dorsal root, geniculate, superior, jugular, petrose and nodose ganglia, as well as in the hippocampus, frontal cortical plate and pineal recess, implying a local mode of action. Combined, these data suggest a broad function for the neurotrophins and their receptors in supporting neural innervation during embryonic development. The results also identify several novel neuronal systems that are likely to depend on the neurotrophins in vivo.  相似文献   

3.
Spinal cord injury and cyclophosphamide-induced cystitis dramatically alter lower urinary tract function and produce neurochemical, electrophysiological, and anatomical changes that may contribute to reorganization of the micturition reflex. Mechanisms underlying this neural plasticity may involve alterations in neurotrophic factors in the urinary bladder. These studies have determined neurotrophic factors in the urinary bladder that may contribute to reorganization of the micturition reflex following cystitis or spinal cord injury. A ribonuclease protection assay was used to measure changes in urinary bladder neurotrophic factor mRNA (betaNGF, BDNF, GDNF, CNTF, NT-3, and NT-4) following spinal cord injury (acute/chronic) or cyclophosphamide-induced cystitis (acute/chronic). The correlation between urinary bladder nerve growth factor mRNA and nerve growth factor protein expression was also determined. Each experimental paradigm resulted in significant (P 相似文献   

4.
Different subpopulations of adult primary sensory neurons in the dorsal root ganglia express receptors for different trophic factors, and are therefore potentially responsive to distinct trophic signals. We have compared the effect of the neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and NT-3, and of glial cell line-derived neurotrophic factor (GDNF) on neurite outgrowth in dissociated cultures of sensory neurons from the lumbar ganglia of young adult rats, and attempted to establish subset-specific effects of these trophic factors. We analysed three parameters of neurite growth (percentage of process-bearing neurons, length of longest neurite and total neurite length), which may correlate with particular types of axon growth in vivo, and may therefore respond differently to trophic factor presence. Our results showed that percentage of process-bearing neurons and total neurite length were influenced by trophic factors, whilst the length of the longest neurite was trophic factor independent. Only NGF and GDNF were found to enhance significantly the proportion of process-bearing neurons in vitro. GDNF was more effective than NGF on small, IB4- neurons, which are known to develop GDNF responsiveness early in postnatal development. NGF, and to a much lesser extent GDNF, enhanced the total length of the neurites produced by neurons in culture. BDNF exerted an inhibitory effect on growth, and both BDNF and NT-3 could partially block some of the growth-promoting effects of NGF on specific neuronal subpopulations.  相似文献   

5.
The aim of this study was to approach the question of neuronal dependence on neurotrophins during embryonic development in mice in a way other than gene targeting. We employed amyogenic mouse embryos and fetuses that develop without any skeletal myoblasts or skeletal muscle and consequently lose motor and proprioceptive neurons. We hypothesized that if, in spite of the complete inability to maintain motor and proprioceptive neurons, the remaining spinal and dorsal root ganglia tissues of amyogenic fetuses still contain any of the neurotrophins, that particular neurotrophin alone is not sufficient for the maintenance of motor and proprioceptive neurons. Moreover, if the remaining spinal and dorsal root ganglia tissues still contain any of the neurotrophins, that particular neurotrophin alone may be sufficient for the maintenance of the remaining neurons (i.e., mostly non-muscle- and a few muscle-innervating neurons). To test the role of the spinal cord and dorsal root ganglia tissues in the maintenance of its neurons, we performed immunohistochemistry employing double-mutant and control tissues and antibodies against neurotrophins and their receptors. Our data suggested that: (a) during the peak of motor neuron cell death, the spinal cord and dorsal root ganglia distribution of neurotrophins was not altered; (b) the distribution of BDNF, NT-4/5, TrkB and TrkC, and not NT-3, was necessary for the maintenance of the spinal cord motor neurons; (c) the distribution of BDNF, NT-4/5 and TrkC, and not NT-3 and Trk B, was necessary for the maintenance of the DRG proprioceptive neurons; (d) NT-3 was responsible for the maintenance of the remaining neurons and glia in the spinal cord and dorsal root ganglia (possibly via TrkB).  相似文献   

6.
Neurotrophin expression by spinal motoneurons in adult and developing rats   总被引:4,自引:0,他引:4  
Expression of the neurotrophins NT-4, brain-derived neurotrophic factor (BDNF), and NT-3 in adult rat lumbosacral spinal cord motoneurons is reported. A sensitive in situ hybridization procedure demonstrates localization of the mRNA for each of these neurotrophins within spinal motoneurons of the adult and in early postnatal development. A majority of adult rat spinal cord lumbar motoneurons (approximately 63%) express NT-4 mRNA as assessed by counting motoneurons in the L4 and L5 segments of two adult rat spinal cords on adjacent cresyl violet-stained and in situ hybridization sections. Similarly, a majority of lumbar motoneurons (approximately 73%) express BDNF mRNA. Further analyses of adjacent lumbar spinal cord sections revealed that many, although not all motoneurons coexpress both NT-4 and BDNF mRNAs. At birth, the mRNA encoding NT-3 is expressed in motoneurons, but BDNF mRNA is not apparent until postnatal day 5 (P5) and NT-4 mRNA first appears at P9. The potential biological significance of neurotrophin mRNA expression in spinal motoneurons is supported by immunohistochemical localization of each neurotrophin protein in adult motoneurons. We discuss the potential role of spinal cord neurotrophins as autocrine or paracrine factors involved in modulating motoneuron synaptic function.  相似文献   

7.
The neurotrophin gene family includes four structurally related proteins with neurotrophic activities. Two of them, nerve growth factor and brain-derived neurotrophic factor (BDNF), have been studied in detail and information has recently emerged on the expression and function of the third member, neurotrophin-3. In contrast, little information is available on neurotrophin-4 (NT-4), the most recently isolated member of this family. In this report we have used a sensitive RNAase protection assay to analyse the developmental expression of NT-4 mRNA in the rat brain and in 12 different rat peripheral organs. In heart, liver and muscle plus skin NT-4 mRNA levels were maximal at embryonic day (E) E13 (the earliest time point tested), with reduced levels at later times of development. In lung, kidney and thymus similar levels were seen from E13 to postnatal day (P) 1, with reduced levels in the adult. In testis, ovary and salivary gland NT-4 mRNA was detected at E16 with a peak shortly after birth. During brain development, NT-4 mRNA was maximal at E13 followed by a decrease around birth, after which the level increased. The postnatal increase of NT-4 mRNA was also seen in cerebral cortex and brain stem analysed separately, while in the hippocampus similar levels were found from P1 to adulthood. NT-4 mRNA was detected in all ten adult rat brain regions analysed with only small regional variations, being highest in pons–medulla, hypothalamus, thalamus and cerebellum. Adult rat thymus, thyroid, muscle, lung and ovary contained higher levels of NT-4 mRNA than brain, while all other adult tissues showed similar or lower levels than in the brain. The highest level of NT-4 mRNA overall was found in P1 testis. For comparison, BDNF mRNA was analysed in the same tissues. The expression of BDNF mRNA was in many cases different from that of NT-4 mRNA. The peak of NT-4 mRNA expression in several of the peripheral tissues coincided with the peak of naturally occurring neuronal cell death in peripheral ganglia. This is consistent with the possibility that NT-4 acts as a target-derived trophic factor in vivo. The widespread and increased expression of NT-4 mRNA during postnatal brain development could reflect a trophic role of NT-4 for central nervous system neurons. However, non-neuronal functions of NT-4 are also possible, particularly in male and female reproductive tissues, where the NT-4 protein could function as a growth factor for immature germ cells.  相似文献   

8.
The regeneration capacity of spinal cord axons is severely limited. Recently, much attention has focused on promoting regeneration of descending spinal cord pathways, but little is known about the regenerative capacity of ascending axons. Here we have assessed the ability of neurotrophic factors to promote regeneration of sensory neurons whose central axons ascend in the dorsal columns. The dorsal columns of adult rats were crushed and either brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), neurotrophin-3 (NT-3) or a vehicle solution was delivered continuously to the lesion site for 4 weeks. Transganglionic labelling with cholera toxin beta subunit (CTB) was used to selectively label large myelinated Abeta fibres. In lesioned rats treated with vehicle, CTB-labelled fibres were observed ascending in the gracile fasciculus, but these stopped abruptly at the lesion site, with no evidence of sprouting or growth into lesioned tissue. No CTB-labelled terminals were observed in the gracile nucleus, indicating that the lesion successfully severed all ascending dorsal column axons. Treatment with BDNF did not promote axonal regeneration. In GDNF-treated rats fibres grew around cavities in caudal degenerated tissue but did not approach the lesion epicentre. NT-3, in contrast, had a striking effect on promoting growth of lesioned dorsal column axons with an abundance of fibre sprouting apparent at the lesion site, and many fibres extending into and beyond the lesion epicentre. Quantification of fibre growth confirmed that only in NT-3-treated rats did fibres grow into the crush site and beyond. No evidence of terminal staining in the gracile nucleus was apparent following any treatment. Thus, although NT-3 promotes extensive growth of lesioned axons, other factors may be required for complete regeneration of these long ascending projections back to the dorsal column nuclei. The intrathecal delivery of NT-3 or other neurotrophic molecules has obvious advantages in clinical applications, as we show for the first time that dorsal column axonal regeneration can be achieved without the use of graft implantation or nerve lesions.  相似文献   

9.
After sciatic nerve lesion in the adult rat, motoneurons survive and regenerate, whereas the same lesion in the neonatal animal or an avulsion of ventral roots from the spinal cord in adults induces extensive cell death among lesioned motoneurons with limited or no axon regeneration. A number of substances with neurotrophic effects have been shown to increase survival of motoneurons in vivo and in vitro. Here we have used semiquantitative in situ hybridization histochemistry to detect the regulation in motoneurons of mRNAs for receptors to ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) 1-42 days after the described three types of axon injury. After all types of injury, the mRNAs for GDNF receptors (GFRalpha-1 and c-RET) and the LIF receptor LIFR were distinctly (up to 300%) up-regulated in motoneurons. The CNTF receptor CNTFRalpha mRNA displayed only small changes, whereas the mRNA for membrane glycoprotein 130 (gp130), which is a critical receptor component for LIF and CNTF transduction, was profoundly down-regulated in motoneurons after ventral root avulsion. The BDNF full-length receptor trkB mRNA was up-regulated acutely after adult sciatic nerve lesion, whereas after ventral root avulsion trkB was down-regulated. The NT-3 receptor trkC mRNA was strongly down-regulated after ventral root avulsion. The results demonstrate that removal of peripheral nerve tissue from proximally lesioned motor axons induces profound down-regulations of mRNAs for critical components of receptors for CNTF, LIF, and NT-3 in affected motoneurons, but GDNF receptor mRNAs are up-regulated in the same situation. These results should be considered in relation to the extensive cell death among motoneurons after ventral root avulsion and should also be important for the design of therapeutical approaches in cases of motoneuron death.  相似文献   

10.
Although developing motor neurons express low-affinity nerve growth factor (NGF) receptors, there is no known biological effect of NGF on developing or adult motor neurons. In this study, we found that, unlike NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5) stimulated cholinergic phenotype by increasing choline acetyltransferase (CAT) activity in cultures enriched with embryonic rat motor neurons. Ciliary neurotrophic factor (CNTF) also stimulated CAT activity. The effects of BDNF and NT-4/5 on CAT activity appeared to be synergistic with that of CNTF. Cotreatment with BDNF and NT-3 resulted in an additive effect, suggesting that signal transduction was mediated through different high-affinity receptors tyrosine kinases B and C (Trk B and Trk C). However, cotreatment with BDNF and NT-4/5 did not result in an increase in CAT activity greater than that of either BDNF or NT-4/5 alone, suggesting that their effects were mediated via the same receptor Trk B. Supporting our findings that spinal cholinergic neurons are responsive to trophic actions of members of the neurotrophin family, motor neuron-enriched cultures were found to express mRNA for Trk B and Trk C, which have been identified as high-affinity receptors for BDNF and NT-4/5, and NT-3, respectively.  相似文献   

11.
Oudega M  Hagg T 《Brain research》1999,818(2):67-438
We have investigated the effects of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) on the intraspinal regeneration of anterogradely labeled axotomized ascending primary sensory fibers in the adult rat. These fibers were allowed to grow across a predegenerated peripheral nerve graft and back into the thoracic spinal cord. In control animals that had been infused with vehicle for two weeks into the dorsal column, 3 mm rostral to the nerve graft, essentially no fibers had extended from the nerve graft back into the spinal cord. The number of sensory fibers in the rostral end of the nerve graft was not significantly different between control and neurotrophin-infused animals. With infusion of NGF, 37+/-2% of the fibers at the rostral end of the graft had grown up to 0.5 mm into the dorsal column white matter, 30+/-2% up to 1 mm, 19+/-3% up to 2 mm and 8+/-2% up to 3 mm, i.e., the infusion site. With infusion of NT-3, sensory fiber outgrowth was similar to that seen with NGF, but with BDNF fewer fibers reached farther distances into the cord. Infusion of a mixture of all three neurotrophins did not increase the number of regenerating sensory fibers above that seen after infusion of the individual neurotrophins. These findings suggest that injured ascending sensory axons are responsive to all three neurotrophins and confirm our previous findings that neurotrophic factors can promote regeneration in the adult central nervous system.  相似文献   

12.
We reported recently that overexpression of neurotrophin-3 (NT-3) by motoneurons in the spinal cord of rats will induce sprouting of corticospinal tract (CST) axons (Zhou et al. [2003] J. Neurosci. 23:1424-1431). We now report that overexpression of brain-derived neurotrophic factor (BDNF) or glial cell-derived neurotrophic factor (GDNF) in the rat sensorimotor cortex near the CST neuronal cell bodies together with overexpression of NT-3 in the lumbar spinal cord significantly increases axonal sprouting compared to that induced by NT-3 alone. Two weeks after unilaterally lesioning the CST at the level of the pyramids, we injected rats with saline or adenoviral vectors (Adv) carrying genes coding for BDNF (Adv.BDNF), GDNF (Adv.GDNF) or enhanced green fluorescent protein (Adv.EGFP) at six sites in the sensorimotor cortex, while delivering Adv.NT3 to motoneurons in each of these four groups on the lesioned side of the spinal cord by retrograde transport from the sciatic nerve. Four days later, biotinylated dextran amine (BDA) was injected into the sensorimotor cortex on the unlesioned side to mark CST axons in the spinal cord. Morphometric analysis of axonal sprouting 3 weeks after BDA injection showed that the number of CST axons crossing the midline in rats treated with Adv.BDNF or Adv.GDNF were 46% and 52% greater, respectively, than in rats treated with Adv.EGFP or PBS (P < 0.05). These data demonstrate that sustained local expression of neurotrophic factors in the sensorimotor cortex and spinal cord will promote increased axonal sprouting after spinal cord injury, providing a basis for continued development of neurotrophic factor therapy for central nervous system damage.  相似文献   

13.
The peptide cholecystokinin (CCK) has been suggested to be involved in nociception, but its exact localization at the level of the spinal cord and in spinal ganglia has been a controversial issue. Therefore the distribution of messenger RNA (mRNA) for CCK was studied by in situ hybridization using oligonucleotide probes on sections of adult rat lumbar dorsal root ganglia following unilateral section of the sciatic nerve and on sections of untreated monkey trigeminal ganglia, spinal cord and spinal ganglia from all levels. For comparison, calcitonin gene-related peptide (CGRP) mRNA was also studied in the monkey tissue using the same techniques. Peripheral sectioning of the sciatic nerve in the rat resulted in the appearance of detectable CCK mRNA in up to 30% of remaining ipsilateral L4 and L5 dorsal root ganglion neurons 3 weeks after surgery, with a distinct but more limited appearance also in the contralateral ganglia. No cells, or only single cells, could be seen in normal control rat ganglia. In contrast, in the normal monkey, ∼20% of dorsal root ganglion neurons, regardless of spinal level, and 10% of trigeminal ganglia neurons expressed mRNA for CCK. CGRP mRNA was expressed at detectable levels in ∼80% of these monkey dorsal root ganglion neurons. In the monkey spinal cord, CCK mRNA was detected in the dorsal horn and in motoneurons, whereas CGRP mRNA was only seen in motoneurons. The present results suggest that CCK peptides can be involved in sensory processing in the dorsal horn of the spinal cord in normal monkeys and in rats after peripheral nerve injury, adding one more possible excitatory peptide to the group of mediators in the dorsal horn.  相似文献   

14.
One reason that the central nervous system of adult mammals does not regenerate after injury is that neurotrophic factors are present only in low concentrations in these tissues. Recent studies have shown that the application of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) acts to encourage the regrowth of motor and sensory fibers after spinal cord injury. Other studies have reported that the regrowth of axons after injury was enhanced by the implantation of Schwann cells, which normally secrete BDNF and NT-3. The purpose of the present study was to genetically modify Schwann cells to secrete increased amounts of BDNF or NT-3 by infection with a retroviral vector. Retroviral vectors were constructed by the ligation of BDNF or NT-3 cDNA to the LXSN vector. Viruses were generated from the plasmid forms of the vectors by transient transfection of PA317 amphotrophic retroviral packaging cells. Viruses were harvested and used to infect the human Schwann cell line designated NF-1T. Northern blot analysis of poly (A+) RNA prepared from Schwann cells that were infected with BDNF- or NT-3-containing virus showed the presence of BDNF or NT-3 mRNA. An enzyme-linked immunosorbent assay (ELISA) for BDNF and NT-3 was performed on media the cells were grown in, and on cellular extracts prepared from the BDNF- and NT-3-infected Schwann cells. The ELISA results demonstrated that the Schwann cells were secreting increased levels of immunologically active BDNF or NT-3. Immunocytochemical staining of these cells revealed the presence of these two neurotrophic factors located in perinuclear granules. These neurotrophic factor-secreting Schwann cells are currently being evaluated for their efficacy in the treatment of spinal cord injury.  相似文献   

15.
It is well known that the nerve growth factor (NGF) may serve as a link between inflammation and hyperalgesia. Recent experiments showed that systemic injection of NGF dramatically stimulated the expression of brain-derived neurotrophic factor (BDNF) mRNA in the dorsal root ganglion (DRG). In the present study, we evaluated the change of BDNF mRNA in the DRG following peripheral inflammation and also observed colocalization of BDNF and trkA mRNAs by means of in situ hybridization histochemistry in rats. Peripheral tissue inflammation produced by an intraplantar injection of Freund's adjuvant into the paws significantly increased BDNF mRNA levels in the DRG and many neurons expressing trkA mRNA showed increased expession of BDNF mRNA. Intraplantar injection of antibody to NGF together with Freund's adjuvant prevented the increase in BDNF mRNA. These findings suggest that peripheral inflammation induces an increased expression of BDNF mRNA which is mediated by NGF in DRG.  相似文献   

16.
The identification of endogenous neurotrophic factors and their receptors in human spinal cord is important not only to understand development, but also in the consideration of possible future therapies for neurodegenerative disorders and trauma. Using in situ hybridization, the expression of glial cell line-derived neurotrophic factor (GDNF), neurturin (NTN), persephin (PSP), GFRalpha-1, GFRalpha-2, GFRalpha-3 and RET mRNA in human fetal spinal cord was studied. Strong GDNF mRNA hybridization signal, presumably restricted to Clarke's nucleus, was detected in the thoracic spinal cord. mRNA encoding GFRalpha-1 was expressed in the entire spinal cord gray matter with particularly high expression in the ventral horn. GFRbeta-1 was also expressed more weakly in dorsal root ganglia. NTN and persephin mRNA were not detected in either the fetal spinal cord or the dorsal root ganglia. mRNA coding for GFRalpha-2, however, was found in most cells of the spinal cord gray matter. A strong expression of GFRalpha-3 mRNA was detected in dorsal root ganglia cells and Schwann cells. The transducing receptor RET was expressed strongly in motorneurons and dorsal root ganglion neurons. We conclude that basic features concerning the role of the GDNF family of ligands and their receptors revealed in rodents applies to humans.  相似文献   

17.
We describe the expression of mRNA encoding ligands and receptors of members of the GDNF family and members of the neurotrophin family in the adult human spinal cord and dorsal root ganglia (DRG). Fetal human spinal cord and ganglia were investigated for the presence of ligands and receptors of the neurotrophin family. Tissues were collected from human organ donors and after routine elective abortions. Messenger RNA was found encoding RET, GFR alpha-1, BDNF, trkB, and trkC in the adult human spinal cord and BDNF, NT-3, p75, trkB, and trkC in the fetal human spinal cord. The percentage of adult human DRG cells expressing p75, trkA, trkB, or trkC was 57, 46, 29, and 24%, respectively, and that of DRG cells expressing RET, GFR alpha-1, GFR alpha-2, or GFR alpha-3 was 79, 20, 51, and 32%, respectively. GFR alpha-2 was expressed selectively in small, GFR alpha-3 principally in small and GFR alpha-1 and RET in both large and small adult human DRG neurons. p75 and trkB were expressed by a wide range of DRG neurons while trkA was expressed in most small diameter and trkC primarily in large DRG neurons. Fetal DRG cells were positive for the same probes as adult DRG cells except for NT-3, which was only found in fetal DRG cells. Messenger RNA species only expressed at detectable levels in fetal but not adult spinal cord tissues included GDNF, GFR alpha-2, NT-3, and p75. Notably, GFR alpha-2, which is expressed in the adult rat spinal cord, was not found in the adult human spinal cord.  相似文献   

18.
Calcitonin gene-related peptide (CGRP) is expressed at high levels in roughly 50% of spinal sensory neurons and plays a role in peripheral vasodilation as well as nociceptive signalling in the spinal cord. Spinal motoneurons express low levels of CGRP; motoneuronal CGRP is thought to be involved in end-plate plasticity and to have trophic effects on target muscle cells. As both sensory and motoneurons express receptors for glial cell line-derived neurotrophic factor (GDNF) we sought to determine whether CGRP was regulated by GDNF. Rats were treated intrathecally for 1-3 weeks with recombinant human GDNF or nerve growth factor (NGF) (12 microg/day) and dorsal root ganglia and spinal cords were stained for CGRP. The GDNF treatment not only increased CGRP immunoreactivity in both sensory and motoneurons but also resulted in hypertrophy of both populations. By combined in situ hybridization and immunohistochemistry we found that, in the dorsal root ganglia, CGRP was up-regulated specifically in neurons expressing GDNF but not NGF receptors following GDNF treatment. Despite the increase in CGRP in GDNF-treated rats, there was no increase in thermal or mechanical pain sensitivity, while NGF-treated animals showed significant decreases in pain thresholds. In motoneurons, GDNF increased the overall intensity of CGRP immunoreactivity but did not increase the number of immunopositive cells. As GDNF has been shown to promote the regeneration of both sensory and motor axons, and as CGRP appears to be involved in motoneuronal plasticity, we reason that at least some of the regenerative effects of GDNF are mediated through CGRP up-regulation.  相似文献   

19.
Development and maintenance of peripheral sensory and sympathetic neurons are regulated by target-derived neurotrophins, including nerve growth factor (NGF). To determine whether trophins are potentially critical prior to and during target innervation, for neuronal survival or axon guidance, in situ hybridization was performed in the rat embryo. We examined the expression of genes encoding NGF, neurotrophin-3 (NT-3), and their putative high-affinity receptors, trk A and trk C, respectively. Trks A and C were detected in dorsal root sensory ganglia (DRG) on embryonic day 12.5 (E12.5), implying early responsiveness to NGF and NT-3. NGF mRNA was expressed in the central spinal cord target and by the peripheral somite, at this early time, which thereby may function as a transient “guidepost” target for sensory fibers. Somitic expression was transient and was undetectable by E17.5. NT-3 was expressed in the DRG itself from E13.5 to 17.5, suggesting local transient actions on sensory neurons. NT-3 was also expressed in the ventral spinal cord at low levels on E13.5. We examined the trigeminal ganglion to determine whether cranial sensory neurons are similarly regulated. Trk A was detected in the trigeminal ganglion, while NGF was expressed in the central myelencephalon target, paralleling observations in the DRG and spinal cord. However, NT-3 and trk C were undetectable, in contrast to DRG, suggesting that the environment or different neural crest lineages govern expression of different trophins and trks. Apparently, multiple trophins regulate sensory neuron development through local as well as transient target mechanisms prior to innervation of definitive targets.  相似文献   

20.
The capacity of CNS neurons for axonal regrowth after injury decreases as the age of the animal at time of injury increases. After spinal cord lesions at birth, there is extensive regenerative growth into and beyond a transplant of fetal spinal cord tissue placed at the injury site. After injury in the adult, however, although host corticospinal and brainstem-spinal axons project into the transplant, their distribution is restricted to within 200 μm of the host/transplant border. The aim of this study was to determine if the administration of neurotrophic factors could increase the capacity of mature CNS neurons for regrowth after injury. Spinal cord hemisection lesions were made at cervical or thoracic levels in adult rats. Transplants of E14 fetal spinal cord tissue were placed into the lesion site. The following neurotrophic factors were administered at the site of injury and transplantation: brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), ciliary-derived neurotrophic factor (CNTF), or vehicle alone. After 1–2 months survival, neuroanatomical tracing and immunocytochemical methods were used to examine the growth of host axons within the transplants. The neurotrophin administration led to increases in the extent of serotonergic, noradrenergic, and corticospinal axonal ingrowth within the transplants. The influence of the administration of the neurotrophins on the growth of injured CNS axons was not a generalized effect of growth factors per se, since the administration of CNTF had no effect on the growth of any of the descending CNS axons tested. These results indicate that in addition to influencing the survival of developing CNS and PNS neurons, neurotrophic factors are able to exert aneurotropicinfluence on injured mature CNS neurons by increasing their axonal growth within a transplant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号