首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:探讨SLC25A12基因单核苷酸多态性(SNP)与孤独性障碍的遗传关联性。方法:采用聚合酶链式反应和DNA芯片杂交技术,在124个汉族孤独性障碍患儿核心家系中,检测了SLC25A12基因的2个SNP位点(rs2056202,rs2292813),采用传递不平衡检验(TDT)和单倍型的方法进行关联分析。结果:在124个患儿核心家系中,所测得的2个SNP位点的等位基因和基因型的频数分布均符合Hardy-Weinberg平衡检验(χ^2=0.009,P=0.92;χ^2=0.006,P=0.94)。而且这2个SNP处于一个强连锁不平衡区域(D’=0.842,r2=0.566)。对124个核心家系TDT检验,发现带有杂合子基因的父代优先传递给子代的等位基因的传递率和此传递率的置信区间差异无显著性(P〉0.05);所有样本的2个SNP位点,未发现与孤独性障碍的显著关联。结论:SLC25A12基因可能不是这些汉族家庭儿童孤独性障碍的主要易感基因。  相似文献   

2.
OBJECTIVE: Autism is a neurodevelopmental disorder with childhood onset and a known major genetic component. A recent study identified a highly significant association between autism and a two-single-nucleotide-polymorphism haplotype in the SLC25A12 gene, with a homozygote genotype relative risk between 2.4 and 4.8. The authors' goal was to investigate this association with autism in Irish affected child-parent trios because replication in an independent sample is essential in the validation of such potentially important findings. METHOD: Markers rs2056202 and rs2292813 were genotyped in a total of 158 trios (442 individuals). The Transmission Disequilibrium Test was used to examine these markers for association with autism. RESULTS: In agreement with the recent study, the authors found significant association between autism and the C alleles of both rs2056202 and rs2292813 as well as the two-marker haplotype. CONCLUSIONS: These findings provide replication of the association between autism and SLC25A12.  相似文献   

3.
Genetic variants have been implicated in the development of autism spectrum disorder (ASD). Recent studies suggest that solute carriers (SLCs) may play a role in the etiology of ASD. This purpose of this study was to determine the association between single nucleotide polymorphisms (SNPs) in SLC19A1 and SLC25A12 genes with childhood ASD in a Chinese Han population. A total of 201 autistic children and 200 age- and gender-matched healthy controls were recruited. A TaqMan probe-based real-time PCR approach was used to determine genotypes of SNPs corresponding to rs1023159 and rs1051266 in SLC19A1, and rs2056202 and rs2292813 in SLC25A12. Our results showed that both the T/T genotype of rs1051266 (odds ratio (OR) = 1.85, 95% confidence interval (CI) = 1.06–3.23, P = 0.0301) and the T allele (OR = 1.77, 95% CI = 1.07–2.90, P = 0.0249) of rs2292813 were significantly associated with an increased risk of childhood ASD. In addition, the G-C haplotype of rs1023159-rs1051266 in SCL19A1 (OR = 0.71, 95% CI = 0.51–0.98, P = 0.0389) and C-C haplotype of rs2056202-rs2292813 in SLC25A12 (OR = 0.58, 95% CI = 0.35–0.96, P = 0.0325) were associated with decreased risks of childhood ASD. There was no significant association between genotypes and allele frequencies with the severity of the disease. Our study suggests that these genetic variants of SLC19A1 and SLC25A12 may be associated with risks for childhood ASD.  相似文献   

4.
OBJECTIVE: Autism has a strong, complex genetic component, most likely involving several genes. Multiple genomic screens have shown evidence suggesting linkage to chromosome 2q31-q33, which includes the SLC25A12 gene. Recently, an association between autism risk and two single nucleotide polymorphisms (SNPs) in SLC25A12 was reported. This study aimed to test for association in SLC25A12 in an independent data set of 327 families with autistic offspring. METHOD: The authors analyzed two SNPs that were significant in the previous study group, as well as seven additional SNPs within the gene. Association analyses for individual SNPs as well as haplotypes were performed. RESULTS: There was no evidence of an association between SLC25A12 and autism. CONCLUSIONS: These results suggest that SLC25A12 is not a major contributor to autism risk in these families.  相似文献   

5.

Purpose

Autism is a childhood-onset neurodevelopmental disorder with a strong genetic component in its etiology. Several studies reported that the solute carrier family 25 member A12 (SLC25A12) gene was associated with autism. This study aimed to replicate this finding in a Han Chinese sample from Taiwan using a population-based case–control approach.

Methods

We genotyped two single nucleotide polymorphisms (SNPs, rs2056202 and rs2292813) of the SLC25A12 gene that were previously reported to be associated with autism in 465 patients (402 males and 63 females) and 450 control subjects (227 males and 223 females) from Taiwan. Differences in the genotype, allele, and haplotype frequencies between the two groups were compared.

Results

We found no differences in the allele, genotype, or haplotype frequencies of these two SNPs between patients and controls.

Conclusions

Our data do not support that the SLC25A12 gene is associated with autism in our population. The discrepant results of other studies may come from the clinical heterogeneity of patients recruited for studies, or the genetic heterogeneity of autism in different populations.  相似文献   

6.
Autism is a neurodevelopmental disorder with a strong genetic component, probably involving several genes. Genome screens have provided evidence of linkage to chromosome 2q31-q33, which includes the SLC25A12 gene. Association between autism and single-nucleotide polymorphisms in SLC25A12 has been reported in various studies. SLC25A12 encodes the mitochondrial aspartate/glutamate carrier functionally important in neurons with high-metabolic activity. Neuropathological findings and functional abnormalities in autism have been reported for Brodmann's area (BA) 46 and the cerebellum. We found that SLC25A12 was expressed more strongly in the post-mortem brain tissues of autistic subjects than in those of controls, in the BA46 prefrontal cortex but not in cerebellar granule cells. SLC25A12 expression was not modified in brain subregions of bipolar and schizophrenic patients. SLC25A12 was expressed in developing human neuronal tissues, including neocortical regions containing excitatory neurons and neocortical progenitors and the ganglionic eminences that generate neocortical inhibitory interneurons. At mid-gestation, when gyri and sulci start to develop, SLC25A12 molecular gradients were identified in the lateral prefrontal and ventral temporal cortex. These fetal structures generate regions with abnormal activity in autism, including the dorsolateral prefrontal cortex (BA46), the pars opercularis of the inferior frontal cortex and the fusiform gyrus. SLC25A12 overexpression or silencing in mouse embryonic cortical neurons also modified dendrite length and the mobility of dendritic mitochondria. Our findings suggest that SLC25A12 overexpression may be involved in the pathophysiology of autism, modifying neuronal networks in specific subregions, such as the dorsolateral prefrontal cortex and fusiform gyrus, at both pre- and postnatal stages.  相似文献   

7.
8.
Autism [MIM 209850] is a neurodevelopmental disorder exhibiting a complex genetic etiology with clinical and locus heterogeneity. Chromosome 15q11-q13 has been proposed to harbor a gene for autism susceptibility based on (1) maternal-specific chromosomal duplications seen in autism and (2) positive evidence for linkage disequilibrium (LD) at 15q markers in chromosomally normal autism families. To investigate and localize a potential susceptibility variant, we developed a dense single nucleotide polymorphism (SNP) map of the maternal expression domain in proximal 15q. We analyzed 29 SNPs spanning the two known imprinted, maternally expressed genes in the interval (UBE3A and ATP10C) and putative imprinting control regions. With a marker coverage of 1/10 kb in coding regions and 1/15 kb in large 5' introns, this map was employed to thoroughly dissect LD in autism families. Two SNPs within ATP10C demonstrated evidence for preferential allelic transmission to affected offspring. The signal detected at these SNPs was stronger in singleton families, and an adjacent SNP demonstrated transmission distortion in this subset. All SNPs showing allelic association lie within islands of sequence homology between human and mouse genomes that may be part of an ancestral haplotype containing a functional susceptibility allele. The region was further explored for recombination hot spots and haplotype blocks to evaluate haplotype transmission. Five haplotype blocks were defined within this region. One haplotype within ATP10C displayed suggestive evidence for preferential transmission. Interpretation of these data will require replication across data sets, evaluation of potential functional effects of associated alleles, and a thorough assessment of haplotype transmission within ATP10C and neighboring genes. Nevertheless, these findings are consistent with the presence of an autism susceptibility locus in 15q11-q13.  相似文献   

9.
Linkage and association of the glutamate receptor 6 gene with autism   总被引:9,自引:0,他引:9  
A genome scan was previously performed and pointed to chromosome 6q21 as a candidate region for autism. This region contains the glutamate receptor 6 (GluR6 or GRIK2) gene, a functional candidate for the syndrome. Glutamate is the principal excitatory neurotransmitter in the brain and is directly involved in cognitive functions such as memory and learning. We used two different approaches, the affected sib-pair (ASP) method and the transmission disequilibrium test (TDT), to investigate the linkage and association between GluR6 and autism. The ASP method, conducted with additional markers on the 51 original families and in eight new sibling pairs, showed a significant excess of allele sharing, generating an elevated multipoint maximum LOD score (ASPEX MLS = 3.28). TDT analysis, performed in the ASP families and in an independent data set of 107 parent-offspring trios, indicated a significant maternal transmission disequilibrium (TDTall P = 0.0004). Furthermore, TDT analysis (with only one affected proband per family) showed significant association between GluR6 and autism (TDT association P = 0.008). In contrast to maternal transmission, paternal transmission of GluR6 alleles was as expected in the absence of linkage, suggesting a maternal effect such as imprinting. Mutation screening was performed in 33 affected individuals, revealing several nucleotide polymorphisms (SNPs), including one amino acid change (M867I) in a highly conserved domain of the intracytoplasmic C-terminal region of the protein. This change is found in 8% of the autistic subjects and in 4% of the control population and seems to be more maternally transmitted than expected to autistic males (P = 0.007). Taken together, these data suggest that GluR6 is in linkage disequilibrium with autism.  相似文献   

10.
Autism is a common neurodevelopmental disorder with a significant genetic component and locus heterogeneity. To date, 12 microsatellite genome screens have been performed using various data sets of sib-pair families (parents and affected children) resulting in numerous regions of potential linkage across the genome. However, no universal region or consistent candidate gene from these regions has emerged. The use of large, extended pedigrees is a recognized powerful approach to identify significant linkage results, as these families potentially contain more potential linkage information than sib-pair families. A genome-wide linkage analysis was performed on 26 extended autism families (65 affected, 184 total individuals). Each family had two to four affected individuals comprised of either avuncular or cousin pairs. For analysis, we used a high-density single-nucleotide polymorphism genotyping assay, the Affymetrix GeneChip Human Mapping 10K array. Two-point analysis gave peak heterogeneity limit of detection (HLOD) of 2.82 at rs2877739 on chromosome 14q. Suggestive linkage evidence (HLOD>2) from a two-point analysis was also found on chromosomes 1q, 2q, 5q, 6p,11q and 12q. Chromosome 12q was the only region showing significant linkage evidence by multipoint analysis with a peak HLOD=3.02 at rs1445442. In addition, this linkage evidence was enhanced significantly in the families with only male affected (multipoint HLOD=4.51), suggesting a significant gender-specific effect in the etiology of autism. Chromosome-wide haplotype analyses on chromosome 12 localized the potential autism gene to a 4 cM region shared among the affected individuals across linked families. This novel linkage peak on chromosome 12q further supports the hypothesis of substantial locus heterogeneity in autism.  相似文献   

11.
We performed a high-density, single nucleotide polymorphism (SNP), genome-wide scan on a six-generation pedigree from Utah with seven affected males, diagnosed with autism spectrum disorder. Using a two-stage linkage design, we first performed a nonparametric analysis on the entire genome using a 10K SNP chip to identify potential regions of interest. To confirm potentially interesting regions, we eliminated SNPs in high linkage disequilibrium (LD) using a principal components analysis (PCA) method and repeated the linkage results. Three regions met genome-wide significance criteria after controlling for LD: 3q13.2-q13.31 (nonparametric linkage (NPL), 5.58), 3q26.31-q27.3 (NPL, 4.85) and 20q11.21-q13.12 (NPL, 5.56). Two regions met suggestive criteria for significance 7p14.1-p11.22 (NPL, 3.18) and 9p24.3 (NPL, 3.44). All five chromosomal regions are consistent with other published findings. Haplotype sharing results showed that five of the affected subjects shared more than a single chromosomal region of interest with other affected subjects. Although no common autism susceptibility genes were found for all seven autism cases, these results suggest that multiple genetic loci within these regions may contribute to the autism phenotype in this family, and further follow-up of these chromosomal regions is warranted.  相似文献   

12.
Autism is a complex neurodevelopmental disorder with high heritability. Despite different approaches worldwide to identify susceptibility loci or genes for autism spectrum disorders (ASDs), no consistent result has been reported. CNS patterning genes have been recognized as candidate genes for autism based on neuroimage and neuropathology evidence. This study investigated four candidate genes (WNT2, EN2, SHANK3, and FOXP2) by a tag SNP approach in a family-based association study. The trio samples include 1164 subjects from 393 families, including 393 probands (aged 9.1 ± 4.0 years; male, 88.6%) diagnosed with autistic disorder (n = 373) or Asperger's disorder (n = 20) according to the DSM-IV diagnostic criteria and confirmed by the Chinese ADI-R interview. Three tag SNPs of EN2 (7q36), 6 SNPs of WNT2 (7q31-33), 5 SNPs of SHANK3 (22q13.3), 3 SNPs of FOXP2 (7q31) were genotyped. TDT analysis was done to test the association of each tag SNP and haplotype. There was no association with autism for 17 tag SNPs of WNT2, EN2, SHANK3, and FOXP2 based on SNP analyses. Haplotype analyses did not reveal significant association except for the 6 tag SNPs of WNT2 gene showing a significant association on one haplotype composed of rs2896218 and rs6950765 (G-G) (p = 0.0095). Other haplotypes composed of rs2896218 and rs6950765 (G-G) were also significantly associated with autism. The present study indicates that SHANK3 may not be a critical gene for the etiology of ASDs in Han Chinese population. Inconsistent findings in EN2 and FOXP2 in the Han Chinese population need further clarification. A haplotype of WNT2 (rs2896218-rs6950765: G-G) is significantly associated with ASDs in our trios samples, this finding warrants further validation by different sample and confirmation by functional study.  相似文献   

13.
Autism (MIM 209850) is a neurodevelopmental disorder characterized by difficulties with verbal and non-verbal communication, impairments in reciprocal social interactions, and displays of stereotypic behaviors, interests and activities. Twin and family studies have indicated a robust role of genetic factors in the development of autism. Neuronal Pentraxin II (NPTX2) is located in chromosome 7q21.3-q22.1, where it is a candidate region for autism. NPTX2 promotes neuritic outgrowth and is suggested to mediate uptake of degraded synaptic material during synapse formation and remodeling. NPTX2 is also associated with the clustering of synaptic AMPA receptors. It was reported that glutamate systems including AMPA receptor was associated to the pathophysiology of autism. Thus, the NPTX2 gene is involved in neuritic outgrowth, synapse remodeling and the aggregation of neurotransmitter receptors at synapses. These functions play an important role in the mechanisms of learning and brain development. In the present study, we tested for the presence of the association of four single nucleotide polymorphisms (SNPs) of NPTX2 and haplotypes consisting of the SNPs with autism, between autistic patients (n=170) and normal controls (n=214) in a Japanese population. No significant difference was observed in the allele, genotype or haplotype frequencies between the patients and controls. Thus, the NPTX2 locus is not likely to play a major role in the development of autism. However, further studies with larger sample size and sequencing of NPTX2 gene are needed to exclude a role of NPTX2 gene in autism.  相似文献   

14.
In the present study we confirm the previously reported high frequency of biochemical markers of mitochondrial dysfunction, namely hyperlactacidemia and increased lactate/pyruvate ratio, in a significant fraction of 210 autistic patients. We further examine the involvement of the mitochondrial aspartate/glutamate carrier gene (SLC25A12) in mitochondrial dysfunction associated with autism. We found no evidence of association of the SLC25A12 gene with lactate and lactate/pyruvate distributions or with autism in 241 nuclear families with one affected individual. We conclude that while mitochondrial dysfunction may be one of the most common medical conditions associated with autism, variation at the SLC25A12 gene does not explain the high frequency of mitochondrial dysfunction markers and is not associated with autism in this sample of autistic patients.  相似文献   

15.
Schumacher J  Cichon S  Rietschel M  Nöthen MM  Propping P 《Der Nervenarzt》2002,73(7):581-92; quiz 593-4
Bipolar affective disorder is a highly heritable condition, as evidenced by twin, family, and adoption studies. However, the mode of inheritance is complex and linkage findings have been difficult to replicate. Despite these limitations, consistent linkage findings have emerged for several chromosomes, notably 3p12-p14, 4p16, 10q25-q26, and 12q23-q24. Three additional areas, 13q32-q33, 18p11-q11, and 22q12-q13, have shown linkage in regions that appear to overlap with linkage findings in schizophrenia. These chromosomal regions might harbour genes that contribute to the development of bipolar affective disorder. Recent candidate gene studies include some positive results for the serotonin transporter gene (5-HTT) on 17q11-q12 and the catechol-O-methyltransferase gene (COMT) on 22q11. New methods are being developed for linkage disequilibrium mapping and candidate gene approaches. One can be optimistic that over the next few years bipolar susceptibility genes will be identified.  相似文献   

16.
Previous reports of individuals with autistic disorder with maternal duplications of 15q11-q13, the Prader-Willi/Angelman syndrome region, suggest this area as a source of candidate genes in autistic disorder. Maternal truncation mutations in UBE3A, which encodes for E6-AP ubiquitin-protein ligase, have been shown to cause Angelman syndrome, which can also result from the absence of maternal chromosomal material from this region. Despite showing no evidence for imprinting in other tissues, this gene was recently discovered to be preferentially maternally expressed in human brain and expressed solely from the murine maternal chromosome in the hippocampus and cerebellar Purkinje cells, regions implicated in the neuropathology of autism. Based on this evidence, the coding region and a putative promoter region were sequenced in ten autistic subjects. Several polymorphisms were detected, but no evidence was found for a functional mutation. Evidence for likely altered regulation of UBE3A expression in maternal 15q11-q13 duplications suggests further investigation of the regulatory regions of this gene in autistic disorder.  相似文献   

17.
18.
Bipolar affective disorder is a severe mood disorder that afflicts approximately 1% of the population worldwide. Twin and adoption studies have indicated that genetic factors contribute to the disorder and while many chromosomal regions have been implicated, no susceptibility genes have been identified. We undertook a combined analysis of 10 cM genome screen data from a single large bipolar affective disorder pedigree, for which we have previously reported linkage to chromosome 13q14 (Badenhop et al, 2001) and 12 pedigrees independently screened using the same 400 microsatellite markers. This 13-pedigree cohort consisted of 231 individuals, including 69 affected members. Two-point LOD score analysis was carried out under heterogeneity for three diagnostic and four genetic models. Non-parametric multipoint analysis was carried out on regions of interest. Two-point heterogeneity LOD scores (HLODs) greater than 1.5 were obtained for 11 markers across the genome, with HLODs greater than 2.0 obtained for four of these markers. The strongest evidence for linkage was at 3q25-26 with a genome-wide maximum score of 2.49 at D3S1279. Six markers across a 50 cM region at 3q25-26 gave HLODs greater than 1.5, with three of these markers producing scores greater than 2.0. Multipoint analysis indicated a 20 cM peak between markers D3S1569 and D3S1614 with a maximum NPL of 2.8 (P= 0.004). Three other chromosomal regions yielded evidence for linkage: 9q31-q33, 13q14 and 19q12-q13. The regions on chromosomes 3q and 13q have previously been implicated in other bipolar and schizophrenia studies. In addition, several individual pedigrees gave LOD scores greater than 1.5 for previously reported bipolar susceptibility loci on chromosomes 18p11, 18q12, 22q11 and 8p22-23.  相似文献   

19.
Bipolar affective disorder is a severe mood disorder that afflicts approximately 1% of the population worldwide. Twin and adoption studies have indicated that genetic factors contribute to the disorder and while many chromosomal regions have been implicated, no susceptibility genes have been identified. We undertook a combined analysis of 10 cM genome screen data from a single large bipolar affective disorder pedigree, for which we have previously reported linkage to chromosome 13q14 (Badenhop et al, 2001) and 12 pedigrees independently screened using the same 400 microsatellite markers. This 13 pedigree cohort consisted of 231 individuals, including 69 affected members. Two-point LOD score analysis was carried out under heterogeneity for three diagnostic and four genetic models. Non-parametric multipoint analysis was carried out on regions of interest. Two-point heterogeneity LOD scores (HLODs) greater than 1.5 were obtained for 11 markers across the genome, with HLODs greater than 2.0 obtained for four of these markers. The strongest evidence for linkage was at 3q25-26 with a genome-wide maximum score of 2.49 at D3S1279. Six markers across a 50 cM region at 3q25-26 gave HLODs greater than 1.5, with three of these markers producing scores greater than 2.0. Multipoint analysis indicated a 20 cM peak between markers D3S1569 and D3S1614 with a maximum NPL of 2.8 (P = 0.004). Three other chromosomal regions yielded evidence for linkage: 9q31-q33, 13q14 and 19q12-q13. The regions on chromosomes 3q and 13q have previously been implicated in other bipolar and schizophrenia studies. In addition, several individual pedigrees gave LOD scores greater than 1.5 for previously reported bipolar susceptibility loci on chromosomes 18p11, 18q12, 22q11 and 8p22-23.  相似文献   

20.
Autism is a neurodevelopmental disorder with high heritability and a likely complex genetic architecture. Much genetic evidence has accumulated in the last 20 years but no gene has been unequivocally identified as containing risk variants for autism. In this article we review the past and present literature on neuro-pathological, genetic linkage, genetic association, and gene expression studies in this disorder. We sought convergent evidence to support particular genes or chromosomal regions that might be likely to contain risk DNA variants. The convergent evidence from these studies supports the current hypotheses that there are multiple genetic loci predisposing to autism, and that genes involved in neurodevelopment are especially important for future genetic studies. Convergent evidence suggests the chromosome regions 7q21.2-q36.2, 16p12.1-p13.3, 6q14.3-q23.2, 2q24.1-q33.1, 17q11.1-q21.2, 1q21-q44 and 3q21.3-q29, are likely to contain risk genes for autism. Taken together with results from neuro-pathological studies, genes involved in brain development located at the above regions should be prioritized for future genetic research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号