首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
BACKGROUND: Dietary alpha-linolenic acid (ALA) can be converted to long-chain n-3 polyunsaturated fatty acids (PUFAs) in humans and may reproduce some of the beneficial effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on cardiovascular disease risk factors. OBJECTIVE: This study aimed to compare the effects of increased dietary intakes of ALA and EPA+DHA on a range of atherogenic risk factors. DESIGN: This was a placebo-controlled, parallel study involving 150 moderately hyperlipidemic subjects randomly assigned to 1 of 5 interventions: 0.8 or 1.7 g EPA+DHA/d, 4.5 or 9.5 g ALA/d, or an n-6 PUFA control for 6 mo. Fatty acids were incorporated into 25 g of fat spread and 3 capsules to be consumed daily. RESULTS: The change in fasting or postprandial lipid, glucose, or insulin concentrations or in blood pressure was not significantly different after any of the n-3 PUFA interventions compared with the n-6 PUFA control. The mean (+/- SEM) change in fasting triacylglycerols after the 1.7-g/d EPA+DHA intervention (-7.7 +/- 4.99%) was significantly (P < 0.05) different from the change after the 9.5-g/d ALA intervention (10.9 +/- 4.5%). The ex vivo susceptibility of LDL to oxidation was higher after the 1.7-g/d EPA+DHA intervention than after the control and ALA interventions (P < 0.05). There was no significant change in plasma alpha-tocopherol concentrations or in whole plasma antioxidant status in any of the groups. CONCLUSION: At estimated biologically equivalent intakes, dietary ALA and EPA+DHA have different physiologic effects.  相似文献   

2.
BACKGROUND: Greatly increasing dietary flaxseed oil [rich in the n-3 polyunsaturated fatty acid (PUFA) alpha-linolenic acid (ALA)] or fish oil [rich in the long-chain n-3 PUFAs eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids] can reduce markers of immune cell function. The effects of more modest doses are unclear, and it is not known whether ALA has the same effects as its long-chain derivatives. OBJECTIVE: The objective was to determine the effects of enriching the diet with ALA or EPA+DHA on immune outcomes representing key functions of human neutrophils, monocytes, and lymphocytes. DESIGN: In a placebo-controlled, double-blind, parallel study, 150 healthy men and women aged 25-72 y were randomly assigned to 1 of 5 interventions: placebo (no additional n-3 PUFAs), 4.5 or 9.5 g ALA/d, and 0.77 or 1.7 g EPA+DHA/d for 6 mo. The n-3 PUFAs were provided in 25 g fat spread plus 3 oil capsules. Blood samples were taken at 0, 3, and 6 mo. RESULTS: The fatty acid composition of peripheral blood mononuclear cell phospholipids was significantly different in the groups with higher intakes of ALA or EPA+DHA. The interventions did not alter the percentages of neutrophils or monocytes engaged in phagocytosis of Escherichia coli or in phagocytic activity, the percentages of neutrophils or monocytes undergoing oxidative burst in response to E. coli or phorbol ester, the proliferation of lymphocytes in response to a T cell mitogen, the production of numerous cytokines by monocytes and lymphocytes, or the in vivo delayed-type hypersensitivity response. CONCLUSION: An intake of 相似文献   

3.
OBJECTIVES: To assess the effects of providing a wide range of foodstuffs containing n-3 polyunsaturated fatty acids (PUFA), occurring naturally or from fortification, on intake and blood and tissue proportions of n-3 PUFA. DESIGN: Before/after dietary intervention study. SETTING: Adelaide, Australia. SUBJECTS: 16 healthy males recruited from the community. INTERVENTIONS: Subjects were provided with a range of foodstuffs naturally containing n-3 PUFA (fresh fish, canned fish, flaxseed meal, canola oil) and items fortified with fish oil (margarine spread, milk, sausages, luncheon meat, french onion dip). Food choices were left to the discretion of each subject. Intake was estimated by diet diary. Blood was collected at-2, 0, 2, and 4 weeks for fatty acid analysis. MAIN OUTCOME MEASURES: Dietary intakes; plasma, platelet, and mononuclear cell phospholipid fatty acids. RESULTS: Consumption of n-3 PUFA increased significantly: alpha-linolenic acid (ALA) from 1.4 to 4.1 g/day (P<0.001), eicosapentaenoic acid (EPA) from 0.03 to 0.51 g/day (P<0.001), and docosahexaenoic acid (DHA) from 0.09 to 1.01 g/day (P<0.001). Linoleic acid (LA) intake decreased from 13.1 to 9.2 g/day (P<0.001). The proportions of EPA and DHA increased significantly in all phospholipid pools examined; plasma EPA from 1.13% of total fatty acids to 3.38% (P<0.001) and DHA from 3.76 to 7.23% (P<0.001); mononuclear cell EPA from 0.40 to 1.25% (P<0.001) and DHA from 2.33 to 4.08% (P<0.001); platelet EPA from 0.41 to 1.2% (P<0.001) and DHA from 1.64 to 3.07% (P<0.001). CONCLUSION: Incorporating fish oil into a range of novel commercial foods provides the opportunity for wider public consumption of n-3 PUFA with their associated health benefits. SPONSORSHIP: Dawes Scholarship, Royal Adelaide Hospital.  相似文献   

4.
BACKGROUND: The intestinal mucosa functions as a barrier against harmful dietary and microbial antigens. An intact gut barrier forms a prerequisite for protection against infection and allergy. Both allergic and inflammatory mediators (e.g. IL-4, IFN-gamma) are known to compromise the epithelial barrier integrity by enhancing permeability. Breast milk provides protection against infection and allergy and contains polyunsaturated fatty acids (PUFA). AIM OF THE STUDY: Although PUFA are commonly used in infant formulas their effect on intestinal barrier is still poorly understood. Therefore the effects of distinct PUFA (n-6: LA, GLA, DGLA, AA; n-3: ALA, EPA, DHA) and a fat blend with PUFA composition similar to that of the human breast milk fat fraction, on barrier integrity were investigated. METHODS: Human intestinal epithelial cells (T84) were pre-incubated with individual PUFA or a lipase treated fat blend, with or without subsequent IL-4 exposure. Barrier integrity was evaluated by measuring transepithelial resistance and permeability. Membrane phospholipid composition was determined by capillary gas chromatography. RESULTS: DGLA, AA, EPA, DHA and to a lesser extend GLA enhanced basal TER and strongly reduced IL-4 mediated permeability, while LA and ALA were ineffective. Furthermore, the lipase treated fat blend effectively supported barrier function. PUFA were incorporated in the membrane phospholipid fraction of T84 cells. CONCLUSIONS: Long chain PUFA DGLA, AA, EPA and DHA were particularly effective in supporting barrier integrity by improving resistance and reducing IL-4 mediated permeability. Fat blends that release specific PUFA upon digestion in the gastrointestinal tract may support natural resistance.  相似文献   

5.
Alpha-linolenic acid (ALA) is a major dietary (n-3) fatty acid. ALA is converted to longer-chain (n-3) PUFA, such as eicosapentaenoic acid (EPA) and possibly docosahexaenoic acid (DHA). EPA and DHA are fish-based (n-3) fatty acids that have proven cardioprotective properties. We studied the effect of daily supplementation with 3 g of ALA on the plasma concentration of long-chain (n-3) fatty acids in a predominantly African-American population with chronic illness. In a randomized, double-blind trial, 56 participants were given 3 g ALA/d from flaxseed oil capsules (n = 31) or olive oil placebo capsules (n = 25). Plasma EPA levels at 12 wk in the flaxseed oil group increased by 60%, from 24.09 +/- 16.71 to 38.56 +/- 28.92 micromol/L (P = 0.004), whereas no change occurred in the olive oil group. Plasma docosapentaenoic acid (DPA) levels in the flaxseed oil group increased by 25% from 19.94 +/- 9.22 to 27.03 +/- 17.17 micromol/L (P = 0.03) with no change in the olive oil group. Plasma DHA levels did not change in either group. This study demonstrates the efficacy of the conversion of ALA to EPA and DPA in a minority population with chronic disease. ALA may be an alternative to fish oil; however, additional clinical trials with ALA are warranted.  相似文献   

6.
BACKGROUND: Animal studies showed that dietary flaxseed oil [rich in the n-3 polyunsaturated fatty acid alpha-linolenic acid (ALA)], evening primrose oil [rich in the n-6 polyunsaturated fatty acid gamma-linolenic acid (GLA)], and fish oil [rich in the long-chain n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] can decrease natural killer (NK) cell activity. There have been no studies of the effect on NK cell activity of adding these oils to the diet of humans. OBJECTIVE: Our objective was to determine the effect of dietary supplementation with oil blends rich in ALA, GLA, arachidonic acid (AA), DHA, or EPA plus DHA (fish oil) on the NK cell activity of human peripheral blood mononuclear cells. DESIGN: A randomized, placebo-controlled, double-blind, parallel study was conducted. Healthy subjects aged 55-75 y consumed 9 capsules/d for 12 wk; the capsules contained placebo oil (an 80:20 mix of palm and sunflower seed oils) or blends of placebo oil and oils rich in ALA, GLA, AA, DHA, or EPA plus DHA. Subjects in these groups consumed 2 g ALA, 770 mg GLA, 680 mg AA, 720 mg DHA, or 1 g EPA plus DHA (720 mg EPA + 280 mg DHA) daily, respectively. Total fat intake from the capsules was 4 g/d. RESULTS: The fatty acid composition of plasma phospholipids changed significantly in the GLA, AA, DHA, and fish oil groups. NK cell activity was not significantly affected by the placebo, ALA, GLA, AA, or DHA treatment. Fish oil caused a significant reduction (mean decline: 48%) in NK cell activity that was fully reversed by 4 wk after supplementation had ceased. CONCLUSION: A moderate amount of EPA but not of other n-6 or n-3 polyunsaturated fatty acids can decrease NK cell activity in healthy subjects.  相似文献   

7.
BACKGROUND: For many persons who wish to obtain the health benefits provided by dietary n-3 fatty acids, daily ingestion of fish or fish oil is not a sustainable long-term approach. To increase the number of sustainable dietary options, a land-based source of n-3 fatty acids that is effective in increasing tissue concentrations of the long-chain n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is required. OBJECTIVE: The objective of the study was to examine the ability of dietary stearidonic acid (SDA) to increase tissue concentrations of EPA and DHA in healthy human subjects and to compare the effectiveness of SDA with that of the n-3 fatty acids alpha-linolenic acid (ALA) and EPA. DESIGN: Encapsulated SDA, ALA, or EPA was ingested daily in doses of 0.75 g and then 1.5 g for periods of 3 wk each by healthy male and postmenopausal female subjects (n = 15/group) in a double-blind, parallel-group design. RESULTS: Dietary SDA increased EPA and docosapentaenoic acid concentrations but not DHA concentrations in erythrocyte and in plasma phospholipids. The relative effectiveness of the tested dietary fatty acids in increasing tissue EPA was 1:0.3:0.07 for EPA:SDA:ALA. CONCLUSIONS: Vegetable oils containing SDA could be a dietary source of n-3 fatty acids that would be more effective in increasing tissue EPA concentrations than are current ALA-containing vegetable oils. The use of SDA-containing oils in food manufacture could provide a wide range of dietary alternatives for increasing tissue EPA concentrations.  相似文献   

8.
Consumption of fish or fish oils rich in the n-3 long chain PUFA EPA and DHA may improve multiple risk factors for CVD. The objective of this study was to determine whether regular consumption of foods enriched with n-3 long-chain PUFA can improve n-3 long-chain PUFA status (erythrocytes) and cardiovascular health. Overweight volunteers with high levels of triacylglycerols (TG; >1.6 mmol/l) were enrolled in a 6-month dietary intervention trial conducted in Adelaide (n 47) and Perth (n 39), and randomised to consume control foods or n-3-enriched foods to achieve an EPA + DHA intake of 1 g/d. Test foods were substituted for equivalent foods in their regular diet. Erythrocyte fatty acids, plasma TG and other CVD risk factors were monitored at 0, 3 and 6 months. There were no significant differences between groups for blood pressure, arterial compliance, glucose, insulin, lipids, C-reactive protein (CRP) or urinary 11-dehydro-thromboxane B2 (TXB2) over 6 months, even though regular consumption of n-3-enriched foods increased EPA + DHA intake from 0.2 to 1.0 g/d. However, the n-3 long-chain PUFA content of erythrocytes increased by 35 and 53 % at 3 and 6 months, respectively, in subjects consuming the n-3-enriched foods. These increases were positively associated with measures of arterial compliance and negatively associated with serum CRP and urinary 11-dehydro-TXB2 excretion. Sustainable increases in dietary intakes and erythrocyte levels of n-3 long-chain PUFA can be achieved through regular consumption of suitably enriched processed foods. Such increases may be associated with reduced CV risk.  相似文献   

9.
PUFA are hypothesized to influence bone health, but longitudinal studies on hip fracture risk are lacking. We examined associations between intakes of PUFA and fish, and hip fracture risk among older adults (n = 904) in the Framingham Osteoporosis Study. Participants (mean age ~75 y at baseline) were followed for incident hip fracture from the time they completed the baseline exam (1988-1989) until December 31, 2005. HR and 95% CI were estimated for energy-adjusted dietary fatty acid exposure variables [(n-3) fatty acids: α-linolenic acid (ALA), EPA, DHA, EPA+DHA; (n-6) fatty acids: linoleic acid, arachidonic acid (AA); and the (n-6):(n-3) ratio] and fish intake categories, adjusting for potential confounders and covariates. Protective associations were observed between intakes of ALA (P-trend = 0.02) and hip fracture risk in a combined sample of women and men and between intakes of AA (P-trend = 0.05) and hip fracture risk in men only. Participants in the highest quartile of ALA intake had a 54% lower risk of hip fracture than those in the lowest quartile (Q4 vs. Q1: HR = 0.46; 95% CI = 0.26-0.83). Men in the highest quartile of AA intake had an 80% lower risk of hip fracture than those in the lowest quartile (Q4 vs. Q1: HR = 0.20; 95% CI = 0.04-0.96). No significant associations were observed among intakes of EPA, DHA, EPA+DHA, or fish. These findings suggest dietary ALA may reduce hip fracture risk in women and men and dietary AA may reduce hip fracture risk in men.  相似文献   

10.
BACKGROUND: Maternal essential fatty acid status declines during pregnancy, and as a result, neonatal concentrations of docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) may not be optimal. OBJECTIVE: Our objective was to improve maternal and neonatal fatty acid status by supplementing pregnant women with a combination of alpha-linolenic acid (ALA, 18:3n-3) and linoleic acid (LA, 18:2n-6), the ultimate dietary precursors of DHA and AA, respectively. DESIGN: From week 14 of gestation until delivery, pregnant women consumed daily 25 g margarine supplying either 2.8 g ALA + 9.0 g LA (n = 29) or 10.9 g LA (n = 29). Venous blood was collected for plasma phospholipid fatty acid analyses at weeks 14, 26, and 36 of pregnancy, at delivery, and at 32 wk postpartum. Umbilical cord blood and vascular tissue samples were collected to study neonatal fatty acid status also. Pregnancy outcome variables were assessed. RESULTS: ALA+LA supplementation did not prevent decreases in maternal DHA and AA concentrations during pregnancy and, compared with LA supplementation, did not increase maternal and neonatal DHA concentrations but significantly increased eicosapentaenoic acid (20:5n-3) and docosapentaenoic acid (22:5n-3) concentrations. In addition, ALA+LA supplementation lowered neonatal AA status. No significant differences in pregnancy outcome variables were found. CONCLUSIONS: Maternal ALA+LA supplementation did not promote neonatal DHA+AA status. The lower concentrations of Osbond acid (22:5n-6) in maternal plasma phospholipids and umbilical arterial wall phospholipids with ALA+LA supplementation than with LA supplementation suggest only that functional DHA status improves with ALA+LA supplementation.  相似文献   

11.
The relationship between omega-3 polyunsaturated fatty acids (n-3 PUFA) from seafood sources (eicosapentaenoic acid, EPA; docosahexaenoic acid, DHA) or plant sources (alpha-linolenic acid, ALA) and risk of type 2 diabetes mellitus (DM) remains unclear. We systematically searched multiple literature databases through June 2011 to identify prospective studies examining relations of dietary n-3 PUFA, dietary fish and/or seafood, and circulating n-3 PUFA biomarkers with incidence of DM. Data were independently extracted in duplicate by 2 investigators, including multivariate-adjusted relative risk (RR) estimates and corresponding 95 % CI. Generalized least-squares trend estimation was used to assess dose-response relationships, with pooled summary estimates calculated by both fixed-effect and random-effect models. From 288 identified abstracts, 16 studies met inclusion criteria, including 18 separate cohorts comprising 540,184 individuals and 25,670 cases of incident DM. Consumption of fish and/or seafood was not significantly associated with DM (n = 13 studies; RR per 100 g/d = 1·12, 95 % CI = 0·94, 1·34); nor were consumption of EPA+DHA (n = 16 cohorts; RR per 250 mg/d = 1·04, 95 % CI = 0·97, 1·10) nor circulating levels of EPA+DHA biomarkers (n = 5 cohorts; RR per 3 % of total fatty acids = 0·94, 95 % CI = 0·75, 1·17). Both dietary ALA (n = 7 studies; RR per 0·5 g/d = 0·93, 95 % CI = 0·83, 1·04) and circulating ALA biomarker levels (n = 6 studies; RR per 0·1 % of total fatty acid = 0·90, 95 % CI = 0·80, 1·00, P = 0·06) were associated with non-significant trend towards lower risk of DM. Substantial heterogeneity (I2~80 %) was observed among studies of fish/seafood or EPA+DHA and DM; moderate heterogeneity ( < 55 %) was seen for dietary and biomarker ALA and DM. In unadjusted meta-regressions, study location (Asia vs. North America/Europe), mean BMI, and duration of follow-up each modified the association between fish/seafood and EPA+DHA consumption and DM risk (P-interaction ≤ 0·02 each). We had limited statistical power to determine the independent effect of these sources of heterogeneity due to their high collinearity. The overall pooled findings do not support either major harms or benefits of fish/seafood or EPA+DHA on development of DM, and suggest that ALA may be associated with modestly lower risk. Reasons for potential heterogeneity of effects, which could include true biologic heterogeneity, publication bias, or chance, deserve further investigation.  相似文献   

12.
α-Tocopherol is a required, lipid-soluble antioxidant that protects PUFA. We hypothesized that α-tocopherol deficiency in zebrafish compromises PUFA status. Zebrafish were fed for 1 y either an α-tocopherol-sufficient (E+; 500 mg α-tocopherol/kg) or -deficient (E-; 1.1 mg α-tocopherol/kg) diet containing α-linolenic (ALA) and linoleic (LA) acids but without arachidonic acid (ARA), EPA, or DHA. Vitamin E deficiency in zebrafish decreased by ~20% (n-6) (P < 0.05) and (n-3) (P < 0.05) PUFA and increased the (n-6):(n-3) PUFA ratio (P < 0.05). In E- compared to E+ females, long chain-PUFA status was impaired, as assessed by a ~60% lower DHA:ALA ratio (P < 0.05) and a ~50% lower ARA:LA ratio (P < 0.05). fads2 (P < 0.05) and elovl2 (P < 0.05) mRNA expression was doubled in E- compared to E+ fish. Thus, inadequate vitamin E status led to a depletion of PUFA that may be a result of either or both increased lipid peroxidation and an impaired ability to synthesize sufficient PUFA, especially (n-3) PUFA.  相似文献   

13.
Increased dietary consumption of the n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (20 : 5n-3; EPA) and docosahexaenoic acid (22 : 6n-6; DHA) is associated with their incorporation into circulating phospholipid and increased production of lipid peroxide metabolites. The relationship between peripheral blood mononuclear cell (PBMC) function, n-3 PUFA intake and antioxidant co-supplementation is poorly defined. We therefore investigated tumour necrosis factor (TNF)-alpha and interleukin (IL) 6 production by PBMC and phospholipid fatty acid composition in plasma and erythrocytes of healthy male subjects (n 16) receiving supplemental intakes of 0.3, 1.0 and 2.0 g EPA+DHA/d, as consecutive 4-week courses. All subjects were randomised in a double-blind manner to receive a concurrent antioxidant supplement (200 microg Se, 3 mg Mn, 30 mg D-alpha-tocopheryl succinate, 90 mg ascorbic acid, 450 microg vitamin A (beta-carotene and retinol)) or placebo. There was a positive dose-dependent relationship between dietary n-3 PUFA intake and EPA and DHA incorporation into plasma phosphatidylcholine and erythrocyte phosphatidylethanolamine, with a tendency towards a plateau at higher levels of intake. Production of TNF-alpha and IL-6 by PBMC decreased with increasing n-3 PUFA intake but tended towards a 'U-shaped' dose response. Both responses appeared to be augmented by antioxidant co-supplementation at intermediate supplementary n-3 PUFA intakes. Thus, increased dietary n-3 PUFA consumption resulted in defined but contrasting patterns of modulation of phospholipid fatty acid composition and PBMC function, which were further influenced by antioxidant intake.  相似文献   

14.
Dietary intake of n-3 and n-6 fatty acids and the risk of prostate cancer   总被引:12,自引:0,他引:12  
BACKGROUND: Laboratory studies have shown that n-3 fatty acids inhibit and n-6 fatty acids stimulate prostate tumor growth, but whether the dietary intake of these fatty acids affects prostate cancer risk in humans remains unclear. OBJECTIVE: We prospectively evaluated the association between intakes of alpha-linolenic (ALA; 18:3n-3), eicosapentaenoic (EPA; 20:5n-3), docosahexaenoic (DHA; 22:6n-3), linoleic (LA; 18:2n-6), and arachidonic (AA; 20:4n-6) acids and prostate cancer risk. DESIGN: A cohort of 47 866 US men aged 40-75 y with no cancer history in 1986 was followed for 14 y. RESULTS: During follow-up, 2965 new cases of total prostate cancer were ascertained, 448 of which were advanced prostate cancer. ALA intake was unrelated to the risk of total prostate cancer. In contrast, the multivariate relative risks (RRs) of advanced prostate cancer from comparisons of extreme quintiles of ALA from nonanimal sources and ALA from meat and dairy sources were 2.02 (95% CI: 1.35, 3.03) and 1.53 (0.88, 2.66), respectively. EPA and DHA intakes were related to lower prostate cancer risk. The multivariate RRs of total and advanced prostate cancer from comparisons of extreme quintiles of the combination of EPA and DHA were 0.89 (0.77, 1.04) and 0.74 (0.49, 1.08), respectively. LA and AA intakes were unrelated to the risk of prostate cancer. The multivariate RR of advanced prostate cancer from a comparison of extreme quintiles of the ratio of LA to ALA was 0.62 (0.45, 0.86). CONCLUSIONS: Increased dietary intakes of ALA may increase the risk of advanced prostate cancer. In contrast, EPA and DHA intakes may reduce the risk of total and advanced prostate cancer.  相似文献   

15.
The role of n-3 polyunsaturated fatty acids (PUFAs) in psychiatric illness is a topic of public health importance. This report describes development and biomarker validation of a 21-item, self-report food frequency questionnaire (FFQ) intended for use in psychiatric research to assess intake of α-linolenic acid (18:3n-3 [ALA]), docosahexaenoic acid (22:6n-3 [DHA]), and eicosapentaenoic acid (20:5n-3 [EPA]). In a cross-sectional study conducted from September 2006 to September 2008, sixty-one ethnically diverse adult participants with (n=34) and without (n=27) major depressive disorder completed this n-3 PUFA FFQ and provided a plasma sample. Plasma levels of n-3 PUFAs EPA and DHA, and n-6 PUFA arachidonic acid (20:4n-6 [AA]) were quantified by gas chromatography. Using Spearman's ρ, FFQ-estimated intake correlated with plasma levels of DHA (r=0.50; P<0.0001) and EPA (r=0.38; P=0.002), but not with ALA levels (r=0.22; P=0.086). Participants were classified into quartiles by FFQ-estimated intake and plasma PUFA concentrations. Efficacy of the FFQ to rank individuals into same or adjacent plasma quartiles was 83% for DHA, 78.1% for EPA, and 70.6% for ALA; misclassification into extreme quartiles was 4.9% for DHA, 6.5% for EPA, and 8.2% for ALA. FFQ-estimated EPA intake and plasma EPA were superior to plasma AA levels as predictors of the plasma AA to EPA ratio. This brief FFQ can provide researchers and clinicians with valuable information concerning dietary intake of DHA and EPA.  相似文献   

16.
目的分析我国不同水产品消费地区孕妇脂肪酸摄入状况。方法应用食物频率法分别在淡水产品消费量较高的江苏省句容市、海产品消费量较高的山东省即墨市以及水产品消费量很低的河南省辉县市,对180名22~35岁孕妇进行妊娠中、晚期膳食调查,分析脂肪酸摄入状况。结果句容、即墨、辉县孕妇膳食中饱和脂肪酸(SFA),单不饱和脂肪酸(MUFA),多不饱和脂肪酸(PUFA)的比例分别为1:2.50:1.05、1:1.44:1.31、1:1.48:1.24。n-6PUFA/n-3PUFA分别为5.51、17.62、13.85。辉县孕妇膳食中SFA和n-6PUFA摄入量最高;句容孕妇膳食中MUFA和n-3PUFA摄入量最高;即墨孕妇膳食中二十碳五烯酸(EPA,20:5n-3)和二十二碳六烯酸(DHA,22:6n-3)摄入量最高。句容和辉县孕妇膳食中的花生四烯酸(AA,20:4n-6)摄入量均高于即墨。三地孕妇膳食中EPA和DHA均主要来自水产品;AA主要来自畜禽肉类和蛋类;亚麻酸(ALA,18:3n-3)和亚油酸(LA,18:2n-6)主要来自食用油、畜禽肉类、坚果和主食及糕点类。结论三地区SFA、MUFA、PUFA的摄入比例合理。即墨、辉县孕妇膳食中n-6/n-3PUFA比例偏高;即墨市孕妇膳食中DHA和EPA摄入量高于其它两地,但仍明显低于推荐量。建议增加孕妇膳食n-3PUFA,特别是DHA和EPA的摄入量。  相似文献   

17.
Depressive symptoms may increase the risk of progressing from mild cognitive impairment (MCI) to dementia. Consumption of n-3 PUFA may alleviate both cognitive decline and depression. The aim of the present study was to investigate the benefits of supplementing a diet with n-3 PUFA, DHA and EPA, for depressive symptoms, quality of life (QOL) and cognition in elderly people with MCI. We conducted a 6-month double-blind, randomised controlled trial. A total of fifty people aged >65 years with MCI were allocated to receive a supplement rich in EPA (1·67 g EPA + 0·16 g DHA/d; n 17), DHA (1·55 g DHA + 0·40 g EPA/d; n 18) or the n-6 PUFA linoleic acid (LA; 2·2 g/d; n 15). Treatment allocation was by minimisation based on age, sex and depressive symptoms (Geriatric Depression Scale, GDS). Physiological and cognitive assessments, questionnaires and fatty acid composition of erythrocytes were obtained at baseline and 6 months (completers: n 40; EPA n 13, DHA n 16, LA n 11). Compared with the LA group, GDS scores improved in the EPA (P=0·04) and DHA (P=0·01) groups and verbal fluency (Initial Letter Fluency) in the DHA group (P=0·04). Improved GDS scores were correlated with increased DHA plus EPA (r 0·39, P=0·02). Improved self-reported physical health was associated with increased DHA. There were no treatment effects on other cognitive or QOL parameters. Increased intakes of DHA and EPA benefited mental health in older people with MCI. Increasing n-3 PUFA intakes may reduce depressive symptoms and the risk of progressing to dementia. This needs to be investigated in larger, depressed samples with MCI.  相似文献   

18.
Prostaglandins (PG) have a regulatory influence on ovulation. α-Linolenic acid (ALA) vs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) differently influence PG biosynthesis. Whereas high EPA/DHA reduces PGE2, enhancing ovulation, we hypothesized that ALA would not affect ovulation. Our objective was to determine the effect of low and high ALA intake vs EPA/DHA on ovarian phospholipids, ovulation, and PG synthesis in rats. Following 27 days on diet and ovulation induction, ovaries were isolated and analyzed in 22 pups per diet. Ovarian phospholipid (n-3) polyunsaturated fatty acid (PUFA) incorporation increased with EPA/DHA ingestion. With significant ovarian (n-3) PUFA or EPA (P < .05) enrichment in the high–n-3 PUFA diets, ova release increased. Although high ALA did not enrich total (n-3), it increased ova release and tissue EPA over low ALA or control. Dietary EPA/DHA more effectively reduced ovarian arachidonic acid levels than dietary ALA. Dietary ALA increased PGF and very high intake reduced PGE, whereas EPA/DHA did not alter PGE or PGF. Enhanced ova release with high (n-3) PUFA intake may be induced via multiple mechanisms including reduced ovarian arachidonic acid. Significant ovarian retention of EPA and DHA enhanced ovulation with unchanged total PGE and PGF. Lack of change in PGE may have resulted from reduced PGE2 combined with increased PGE3. When EPA alone was elevated, PGE was reduced, whereas PGF was increased. Results indicate that very high ALA intake enhances ovulation similar to very high EPA/DHA ingestion, an effect potentially mediated via similar patterns of PGF2α and PGE2 synthesis.  相似文献   

19.
Several dietary recommendations have been made for marine n-3 polyunsaturated fatty acid (PUFA) intake; however, the effectiveness of these fatty acids has not been thoroughly examined. The aim of this study was to investigate whether public-aimed dietary recommendations for long-chain n-3 PUFA from oily fish or fish oil supplements are efficient in optimizing their status in red blood cells (RBCs) and platelets of healthy middle-aged subjects with low customary fish consumption. In a randomized, cross-over trial conducted over an 8-week period and separated by a 6-month washout period, 33 participants received an oily fish (salmon), providing 274 mg eicosapentaenoic acid (EPA) + 671 mg docosahexaenoic acid (DHA) per day, or a commercial fish oil supplement, providing 396 mg EPA + 250 mg DHA per day. Blood samples were collected before and after each intervention period, and RBCs and platelets were used for analysis of fatty acids. After 8 weeks, there were significant increases in EPA and DHA content in RBCs and platelets with both salmon and fish oil capsules. The increase in EPA in both RBCs and platelets was higher with capsules, whereas the increase in DHA in both RBCs and platelets was higher with salmon. In spite of the quantitative and qualitative differences between n-3 fatty acid profiles in salmon and the fish oil supplement, the overall incorporation of these fatty acids into RBCs and platelets did not differ in our short-term study (P > .05). The sum of EPA + DHA significantly increased in both compartments following dietary recommendations for oily fish and fish oil supplements intake in middle-aged healthy subjects with low baseline long-chain n-3 PUFA status, although targeted values with optimal cardioprotective effect of more than 8% were not achieved.  相似文献   

20.
The 9th Unilever Nutrition Symposium entitled 'Essential fats for future health', held on 26-27 May 2010, aimed to review the dietary recommendations for essential fatty acids (EFA); discuss the scientific evidence for the roles of EFA in cognition, immune function and cardiovascular health; and to identify opportunities for joint efforts by industry, academia, governmental and non-governmental organizations to effectively improve health behaviour. This paper summarizes the main conclusions of the presentations given at the symposium. Linoleic acid (LA) and α-linolenic acid (ALA) are EFA that cannot by synthesized by the human body. Docosahexaenoic acid (DHA) is considered as conditionally essential because of its limited formation from ALA in the human body and its critical role in early normal retinal and brain development and, jointly with eicosapentaenoic acid (EPA), in prevention of cardiovascular disease (CVD). Some evidence for possible beneficial roles of n-3 fatty acids for immune function and adult cognitive function is emerging. A higher consumption of polyunsaturated fatty acids (PUFA; >10%E), including LA, ALA and at least 250-500 mg per day of EPA+DHA, is recommended for prevention of coronary heart disease (CHD). Two dietary interventions suggest that EFA may affect CVD risk factors in children similarly as in adults. To ensure an adequate EFA intake of the population, including children, public health authorities should develop clear messages based on current science; ensure availability of healthy, palatable foods; and collaborate with scientists, the food industry, schools, hospitals, health-care providers and communities to encourage consumers to make healthy choices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号