首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Positron emission tomography (PET) findings suggesting lower D2-type dopamine receptors and dopamine concentration in brains of stimulant users have prompted speculation that increasing dopamine signaling might help in drug treatment. However, this strategy needs to consider the possibility, based on animal and postmortem human data, that dopaminergic activity at the related D3 receptor might, in contrast, be elevated and thereby contribute to drug-taking behavior. We tested the hypothesis that D3 receptor binding is above normal in methamphetamine (MA) polydrug users, using PET and the D3-preferring ligand [11C]-(+)-propyl-hexahydro-naphtho-oxazin ([11C]-(+)-PHNO). Sixteen control subjects and 16 polydrug users reporting MA as their primary drug of abuse underwent PET scanning after [11C]-(+)-PHNO. Compared with control subjects, drug users had higher [11C]-(+)-PHNO binding in the D3-rich midbrain substantia nigra (SN; +46%; p<0.02) and in the globus pallidus (+9%; p=0.06) and ventral pallidum (+11%; p=0.1), whereas binding was slightly lower in the D2-rich dorsal striatum (approximately -4%, NS; -12% in heavy users, p=0.01) and related to drug-use severity. The [11C]-(+)-PHNO binding ratio in D3-rich SN versus D2-rich dorsal striatum was 55% higher in MA users (p=0.004), with heavy but not moderate users having ratios significantly different from controls. [11C]-(+)-PHNO binding in SN was related to self-reported "drug wanting." We conclude that the dopamine D3 receptor, unlike the D2 receptor, might be upregulated in brains of MA polydrug users, although lower dopamine levels in MA users could have contributed to the finding. Pharmacological studies are needed to establish whether normalization of D3 receptor function could reduce vulnerability to relapse in stimulant abuse.  相似文献   

2.
The D(2) receptors exist in either the high- or low-affinity state with respect to agonists, and while agonists bind preferentially to the high-affinity state, antagonists do not distinguish between the two states. [(11)C]-(+)-PHNO is a PET D(2) agonist radioligand and therefore provides a preferential measure of the D(2) (high) receptors. In contrast, [(11)C]raclopride is an antagonist radioligand and thus binds with equal affinity to the D(2) high- and low-affinity states. The aim was to compare the brain uptake, distribution and binding characteristics between [(11)C]-(+)-PHNO and [(11)C]raclopride in volunteers using a within-subject design. Both radioligands accumulated in brain areas rich in D(2)/D(3)-receptors. However, [(11)C]-(+)-PHNO showed preferential uptake in the ventral striatum and globus pallidus, while [(11)C]raclopride showed preferential uptake in the dorsal striatum. Mean binding potentials were higher in the putamen (4.3 vs. 2.8) and caudate (3.4 vs 2.1) for [(11)C]raclopride, equal in the ventral-striatum (3.4 vs. 3.3), and higher in the globus pallidus for [(11)C]-(+)-PHNO (1.8 vs. 3.3). Moreover [(11)C]-(+)-PHNO kinetics in the globus pallidus showed a slower washout than other regions. One explanation for the preferential binding of [(11)C]-(+)-PHNO in the globus pallidus and ventral-striatum could be the presence of a greater proportion of high- vs. low-affinity receptors in these areas. Alternatively, the observed distribution could also be explained by a preferential binding of D(3)-over-D(2) with [(11)C]-(+)-PHNO. This differential binding of agonist vs. antagonist radioligand, especially in the critically important region of the limbic striatum/pallidum, offers new avenues to investigate the role of the dopamine system in health and disease.  相似文献   

3.
BACKGROUND: The high-affinity states of dopamine D2-receptors (D2(high)) are postulated to be functionally responsible for signal transduction. At present, no useful in vivo method exists to selectively measure D2(high) in humans, as current D2 radioligands for positron emission tomography (PET) are either not D2-selective or do not differentiate between D2 high- and low-affinity states. METHODS: The D2-agonist (+)-PHNO [(+)4-propyl-9-hydroxynaphthoxazine] was labeled with carbon-11 and studied with PET. Eight [11C]-(+)-PHNO scans were acquired in four healthy volunteers. RESULTS: We observed greatest [11C]-(+)-PHNO accumulation in caudate, putamen, and globus pallidus [binding potentials (BPs): 3.00 +/- .4, 3.10 +/- .2, and 4.17 +/- 1.2]. Small but detectable binding was identified in the substantia nigra/ventral tegmental area. Preliminary test-retest data in two subjects suggests BP-estimates to be reliable. Pre-treatment with haloperidol reduced BPs in regions showing specific binding with no detectable changes in cerebellum. Parallel imaging with [11C]-raclopride showed substantial differences in the globus pallidus. CONCLUSIONS: [11C]-(+)-PHNO proved to be a D2/3-receptor agonist-radioligand with good brain uptake and favorable kinetics for PET in humans. [11C]-(+)-PHNO delineated D2/3-receptor rich brain regions with high signal-to-noise ratio. This is the first demonstration of a viable agonist-radioligand for D2 receptors in humans and opens the door for investigating D2(high) in health and disease.  相似文献   

4.
This study reports on the binding kinetics and pharmacological characterization of [11C]-(+)-PHNO ((+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol), a promising agonist radiotracer for in vivo evaluation of the D2-receptor. Its in vivo kinetics were monitored in rat striatum and cerebellum using a beta-sensitive Microprobe system. Control studies showed that [11C]-(+)-PHNO binding was reversible and reached a peak time equilibrium of specific binding in striatum 30 min after radiotracer injection. The binding potential (BP) calculated by the simplified reference tissue model was 3-fold higher than that measured with [11C]-(-)-NPA (2.14 +/- 0.50 vs. 0.66 +/- 0.01, respectively). In contrast, the methyl analog of (+)-PHNO, [11C]-(+)-MHNO, which displayed promising D2-agonist properties in vitro, showed no specific binding in the striatum in vivo. [11C]-(+)-PHNO binding was totally blocked by raclopride (1 mg/kg; i.v.) and 97% displaced by NPA (2 mg/kg; i.v.) suggesting that [11C]-(+)-PHNO was specific for the high affinity states of D2/D3-receptors. However, (+)-PHNO (1 mg/kg; i.v.) totally blocked and displaced [11C]-raclopride binding in striatum. Thus, (+)-PHNO at high concentrations might be able to bind to the low affinity states of D2/D3-receptors. After an amphetamine pretreatment (2 mg/kg; i.v.), a 69% decrease in BP value (P < 0.05) was observed for [11C]-(+)-PHNO indicating that its binding was highly sensitive to variations of endogenous DA. These results substantiate the use of [11C]-(+)-PHNO as an agonist radiotracer for D2-imaging. The sensitivity of its binding to competition with endogenous DA suggests an association with the subset of high affinity state D2-receptors.  相似文献   

5.
OBJECTIVE: Clozapine, the prototype of atypical antipsychotics, remains unique in its efficacy in the treatment of refractory schizophrenia. Its affinity for dopamine D(4) receptors, serotonin 5-HT(2A) receptor antagonism, effects on the noradrenergic system, and its relatively moderate occupancy of D(2) receptors are unlikely to be the critical mechanism underlying its efficacy. In an attempt to elucidate the molecular/synaptic mechanism underlying clozapine's distinctiveness in refractory schizophrenia, the authors studied the in vivo D(1) and D(2) receptor profile of clozapine compared with other atypical antipsychotics. METHOD: Positron emission tomography with the radioligands [(11)C]SCH23390 and [(11)C]raclopride was used to investigate D(1) and D(2) receptor occupancy in vivo in 25 schizophrenia patients receiving atypical antipsychotic treatment with clozapine, olanzapine, quetiapine, or risperidone. RESULTS: Mean striatal D(1) occupancies ranged from 55% with clozapine to 12% with quetiapine (rank order: clozapine > olanzapine > risperidone > quetiapine). The striatal D(2) occupancy ranged from 81% with risperidone to 30% with quetiapine (rank order: risperidone > olanzapine > clozapine > quetiapine). The ratio of striatal D(1)/D(2) occupancy was significantly higher for clozapine (0.88) relative to olanzapine (0.54), quetiapine (0.41), or risperidone (0.31). CONCLUSIONS: Among the atypical antipsychotics, clozapine appears to have a simultaneous and equivalent occupancy of dopamine D(1) and D(2) receptors. Whether its effect on D(1) receptors represents agonism or antagonism is not yet clear, as this issue is still unresolved in the preclinical arena. This distinctive effect on D(1)/D(2) receptors may be responsible for clozapine's unique effectiveness in patients with schizophrenia refractory to other typical and atypical antipsychotics.  相似文献   

6.
BackgroundPrevious studies have reported inter-individual variability in the dopamine (DA) response to stress. This variability might be related to individual differences in the vulnerability to experience the negative effect of stress.ObjectiveTo investigate whether personality traits as measured by the Revised NEO Personality Inventory explain variability in DA response to a psychosocial stress task.MethodsEleven healthy adults, mean age of 26 ± 3.87 underwent two Positron Emission Tomography (PET) scans using the dopamine D2/3 agonist, [11C]-(+)-PHNO under a control and stress condition. The Simplified Reference Tissue Model (SRTM) was used to obtain [11C]-(+)-PHNO Binding Potential (BPND). Stress-induced DA response was indexed as a percent change in [11C]-(+)-PHNO BPND between control and stress conditions. The regions of interest were defined into D2-rich regions, which included the Associative and Sensorimotor Striatum (AST and SMST); D2/3 mixed regions, which included the Limbic Striatum (LST) and Globus Pallidus (GP); and D3-rich region, which included the Substantia Nigra (SN).ResultsSeveral personality traits within the Neuroticism and Openness to Experience domain were significantly correlated with blunted DA response to stress. Specifically, the Angry-Hostility, Vulnerability, and Depression trait were associated with blunted DA stress response in the AST (r = ?0.645, p = 0.032), LST (r = ?0.677, p = 0.022) and GP (r = ?0.736, p = 0.010), respectively. The Openness to Values was correlated with a decreased DA release in the SN (r = ?0.706, p = 0.015).ConclusionVariability in DA stress response might be related to individual differences in personality.  相似文献   

7.
OBJECTIVE: Since all antipsychotics block dopamine D(2) receptors, the authors investigated how well D(2) receptor occupancy in vivo predicts clinical response, extrapyramidal side effects, and hyperprolactinemia. METHOD: In a double-blind study, 22 patients with first-episode schizophrenia were randomly assigned to 1.0 or 2. 5 mg/day of haloperidol. After 2 weeks of treatment, D(2) receptor occupancy was determined with [(11)C]raclopride and positron emission tomography, and clinical response, extrapyramidal side effects, and prolactin levels were measured. Patients who showed adequate responses continued taking their initial doses, those who did not respond had their doses increased to 5.0 mg/day, and evaluations were repeated at 4 weeks for all patients. RESULTS: The patients showed a wide range of D(2) occupancy (38%-87%). The degree of receptor occupancy predicted clinical improvement, hyperprolactinemia, and extrapyramidal side effects. The likelihood of clinical response, hyperprolactinemia, and extrapyramidal side effects increased significantly as D(2) occupancy exceeded 65%, 72%, and 78%, respectively. CONCLUSIONS: The study confirms that D(2) occupancy is an important mediator of response and side effects in antipsychotic treatment. The data are consistent with a "target and trigger" hypothesis of antipsychotic action, i.e., that the D(2) receptor specificity of antipsychotics permits them to target discrete neurons and that their antagonist properties trigger within those neurons intracellular changes that ultimately beget antipsychotic response. While limited to haloperidol, the relationship between D(2) occupancy and side effects in this study helps explain many of the observed clinical differences between typical and atypical antipsychotics.  相似文献   

8.
OBJECTIVES: Antipsychotic medications improve psychosis but often induce a state of dysphoria in patients. Blockade of the dopamine D(2) receptors, which is thought to mediate their efficacy, has also been implicated in producing this adverse subjective experience. The authors present the first double-blind controlled study to examine the relationship between striatal and extrastriatal dopamine D(2) receptor binding potential and occupancy values and adverse subjective experience. METHOD: Patients with recent-onset psychosis (N=12) were randomly assigned to low or high doses of olanzapine or risperidone. Subjective experiences, motor side effects, and striatal and extrastriatal dopamine D(2) receptors (determined with [(11)C]raclopride and [(11)C]FLB 457 PET scans, respectively) were evaluated after 2 weeks of continuous antipsychotic treatment. RESULTS: Higher dopamine D(2) receptor occupancy and binding potentials in the striatal (dorsal and ventral), temporal, and insular regions were associated with subjective experience. The finding was confirmed with two convergent methods of analysis (region-of-interest and voxel-based statistics), and the same relationship was observed using two different dopamine receptor measures (observed binding potential values and age- and sex-corrected occupancy values). CONCLUSIONS: Higher D(2) receptor occupancy is associated with negative subjective experience in patients taking risperidone or olanzapine. These negative subjective effects may be related to the high discontinuation rates seen in usual practice. Understanding the neurobiological mechanism of these negative subjective experiences and developing antipsychotics with novel (i.e., non D(2)) mechanisms may be critical in improving the treatment of psychosis.  相似文献   

9.
The kinetic modeling of [11C]-(+)-PHNO binding to the dopamine D2/3 receptors in six human volunteers using positron emission tomography (PET) is described. [11C]-(+)-PHNO is the first agonist radioligand for the D2/3 in humans and as expected showed high uptake in caudate, putamen, globus pallidus (GP) and ventral striatum, and low uptake in cerebellum. A two-tissue compartment model (2CM) with four parameters was necessary to adequately fit time-activity data in all regions. Although a 2CM provided an excellent estimation of total distribution volumes, which were highly correlated with those obtained with the invasive Logan approach, it provided a poor identification of the k3/k4 ratios. Coupling K1/k2 between brain regions (Method C) or fixing K1/k2 to the value obtained in cerebellum (Method D) enabled more stable estimates of k3/k4 as compared with an unconstrained 2CM. The k3/k4 obtained with Method D ranged from 0.12+/-0.03 in cerebellum to 3.93+/-0.77 in GP and were similar to those obtained when coupling K1/k2. Binding potentials (BPs) obtained using the simplified reference tissue model (BP(SRTM)) ranged from 2.08+/-0.34 in caudate to 3.55+/-0.78 in GP and were highly correlated with k3/k4 estimates obtained with Method D (r=0.98). However, BP(SRTM) were 11%+/-5% lower than values obtained with Method D. BPs derived using the noninvasive Logan approach were slightly lower but not significantly different than BP(SRTM). This study demonstrates that [11C]-(+)-PHNO can be used for the quantitative measurement of D2/3 densities and should enable further studies of potential D2/3 dysregulation in several important psychiatric and neurologic illnesses.  相似文献   

10.
Because radioactive raclopride and radioactive (+)-4-propyl-9-hydroxynaphthoxazine ((+)-PHNO) are used to image dopamine (DA) D2 and D3 receptors in the striatum and globus pallidus in humans, the present study examined the proportions of D2 and D3 receptors in postmortem tissues from these regions. Conflicting results were obtained when using a single concentration of remoxipride to occlude D2 receptors or using a single concentration of U99194A or FAUC 365 to occlude D3 receptors. However, using a range of concentrations of FAUC 365, a D3-selective antagonist, to inhibit the binding [(3)H]raclopride or [(3)H]-(+)-PHNO to D3 receptors at low concentrations (1-10 nM) and to inhibit ligand binding to D2 receptors at higher concentrations (100-2000 nM), it was possible to measure the proportion of D2 and D3 receptors in the tissues. This method revealed that these two radioligands detected only D2 receptors in the dorsal putamen and the dorsal caudate nucleus, but detected a mixed population of two-thirds D2 and one-third D3 DA receptors in the ventral putamen, the ventral caudate, and the globus pallidus. The present findings are in good agreement with the known gene expression data for D2 and D3 receptors in these human brain regions.  相似文献   

11.
Animal models are crucial for understanding the mechanism of action of antipsychotics. However, the dose of an antipsychotic in animal studies is often arbitrarily chosen, with haloperidol 1 mg/kg being a rather common standard. Recent clinical positron emission tomography (PET) studies in patients show all antipsychotics to block dopamine D2 receptors, and most are effective at doses that lead to 60% to 80% D2 occupancy. When occupancy exceeds 80%, the incidence of side effects rises sharply. To use this "bedside" information to inform the "bench," we measured D2 occupancy in rats using a method similar in principle to the [11C]-raclopride PET method in humans. We found that: 1) as in humans, haloperidol is effective in animal models of antipsychotic action when D2 occupancy > 70% and leads to effects in models of extrapyramidal side effects when D2 occupancy is > 80%; 2) very low doses, 0.06 mg/kg/sc, cause acute D2 occupancy of 75%; 3) and even doses that acutely saturate D2 receptors give little D2 occupancy after 24 hours due to the very short half-life of haloperidol in rats (2.5 hours versus 24 hours in humans). We conclude that most previous animal studies of antipsychotics have used doses giving rise to inappropriately high acute D2 occupancy and inappropriately low D2 occupancy between doses. We exemplify how this dosing confounder could lead to inappropriate conclusions. Data from the bedside translated to the bench--using D2 occupancy as a mediating variable--will lead to more valid animal models.  相似文献   

12.
OBJECTIVE: Aripiprazole has a unique pharmacological profile that includes partial agonism at D(2) receptors, antagonism at 5-HT(2) receptors, and partial agonism at 5-HT(1A) receptors. The authors conducted a positron emission tomography (PET) study to characterize the simultaneous effects of aripiprazole at the D(2), 5-HT(2), and 5-HT(1A) receptors in patients with schizophrenia or schizoaffective disorder. METHOD: Twelve patients who had previously received antipsychotic treatment were randomly assigned to receive 10 mg, 15 mg, 20 mg, or 30 mg of aripiprazole. After at least 14 days of treatment, participants underwent high-resolution PET scans using [(11)C]raclopride, [(18)F]setoperone, and [(11)C]WAY100635. RESULTS: Very high occupancy was observed at striatal D(2) receptors (average putamen, 87%; caudate, 93%; and ventral striatum, 91%), lower occupancy at 5-HT(2) receptors (54%-60%), and even lower occupancy at 5-HT(1A) receptors (16%). D(2) occupancy levels were significantly correlated with plasma drug concentrations, and even the lowest dose (10 mg) led to 85% D(2) occupancy. Extrapyramidal side effects were seen only in two of the four participants with occupancies exceeding 90%. CONCLUSIONS: Aripiprazole exhibits a unique occupancy profile as compared with other conventional and atypical antipsychotics. The threshold for response appears to be higher than 60%, extrapyramidal side effects appear to be uncommon even at occupancies that exceed the conventional extrapyramidal side effects threshold of 80%, and 5-HT(2) occupancy is lower than D(2) occupancy. Implications for aripiprazole's mechanism of action are discussed.  相似文献   

13.
OBJECTIVE: Ziprasidone is an atypical antipsychotic drug that shows a higher affinity for serotonin 5-HT(2) receptors compared with dopamine D(2) receptors in vitro. The affinity of ziprasidone for these receptors in vivo in patients was examined in a positron emission tomography (PET) study. METHOD: The authors conducted a PET study to evaluate D(2) occupancy (using [(11)C]raclopride) and 5-HT(2) occupancy (using [(18)F]setoperone) in brain regions of interest in 16 patients with schizophrenia or schizoaffective disorder randomly assigned to receive 40, 80, 120, or 160 mg/day of ziprasidone, which reflected the recommended dose range. PET scanning was done after 3 weeks of administration and at trough plasma levels, i.e., 12-16 hours after the last dose. RESULTS: The mean 5-HT(2) receptor occupancy was significantly higher than the mean D(2) receptor occupancy (mean=76%, SD=15%, and mean=56%, SD=18%, respectively). The estimated plasma ziprasidone concentration associated with 50% maximal 5-HT(2) receptor occupancy was almost four times lower than that for D(2) receptor occupancy. CONCLUSIONS: These data affirm that ziprasidone is similar to other novel antipsychotics in having greater 5-HT(2) than D(2) receptor occupancy at therapeutic doses and suggest that the optimal effective dose of ziprasidone is closer to 120 mg/day than to the lower doses suggested by previous PET studies. The relatively high D(2) receptor occupancy, even at trough plasma levels, suggests that ziprasidone is more similar to risperidone and olanzapine in receptor occupancy profile than to clozapine and quetiapine. Since ziprasidone plasma levels show significant (more than twofold) variation within a single dose cycle, studies that are aimed at peak plasma levels (6 hours after the last dose) and that examine extrastriatal regions are required to fully characterize the in vivo occupancy profile of ziprasidone.  相似文献   

14.
Clinical evidence suggests that dopamine D(2) receptor partial agonists must have a sufficiently low intrinsic activity to be effective as antipsychotics. Here, we used dopamine D(2) receptor signaling assays to compare the in vitro functional characteristics of the antipsychotic aripiprazole with other dopamine D(2) receptor partial agonists (7-{3-[4-(2,3-dimethylphenyl)-piperazinyl]propoxy}-2(1H)-quinolinone [OPC-4392], (-)-3-(3-hydroxy-phenyl)-N-n-propylpiperidine [(-)3-PPP] and (+)terguride) and dopamine D(2) receptor antagonists. Aripiprazole and OPC-4392 were inactive in a guanosine-5'-O-(3-[(35)S]thio)-triphosphate ([(35)S]GTPgammaS) binding assay using Chinese Hamster Ovary (CHO) cell membranes expressing cloned human dopamine D(2Long) (hD(2L)) receptors, whereas (-)3-PPP and (+)terguride displayed low intrinsic activity. Aripiprazole also had no effect on [(35)S]GTPgammaS binding to CHO-hD(2L) cells, while OPC-4392, (-)3-PPP and (+)terguride were partial agonists. In contrast, aripiprazole, OPC-4392, (-)3-PPP, and (+)terguride were inactive in a [(35)S]GTPgammaS binding assay using rat striatal membranes. However, at a more downstream level of CHO-hD(2L) cell signalling, these drugs all behaved as dopamine hD(2L) receptor partial agonists, with aripiprazole displaying an intrinsic activity 2 to 3-fold lower (inhibition of forskolin-induced adenosine 3',5'-cyclic monophosphate accumulation) and almost half as high (enhancement of adenosine triphosphate-stimulated [(3)H]arachidonic acid release) as OPC-4392, (-)3-PPP and (+)terguride. Dopamine activity was blocked in each case by (-)raclopride, which was inactive on its own in every assay, as were the antipsychotics haloperidol, olanzapine, ziprasidone and clozapine. Together, these data, whilst preclinical in nature, are consistent with clinical evidence suggesting the favorable antipsychotic profile of aripiprazole, compared with the other clinically ineffective partial agonists, is dependent on its low intrinsic activity at dopamine D(2) receptors. This study also highlights the limitations of using [(35)S]GTPgammaS binding assays to identify dopamine D(2) receptor partial agonists.  相似文献   

15.
The clinical potencies of antipsychotic drugs are directly related to their affinities for the dopamine D2 receptor. In addition, the concentrations of antipsychotic drugs (given at therapeutic maintenance doses) in the plasma water or in the spinal fluid are almost identical to the antipsychotic dissociation constants at the dopamine D2 receptor. A consistent 70–75% of brain D2 receptors are occupied by antipsychotic drugs, as calculated from the therapeutic concentration and the antipsychotic dissociation constant. The D3 and D4 dopamine receptors, however, are not consistently occupied by antipsychotic drugs, the occupancies being 0–85% for D3, and 0–95% for D4. Human brain imaging also reveals that therapeutic doses of antipsychotic drugs occupy ∼70% of D2 receptors. Between 2 and 4 h after the daily oral dose, clozapine and quetiapine occupy high levels (∼70%) of the dopamine D2 receptors in schizophrenia patients, with lower occupancies at 6 and 12 h. Although clozapine and quetiapine occupy low levels of D2 receptors many hours after the oral dose, the observed fraction of D2 receptors occupied by these drugs, however, depends on the radioligand used, with high occupancy seen when using [11C]raclopride, and low occupancy seen with [11C]methylspiperone (which is tightly bound to D2). This dependence on the radioligand occurs because clozapine and quetiapine are loosely bound to D2. The loose binding of clozapine and quetiapine to D2 permits endogenous dopamine to displace these antipsychotic drugs much more quickly than haloperidol. In addition, the small dose of radioactive raclopride injected (in brain imaging) can displace a little of the D2-bound clozapine. Hence, the observed low level of D2 occupancy by clozapine in patients may arise from a combination of the above three factors – the ligand dependency, the endogenous dopamine, and the displacement by the imaging dose. Parkinsonism and extrapyramidal effects occur with antipsychotics which have a high affinity for D2 and which are, therefore, tightly bound to D2. Clozapine and quetiapine have a low affinity for D2, and, being readily displaced by endogenous dopamine, do not give rise to extrapyramidal effects. Because the loosely bound antipsychotics dissociate from D2 more rapidly, clinical relapse may occur earlier than that found with the tightly bound traditional antipsychotics. The dopamine hypothesis of schizophrenia is supported by the fact that D2 is the main target of antipsychotic action, that monomers of D2 appear elevated in schizophrenia, and that the synaptic levels of dopamine in schizophrenia are at least two-fold higher than in control subjects.  相似文献   

16.
BACKGROUND: All currently available atypical antipsychotics have, at clinically relevant doses: i) high serotonin (5-HT)2 occupancy; ii) greater 5-HT2 than dopamine (D)2 occupancy; and iii) a higher incidence of extrapyramidal side effects when their D2 occupancy exceeds 80%. A review of pharmacologic and behavioral data suggested that amoxapine should also conform to this profile; therefore, we undertook a positron-emission tomography (PET) study of its 5-HT2 and D2 occupancy. METHODS: Seven healthy volunteers received 50-250 mg/day of amoxapine for 5 days and then had [11C]-raclopride and [18F]-setoperone PET scans. RESULTS: 5-HT2 receptors showed near saturation at doses of 100 mg/day and above. The D2 receptor occupancies showed a dose-dependent increase, never exceeding 80%; at all doses 5-HT2 occupancy exceeded D2 occupancy. CONCLUSIONS: PET data show that amoxapine's profile is very similar to that of the established atypical antipsychotics. These data, together with amoxapine's in vitro pharmacologic profile, effectiveness in animal models, and efficacy in psychotic depression raise the possibility of amoxapine as an "atypical" antipsychotic agent in the treatment of schizophrenia.  相似文献   

17.
OBJECTIVE: The authors' goal was to test the hypothesis of extrastriatal D(2) receptor selectivity as the mechanism of action of clozapine. METHOD: Positron emission tomography (PET) was used to examine extrastriatal as well as striatal dopamine D(2) receptor occupancy in four patients treated with clozapine and three patients treated with haloperidol. The reference radioligand [(11)C]raclopride was used for determination of D(2) receptor occupancy in the striatum. The radioligand [(11)C]FLB 457 was chosen for determination of D(2) receptor occupancy in the thalamus, the temporal cortex, and the frontal cortex. RESULTS: In patients treated with haloperidol the D(2) receptor occupancy was high in all examined brain regions. In clozapine-treated patients the D(2) receptor occupancy was relatively low in both the striatum and the extrastriatal regions. CONCLUSIONS: The results from the present study give no support for the hypothesis of regional selectivity as the mechanism of action for clozapine.  相似文献   

18.
Changes in dopamine (DA) D(1), D(2), D(3), and D(4) receptors and serotonin 5-HT(1A) and 5-HT(2A) receptors in rat forebrain regions were autoradiographically quantified after continuous infusion of JL 13 [(5-(4-methylpiperazin-1-yl)-8-chloro-pyrido[2,3-b][1,5]benzoxazepine fumarate] for 28 days with osmotic minipumps and compared with the effects of other typical (fluphenazine) and atypical (clozapine, olanzapine, and risperidone) antipsychotic drugs from previous studies. Similar to other typical and atypical antipsychotics, JL 13 increased labeling of D(2) receptors in medial prefrontal cortex (MPC) and hippocampus (HIP) and D(4) receptors in nucleus accumbens (NAc), caudate-putamen (CPu), and HIP. In addition, JL 13 increased 5-HT(1A) and decreased 5-HT(2A) receptors in MPC and dorsolateral frontal cortex (DFC), an effect shared by atypical antipsychotics, and may contribute to their psychopharmacological properties. Clozapine and JL 13, but not other antipsychotics, spared D(2) receptors in CPu, which may reflect their ability to induce minimal extrapyramidal side effects. In addition, JL 13 but not other typical and atypical antipsychotic drugs increased abundance of D(1) receptors in CPu and NAc. JL 13 as well as other antipsychotic agents did not alter levels of forebrain D(3) receptors. An atypical-like profile of JL 13 on DA and 5-HT receptor subtypes should encourage further development of this compound as a novel atypical antipsychotic drug.  相似文献   

19.
In Japan, antipsychotic polypharmacy with high doses for schizophrenia has been traditionally used. However, antipsychotic polyphamacy with high doses provide disadvantages for patient. Recent PET studies show that dopamine D2 occupancy with antipsychotics is important for the treatment of schizophrenia. First, antipsychotics become effective only at which their D2 occupancy exceeds 65%. Second, antipsychotics with D2 occupancy below 90% rarely causes occupancy exceeds 65%. Second, antipsychotics with D2 occupancy below 90% rarely causes extrapyramidal side effect. These results suggest that monopharmacy which uses a single antipsychotic agent with appropriate dose is recommended for schizophrenia treatment.  相似文献   

20.
OBJECTIVE: Although atypical antipsychotics are becoming the treatment of choice for schizophrenia, what makes an antipsychotic "atypical" is not clear. This article provides a new hypothesis about the mechanism of action of atypical antipsychotics. METHOD: Published data regarding the molecular, animal model, neuroimaging, and clinical aspects of typical and atypical antipsychotics were reviewed to develop this hypothesis. Particular attention was paid to data regarding the role of the serotonin 5-HT(2) and dopamine D(4) receptors in atypicality. RESULTS: Neuroimaging data show that optimal dopamine D(2) occupancy is sufficient to produce the atypical antipsychotic effect. Freedom from motor side effects results from low D(2) occupancy, not from high 5-HT(2) occupancy. If D(2) occupancy is excessive, atypicality is lost even in the presence of high 5-HT(2) occupancy. Animal data show that a rapid dissociation from the D(2) receptor at a molecular level produces the atypical antipsychotic effect. In vitro data show that the single most powerful predictor of atypicality for the current generation of atypical antipsychotics is fast dissociation from the D(2) receptor, not its high affinity at 5-HT(2), D(4), or another receptor. CONCLUSIONS: The authors propose that fast dissociation from the D(2) receptor makes an antipsychotic more accommodating of physiological dopamine transmission, permitting an antipsychotic effect without motor side effects, prolactin elevation, or secondary negative symptoms. In contrast to the multireceptor hypotheses, the authors predict that the atypical antipsychotic effect can be produced by appropriate modulation of the D(2) receptor alone; the blockade of other receptors is neither necessary nor sufficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号