首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pancreatic alpha and beta cell hormone secretion was studied in 11 patients with thyrotoxicosis before and in 7 patients after thyroid function was normalized with either prophylthiouracil or methimazole and propranolol (R). All had IV arginine and IV glucose infusions. Forty control subjects had IV arginine; 21 had IV glucose tests. After arginine, untreated patient had blunted serum insulin at both 15 and 30 minutes (p less than 0.05, p less than 0.001) compared to control subjects, blunted glucagon at 30 minutes (p less than 0.05) and blunted glucose at both 15 and 30 minutes (p less than 0.001, p less than 0.01) compared to control subjects. After glucose, untreated patients had lower nadir glucagon than in the studies with both arginine and glucose infusions. These data document blunted glucagon, suppressed glucose and insulin peaks after arginine in thyrotoxicosis, indicate that both alpha and beta cell hormone secretion may be abnormal, and that the preferential abnormality follows protein rather than carbohydrate loading.  相似文献   

2.
Voltage-gated calcium (CaV) channels are ubiquitously expressed in various cell types throughout the body. In principle, the molecular identity, biophysical profile, and pharmacological property of CaV channels are independent of the cell type where they reside, whereas these channels execute unique functions in different cell types, such as muscle contraction, neurotransmitter release, and hormone secretion. At least six CaValpha1 subunits, including CaV1.2, CaV1.3, CaV2.1, CaV2.2, CaV2.3, and CaV3.1, have been identified in pancreatic beta-cells. These pore-forming subunits complex with certain auxiliary subunits to conduct L-, P/Q-, N-, R-, and T-type CaV currents, respectively. beta-Cell CaV channels take center stage in insulin secretion and play an important role in beta-cell physiology and pathophysiology. CaV3 channels become expressed in diabetes-prone mouse beta-cells. Point mutation in the human CaV1.2 gene results in excessive insulin secretion. Trinucleotide expansion in the human CaV1.3 and CaV2.1 gene is revealed in a subgroup of patients with type 2 diabetes. beta-Cell CaV channels are regulated by a wide range of mechanisms, either shared by other cell types or specific to beta-cells, to always guarantee a satisfactory concentration of Ca2+. Inappropriate regulation of beta-cell CaV channels causes beta-cell dysfunction and even death manifested in both type 1 and type 2 diabetes. This review summarizes current knowledge of CaV channels in beta-cell physiology and pathophysiology.  相似文献   

3.
Insulin secretion is essential for maintenance of glucose homeostasis. An important intracellular signal regulating insulin secretion is cAMP. In this report, we showed that an increase of cAMP induced by adenylyl cyclase (AC) activator forskolin or by cAMP analog db-cAMP not only potentiated insulin secretion but also inhibited Kv channels, and these effects were reversed by AC inhibitor SQ22536. The cAMP-mediated Kv channel inhibition resulted in prolongation of action potential duration, which partly accounts for the elevation of intracellular Ca2+ induced by activation of cAMP signaling. Taken together, the results suggest that Kv channels are involved in cAMP-potentiated insulin secretion in pancreatic β cells.  相似文献   

4.
Epicardial cells are more susceptible to the electrophysiological effects of ischemia than are endocardial cells. To explore the ionic basis for the differential electrophysiological responses to ischemia at the two sites, we used patch-clamp techniques to study the effects of ATP depletion on action potential duration and the ability of ATP-regulated K+ channels in single cells isolated from feline left ventricular endocardial and epicardial surfaces. During ATP depletion by treatment with 1 mM cyanide (CN-), shortening of action potential durations was significantly greater in epicardial cells than in endocardial cells. Thirty minutes after initiating exposure to 1 mM CN-, action potential duration at 90% repolarization was reduced to 0.70 +/- 0.12 of the control value for endocardial cells versus 0.39 +/- 0.18 for epicardial cells (p less than 0.01), and action potential duration at 20% repolarization was reduced to 0.72 +/- 0.13 for endocardial cells versus 0.12 +/- 0.09 for epicardial cells (p less than 0.01). In both endocardial and epicardial cells, the shortening of action potential by CN- treatment was partially reversed by 0.3 microM glibenclamide; the magnitude of reversal, however, was much greater in epicardial cells. After exposure to 1 mM CN-, the activity of ATP-regulated K+ channels in cell-attached membrane patches was significantly greater in epicardial cells than in endocardial cells. To study the dose-response relation between ATP concentration and open-state probability of the channels, intracellular surfaces of inside-out membrane patches containing ATP-regulated K+ channels were exposed to various concentrations of ATP (10-1,000 microM). The concentration of ATP that produced half-maximal inhibition of the channel was 23.6 +/- 21.9 microM in endocardial cells and 97.6 +/- 48.1 microM in epicardial cells (p less than 0.01). These data indicate that ATP-regulated K+ channels are activated by a smaller reduction in intracellular ATP in epicardial cells than in endocardial cells. The differential ATP sensitivity of ATP-regulated K+ channels in endocardial and epicardial cells may be responsible for the differential shortening in action potentials during ischemia at the two sites.  相似文献   

5.
G. Tang  L. Zhang  G. Yang  L. Wu  R. Wang 《Diabetologia》2013,56(3):533-541

Aims/hypothesis

L-type voltage-dependent Ca2+ channels (VDCCs) in pancreatic beta cells play a critical role in regulating insulin secretion. The gasotransmitter H2S is mostly generated from l-cysteine in pancreatic beta cells by cystathionine γ-lyase (CSE) and has been reported to inhibit insulin release by opening ATP-sensitive K+ channels. However, whether and how H2S affects VDCCs in beta cells is unknown.

Methods

The whole-cell patch-clamp technique was used to record VDCCs in beta cells from Cse (also known as Cth)-knockout (KO) and wild-type (WT) mice. Insulin secretion from pancreatic islets and endogenous H2S production in pancreas were measured.

Results

The H2S donor NaHS reversibly decreased L-type VDCC current density in a concentration-dependent fashion in WT pancreatic beta cells, and the current density was further inhibited by nifedipine. Furthermore, NaHS inhibited the channel recovery from depolarisation-induced inactivation, but did not shift the current–voltage (IV) relationship. ACS67, another H2S donor, also inhibited L-type VDCCs in beta cells. Inhibiting CSE activity with dl-propargylglycine increased the basal L-channel activity of beta cells from WT mice, but not that of beta cells from Cse-KO mice. Beta cells from Cse-KO mice displayed higher L-type VDCC density than those from WT mice. Insulin secretion from pancreatic islets was elevated in Cse-KO mice compared with WT mice. NaHS dose-dependently inhibited glucose-stimulated insulin secretion, which was further inhibited by nifedipine. Bay K-8644 increased glucose-stimulated insulin secretion, but this was counteracted by NaHS and nifedipine.

Conclusions/interpretation

Exogenous and endogenous H2S inhibit L-type VDCC activity and pancreatic insulin secretion, constituting a novel mechanism for the regulation of insulin secretion by the CSE/H2S system.  相似文献   

6.
Xia F  Xie L  Mihic A  Gao X  Chen Y  Gaisano HY  Tsushima RG 《Endocrinology》2008,149(10):5136-5145
Insulin secretion from pancreatic beta-cells is mediated by the opening of voltage-gated Ca2+ channels (CaV) and exocytosis of insulin dense core vesicles facilitated by the secretory soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein machinery. We previously observed that beta-cell exocytosis is sensitive to the acute removal of membrane cholesterol. However, less is known about the chronic changes in endogenous cholesterol and its biosynthesis in regulating beta-cell stimulus-secretion coupling. We examined the effects of inhibiting endogenous beta-cell cholesterol biosynthesis by using the squalene epoxidase inhibitor, NB598. The expression of squalene epoxidase in primary and clonal beta-cells was confirmed by RT-PCR. Cholesterol reduction of 36-52% was observed in MIN6 cells, mouse and human pancreatic islets after a 48-h incubation with 10 mum NB598. A similar reduction in cholesterol was observed in the subcellular compartments of MIN6 cells. We found NB598 significantly inhibited both basal and glucose-stimulated insulin secretion from mouse pancreatic islets. CaV channels were markedly inhibited by NB598. Rapid photolytic release of intracellular caged Ca2+ and simultaneous measurements of the changes in membrane capacitance revealed that NB598 also inhibited exocytosis independently from CaV channels. These effects were reversed by cholesterol repletion. Our results indicate that endogenous cholesterol in pancreatic beta-cells plays a critical role in regulating insulin secretion. Moreover, chronic inhibition of cholesterol biosynthesis regulates the functional activity of CaV channels and insulin secretory granule mobilization and membrane fusion. Dysregulation of cellular cholesterol may cause impairment of beta-cell function, a possible pathogenesis leading to the development of type 2 diabetes.  相似文献   

7.
AIM:To investigate the action of genistein(GST),abroad spectrum tyrosine kinase inhibitor,on voltage-gated potassium channels in guinea pig proximal colonsmooth muscle cells.METHODS:Smooth muscle cells in guinea pig proximalcolon were enzymatically isolated.Nystatin-perforatedwhole cell patch clamp technique was used to recordpotassium currents including fast transient outwardcurrent(I_(Kto))and delayed rectifier current(I_(Kdr)),two ofwhich were isolated pharmacologically with 10 mmol/Ltetraethylammonium or 5 mmol/L 4-aminopyridine.Contamination of calcium-dependent potassium currentswas minimized with no calcium and 0.2 mmol/L CdCl_2 inan external solution.RESULTS:GST(10-100μmol/L)reversibly and dose-dependently reduced the peak amplitude of I_(Kto)with anICso value of 22.0 6.9μmol/L.To a lesser extent,I_(Kdr)wasalso inhibited in both peak current and sustained current.GST could not totally block the outward potassiumcurrent as a fraction of the outWard potassium current,which was insensitive to GST.GST had no effect on thesteady-state activation(n=6)and inactivation kinetics(n=6)of I_(Kto).Sodium orthovanadate(1 mmol/L),apotent inhibitor of tyrosine phosphatase,significantlyinhibited GST-induced inhibition(P<0.05).CONCLUSION:GST can dose-dependently andreversibly block voltage-gated potassium channels inguinea pig proximal colon smooth muscle cells.  相似文献   

8.
Fatty acid metabolism and insulin secretion in pancreatic beta cells   总被引:7,自引:4,他引:7  
Yaney GC  Corkey BE 《Diabetologia》2003,46(10):1297-1312
Increases in glucose or fatty acids affect metabolism via changes in long-chain acyl-CoA formation and chronically elevated fatty acids increase total cellular CoA. Understanding the response of pancreatic beta cells to increased amounts of fuel and the role that altered insulin secretion plays in the development and maintenance of obesity and Type 2 diabetes is important. Data indicate that the activated form of fatty acids acts as an effector molecule in stimulus-secretion coupling. Glucose increases cytosolic long-chain acyl-CoA because it increases the "switch" compound malonyl-CoA that blocks mitochondrial -oxidation, thus implementing a shift from fatty acid to glucose oxidation. We present arguments in support of the following: (i) A source of fatty acid either exogenous or endogenous (derived by lipolysis of triglyceride) is necessary to support normal insulin secretion; (ii) a rapid increase of fatty acids potentiates glucose-stimulated secretion by increasing fatty acyl-CoA or complex lipid concentrations that act distally by modulating key enzymes such as protein kinase C or the exocytotic machinery; (iii) a chronic increase of fatty acids enhances basal secretion by the same mechanism, but promotes obesity and a diminished response to stimulatory glucose; (iv) agents which raise cAMP act as incretins, at least in part, by stimulating lipolysis via beta-cell hormone-sensitive lipase activation. Furthermore, increased triglyceride stores can give higher rates of lipolysis and thus influence both basal and stimulated insulin secretion. These points highlight the important roles of NEFA, LC-CoA, and their esterified derivatives in affecting insulin secretion in both normal and pathological states.Abbreviations ACS acyl-CoA synthetase - ACC acetyl-CoA carboxylase - BAT brown adipose tissue - CPT carnitine palmitoyl transferase - CL citrate lyase - DAG diacylglycerol - GSIS glucose-stimulated insulin secretion - HSL hormone-sensitive lipase - KATP ATP-sensitive K+ channel - LC-CoA long chain acyl-CoA - PA phosphatidate - PFK-1 phosphofructokinase-1 - PKC protein kinase C - PMA phorbol myristate acetate - PC pyruvate carboxylase - PS phosphatidylserine - SNAP soluble NSF-associated protein - SNAP-25 synaptosomal-associated protein of 25 kD - t-SNARE target SNAP receptor - v-SNARE vesicle SNAP receptor - VAMP vesicle-associated membrane protein - VDCC voltage-dependent Ca2+ channel - WAT white adipose tissue  相似文献   

9.
Quantitative changes in the distribution of intracellular calcium in A cells from perfused rat pancreas in relation to the secretory state of A cells were studied with the pyroantimonate technique for calcium precipitation. A cells stimulated with a 3.3 mM glucose concentration in the perfusate presented numerous calcium precipitates attached to cell membranes, nucleus, cytoplasm and secretion granules. Independently of the length of treatment, inhibition of glucagon release with 16.6 mM glucose decreased the calcium precipitates in every cell organelle studied. These results suggest that intracellular calcium rearrangement might be important in coupling stimulus to secretion in A cells, as it has been demonstrated for pancreatic B cells.  相似文献   

10.
OBJECTIVE: Actions of cibenzoline and disopyramide, agents with Vaughan-Williams class Ia antiarrhythmic action, on ATP sensitive K+ (KATP) channels were examined in heart and pancreatic beta cells. METHODS: Single ventricular myocytes and beta cells were prepared enzymatically from adult Wistar rat hearts and pancreatic islets. Using patch clamp techniques, KATP channel activities were recorded in whole cell and single channel modes. In whole cell experiments, myocytes were bathed with Tyrode's medium (34 degrees C); inside out patches were bathed with internal solutions (22-24 degrees C) containing 1 microM ATP and varying concentrations of cibenzoline or disopyramide. Myocytes were voltage clamped at -40 mV and glibenclamide blockade conductance was produced by cromakalim. RESULTS: Micromolar concentrations of both cibenzoline and disopyramide suppressed cromakalim induced conductance. When applied to the cytosolic surface of the cell membrane in inside out configuration, both drugs reversibly inhibited single KATP channel activities. Neither unitary conductance nor intraburst fast kinetics was affected by the compounds. At a holding potential of -40 mV under symmetrical approximately 150 mM K+ conditions, half maximum doses (IC50) were 0.9 microM [Hill coefficient (h) = 1.3] for cibenzoline induced block of cardiac KATP channels and 1.8 microM (h = 1.0) for disopyramide block. At +40 mV, IC50 for cibenzoline block was 1.4 microM (h = 0.9). Thus there was little voltage dependence in cibenzoline induced channel block. A similar IC50 value of 2.5 microM (h = 1.2 at -60 mV under symmetrical approximately 150 mM K+) was observed for cibenzoline induced block of KATP channels. CONCLUSIONS: Near therapeutic concentrations of cibenzoline and disopyramide inhibit KATP channel activities in both heart and pancreatic beta cells. This may be causally related to the fasting hypoglycaemia which is sometimes reported in patients receiving the drugs. These antiarrhythmic agents may also modulate myocardial electrical properties during hypoxia or ischaemia.  相似文献   

11.
Fetal pancreatic beta cells demonstrate a deficient insulin release in response to glucose, but the underlying mechanism at the cellular level is unknown. By using beta cells from 21-day fetal rats we made an attempt to clarify the mechanism(s) behind this reduced glucose response. In addition to measuring insulin release, glucose metabolism, and cellular ATP content, ATP-regulated K+ channels (G channels) and voltage-activated Ca2+ currents were investigated with the patch-clamp technique. It was thus demonstrated that the ATP-regulated K+ channels in fetal beta cells were not sensitive to glucose but otherwise had similar characteristics as those of adult beta cells. Also, the characteristics of the voltage-activated Ca2+ currents were similar in adult and fetal beta cells. However, as judged from measurements of both glucose oxidation and glucose utilization, glucose metabolism was impaired in fetal beta cells. In addition, there was no increase in the ATP content, even when the cells were stimulated for 30 min. It is therefore concluded that the attenuated glucose-induced insulin release in fetal pancreatic beta cells is due to an immature glucose metabolism resulting in impaired regulation of the ATP-sensitive K+ channels. These findings may be relevant to the understanding of the deficient stimulus-secretion coupling associated with non-insulin-dependent diabetes.  相似文献   

12.
The coupling between nitric oxide (NO)-cGMP signaling pathway and prolactin (PRL) release in pituitary lactotrophs has been established previously. However, the messenger that mediates the action of this signaling pathway on hormone secretion and the secretory mechanism affected, calcium dependent or independent, have not been identified. In cultured pituitary cells, basal PRL release was controlled by spontaneous voltage-gated calcium influx and was further enhanced by depolarization of cells and stimulation with TRH. Inhibition of constitutively expressed neuronal NO synthase decreased NO and cGMP levels and increased basal PRL release. The addition of a slowly releasable NO donor increased cGMP levels and inhibited basal PRL release in a time-dependent manner. Expression of inducible NO synthase also increased NO and cGMP levels and inhibited basal, depolarization-induced, and TRH-induced PRL release, whereas inhibition of this enzyme decreased NO and cGMP production and recovered PRL release. None of these treatments affected spontaneous and stimulated voltage-gated calcium influx. At basal NO levels, the addition of permeable cGMP analogs did not inhibit PRL secretion. At elevated NO levels, inhibition of cGMP production and facilitation of its degradation did not reverse inhibited PRL secretion. These experiments indicate that NO inhibits calcium-dependent PRL secretion in a cGMP-independent manner and downstream of voltage-gated calcium influx.  相似文献   

13.
The isoforms of the alpha 1 subunits of voltage-dependent Ca2+ channels expressed in human pancreatic islets were identified by using a pair of degenerate oligonucleotide primers and the polymerase chain reaction (PCR) to amplify mRNAs encoding alpha 1 subunit-like sequences. The sequences of the PCR products indicate that islets express the heart-type alpha 1 subunit as well as a second isoform whose complete sequence has not been previously reported. The sequences of cloned cDNAs encoding the human beta-cell, or neuroendocrine-type, alpha 1 subunit indicate that it is composed of 2181 amino acids. It shares 68%, 64%, and 41% identity with the sequences of the alpha 1 subunits of rabbit heart, skeletal muscle, and brain, respectively, and is predicted to have a similar structure including four homologous domains composed of six membrane-spanning segments each. RNA blotting studies indicate that the beta-cell-type alpha 1 subunit is also expressed in brain as well as in the insulin-producing cell lines RINm5F and beta TC-3; however, it could not be detected by RNA blotting in a third cell line, HIT-T15. In situ hybridization studies revealed expression of beta-cell-type alpha 1 subunit mRNA in beta cells of rat pancreatic islets, implying that this protein may play a role in the regulation of insulin secretion.  相似文献   

14.
15.
16.
17.
18.
Aims/hypothesis The impact of strategies for prevention of type 2 diabetes in isolated impaired fasting glycaemia (i-IFG) vs isolated impaired glucose tolerance (i-IGT) may differ depending on the underlying pathophysiology. We examined insulin secretion during OGTTs and IVGTTs, hepatic and peripheral insulin action, and glucagon and incretin hormone secretion in individuals with i-IFG (n = 18), i-IGT (n = 28) and normal glucose tolerance (NGT, n = 20). Methods Glucose tolerance status was confirmed by a repeated OGTT, during which circulating insulin, glucagon, glucose-dependent insulinotrophic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) levels were measured. A euglycaemic–hyperinsulinaemic clamp with [3–3H]glucose preceded by an IVGTT was performed. Results Absolute first-phase insulin secretion during IVGTT was decreased in i-IFG (p = 0.026), but not in i-IGT (p = 0.892) compared with NGT. Hepatic insulin sensitivity was normal in i-IFG and i-IGT individuals (p ≥ 0.179). Individuals with i-IGT had peripheral insulin resistance (p = 0.003 vs NGT), and consequently the disposition index (DI; insulin secretion×insulin sensitivity) during IVGTT (DIIVGTT)) was reduced in both i-IFG and i-IGT (p < 0.005 vs NGT). In contrast, the DI during OGTT (DIOGTT) was decreased only in i-IGT (p < 0.001), but not in i-IFG (p = 0.143) compared with NGT. Decreased levels of GIP in i-IGT (p = 0.045 vs NGT) vs increased levels of GLP-1 in i-IFG (p = 0.013 vs NGT) during the OGTT may partially explain these discrepancies. Basal and post-load glucagon levels were significantly increased in both i-IFG and i-IGT individuals (p ≤ 0.001 vs NGT). Conclusions/interpretation We propose that differentiated preventive initiatives in prediabetic individuals should be tested, targeting the specific underlying metabolic defects.  相似文献   

19.
Aims/hypothesis: Sulphonylureas stimulate insulin secretion by closing ATP-sensitive potassium (KATP) channels in the pancreatic beta-cell membrane. KATP channels are also found in other tissues, including heart and smooth muscle, where they link cellular metabolism to electrical activity. The sulphonylurea gliclazide blocks recombinant beta-cell KATP channels (Kir6.2/SUR1) but not heart (Kir6.2/SUR2A) or smooth muscle (Kir6.2/SUR2B) KATP channels with high potency. In this study, we examined the specificity of gliclazide for the native (as opposed to recombinant) KATP channels in beta cells, heart and smooth muscle. Methods: The action of the drug was studied by whole-cell current recordings of native KATP channels in isolated pancreatic beta-cells and myocytes from heart and smooth muscle. Results: Gliclazide blocked whole-cell beta-cell KATP currents with an IC 50 of 184 ± 30 nmol/l (n = 6–10) but was much less effective in cardiac and smooth muscle (IC 50s of 19.5 ± 5.4 μmol/l (n = 6–12) and 37.9 ± 1.0 μmol/l (n = 5–10), respectively). In all three tissues, the action of the drug on whole-cell KATP currents was rapidly reversible. In inside-out patches on beta-cells, gliclazide (1 μmol/l) produced a maximum of 66 ± 13 % inhibition (n = 5), compared with more than 98 % block in the whole-cell configuration. Conclusion/interpretation: Gliclazide is a high-potency sulphonylurea which shows specificity for the pancreatic beta-cell KATP channel over heart and smooth muscle. In this respect, it differs from glibenclamide. The difference in the maximal block observed in the excised patch and whole-cell recordings from beta-cells, may be due to the absence of intracellular Mg-nucleotides in the excised patch experiments. [Diabetologia (2001) 44: 1019–1025] Received: 21 March 2001 and in revised form: 30 April 2001  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号