首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 196 毫秒
1.
Fabry disease is an X-linked inherited lysosomal disorder with dysfunction of the lysosomal enzyme α-galactosidase A causing accumulation of glycolipids in multiple organs including the nervous system. Pain and somatosensory disturbances are prominent manifestations of this disease. Until recently disease manifestations in female carriers of Fabry disease have been questioned. To explore the frequency of symptoms and the functional and structural involvement of the nervous system in female patients we examined the presence of pain, manifestations of peripheral neuropathy and nerve density in skin biopsies in 19 female patients with Fabry disease and 19 sex- and age-matched controls. Diaries, quantitative sensory testing, neurophysiologic tests and skin biopsies were performed. Daily pain was present in 63% of patients, with a median VAS score of 4.0. Tactile detection threshold and pressure pain threshold were lower and cold detection thresholds increased in patients. Sensory nerve action potential amplitude and maximal sensory conduction velocity were not different, whereas there was a highly significant reduction in intraepidermal nerve fiber density. We found no correlation between pain VAS score, quantitative sensory testing and intraepidermal nerve fiber density. Our study demonstrates that careful evaluation of symptoms in female Fabry patients is important as small fiber disease manifestations are present, which in some cases is only detected by skin biopsy.  相似文献   

2.
3.

OBJECTIVE

Impaired glucose tolerance (IGT) represents one of the earliest stages of glucose dysregulation and is associated with macrovascular disease, retinopathy, and microalbuminuria, but whether IGT causes neuropathy is unclear.

RESEARCH DESIGN AND METHODS

Thirty-seven subjects with IGT and 20 age-matched control subjects underwent a comprehensive evaluation of neuropathy by assessing symptoms, neurological deficits, nerve conduction studies, quantitative sensory testing, heart rate variability deep breathing (HRVdb), skin biopsy, and corneal confocal microscopy (CCM).

RESULTS

Subjects with IGT had a significantly increased neuropathy symptom profile (P < 0.001), McGill pain index (P < 0.001), neuropathy disability score (P = 0.001), vibration perception threshold (P = 0.002), warm threshold (P = 0.006), and cool threshold (P = 0.03), with a reduction in intraepidermal nerve fiber density (P = 0.03), corneal nerve fiber density (P < 0.001), corneal nerve branch density (P = 0.002), and corneal nerve fiber length (P = 0.05). No significant difference was found in sensory and motor nerve amplitude and conduction velocity or HRVdb.

CONCLUSIONS

Subjects with IGT have evidence of neuropathy, particularly small-fiber damage, which can be detected using skin biopsy and CCM.  相似文献   

4.
According to the current definition of neuropathic pain (“pain arising as a direct consequence of a lesion or disease affecting the somatosensory system”), the demonstration of a lesion or disease involving the somatosensory system is mandatory for the diagnosis of definite neuropathic pain. Although several methods are currently available for this aim, none is suitable for every type of disease (or lesion). Neurodiagnostic skin biopsy (NSB) is a relatively new technique for the diagnosis of peripheral nerve lesions. It is an objective method, completely independent from the patient’s complaining, based on immunohistochemical staining techniques that allow measurement of the density of the epidermal nerve fibers, currently considered the free nerve endings of small diameter (A-delta and C) afferent fibers. NSB has the important property of being used to investigate the skin, allowing obtaining a diagnosis of small fiber axonal neuropathy of peripheral nerves supplying every body part covered by skin. This feature appears to be very important, particularly in cases of unilateral nerve lesions, because it allows going beyond the possibilities of neurophysiological tests which are available only for a limited number of peripheral nerves. All these characteristics make NSB a precious instrument for the diagnosis of peripheral unilateral neuropathic pain.  相似文献   

5.
Genome-wide association studies (GWAS) have implicated SCN10A, which encodes a nociceptor-associated voltage-gated sodium channel subunit, as a modulator of cardiac conduction; however, this role has traditionally been ascribed to SCN5A, which is highly expressed in cardiac muscle. SCN10A is believed to affect cardiac conduction either directly through cardiomyocytes or indirectly via intracardiac neurons. In this issue of the JCI, van den Boogaard and colleagues introduce a third possibility: that the SCN10A locus acts as an enhancer of SCN5A gene expression. The authors demonstrate that SCN10A expression is negligible within human and murine hearts, and that a T-box enhancer within the SCN10A locus drives SCN5A expression within cardiomyocytes. This work reasserts SCN5A as the key determinant of cardiac conduction and highlights the importance of deciphering the functionality of coding versus noncoding regions when interpreting GWAS data.  相似文献   

6.
Prurigo nodularis (PN) is characterized by multiple hyperkeratotic nodules, papules and the presence of intensive pruritus. This leads to an impaired quality of life and high burden due not only to the severe itch but also the chronic, skin lesions and lack of treatment options. The pathogenesis of PN is not completely clarified. Previous studies have demonstrated just how important the interaction between cutaneous nerve fibres and immune cells is. Besides a reduced intraepidermal nerve fibre density, there are increased dermal levels of neuropeptides such as substance P, calcitonin gene‐related peptide and nerve growth factor, as well as a predominant presence of eosinophils and mast cells. An interaction of these factors results in a complex relationship which will be discussed in this article.  相似文献   

7.
Westermann A  Krumova EK  Pennekamp W  Horch C  Baron R  Maier C 《Pain》2012,153(7):1537-1540
Pain following spinal cord injury has been classified as nociceptive (musculoskeletal, visceral) or neuropathic (above, at, below level). There is no clear relation between the etiology and reported symptoms. Thus, due to different underlying mechanisms, the treatment is often ineffective. We report on a patient with spinal cord injury with neurological level of injury at T8 suffering from bilateral burning and prickling pain in the T9-11 dermatomes bilaterally (at-level pain), as well as diffusely in both legs from below the torso (below-level pain), accompanied by musculoskeletal low back pain. Bilateral comparison of quantitative sensory testing (QST) and skin biopsy revealed completely different findings in the dermatome T9 despite identical at-level pain characteristics. On the right side, QST revealed a normal sensory profile; the intraepidermal nerve fiber density (IENFD) was reduced, but not as severe as the contralateral side. On the left side there was a severe sensory loss with a stronger reduction of the IENDF, similar to the areas below the neurological level. These findings were significantly related to the treatment results. Pregabalin induced unilateral pain relief only in the area with remaining sensory function, whereas the left-sided at-level pain was unchanged. Thus, 2 different underlying mechanisms leading to bilaterally neuropathic pain with identical symptoms and with different treatment success were demonstrated in a single patient. The at-level pain in areas with remaining sensory function despite IENFD reduction could be relieved by pregabalin. Thus, in an individual case, QST may be helpful to better understand pain-generating mechanisms and to initiate successful treatment.  相似文献   

8.

Objectives

SCN5A mutations lead to a wide spectrum of cardiovascular disorders. Due to large cohorts to investigate and the large gene size, mutational screening must be performed using an extremely sensitive and specific scanning method.

Design and methods

High Resolution Melting (HRM) analysis was developed for SCN5A mutation detection using control DNAs and DNAs carrying previously identified gene variants. A cohort of 40 patients was further screened. To evaluate HRM sensitivity, this cohort was also screened using an optimized DHPLC methodology.

Results

All gene variants detected by DHPLC were also readily identified as abnormal by HRM analysis. Mutations were identified for 5 patients. Complete molecular SCN5A investigation was completed two times faster and cheaper than using DHPLC strategy.

Conclusions

HRM analysis represents an inexpensive, highly sensitive and high-throughput method to allow identification of SCN5A gene variants. Identification of more SCN5A mutations could provide new insights into the pathophysiology of SCN5A-linked diseases syndromes.  相似文献   

9.
Obtaining functional data with newly identified rare variants increases certainty that the variant identified is relevant for dilated cardiomyopathy (DCM) causation. Two novel SCN5A rare variants, R222Q and I1835T, segregated with DCM in two families with affected individuals homozygous or heterozygous for the common SCN5A polymorphism H558R. cDNAs with each rare variant were constructed in the common Q1077del or Q1077 splice variant backgrounds with and without the H558R polymorphism and expressed in HEK293 cells. Sodium current (I Na) was studied for each using whole‐cell voltage clamp. In the Q1077del background I Na densities of R222Q and I1835T were not different from wild type, but the combined variants of R222Q/H558R, I1835T/H558R caused approximately 35% and approximately 30% reduction, respectively, and each showed slower recovery from inactivation. In the Q1077del background R222Q and R222Q/H558R also exhibited a significant negative shift in both activation and inactivation while I1835T/H558R showed a significant negative shift in inactivation that tended to decrease window current. In contrast, expression in the Q1077 background showed no changes in peak I Na densities, decay, or recovery from inactivation for R222Q/H558R and I1835T/H558R. We conclude that the biophysical findings, dependent upon common SCN5A variants, provide further evidence that these novel SCN5A rare variants are relevant for DCM. Clin Trans Sci 2010; Volume 3: 287–294  相似文献   

10.
OBJECTIVEImpaired glucose tolerance (IGT) through to type 2 diabetes is thought to confer a continuum of risk for neuropathy. Identification of subjects at high risk of developing type 2 diabetes and, hence, worsening neuropathy would allow identification and risk stratification for more aggressive management.RESULTSTen subjects who developed type 2 diabetes had a significantly lower CNFD (P = 0.003), CNBD (P = 0.04), and CNFL (P = 0.04) compared with control subjects at baseline and a further reduction in CNFL (P = 0.006), intraepidermal nerve fiber density (IENFD) (P = 0.02), and mean dendritic length (MDL) (P = 0.02) over 3 years. Fifteen subjects who remained IGT and 5 subjects who returned to normal glucose tolerance had no significant baseline abnormality on CCM or IENFD but had a lower MDL (P < 0.0001) compared with control subjects. The IGT subjects showed a significant decrease in IENFD (P = 0.02) but no change in MDL or CCM over 3 years. Those who returned to NGT showed an increase in CNFD (P = 0.05), CNBD (P = 0.04), and CNFL (P = 0.05), but a decrease in IENFD (P = 0.02), over 3 years.CONCLUSIONSCCM and skin biopsy detect a small-fiber neuropathy in subjects with IGT who develop type 2 diabetes and also show a dynamic worsening or improvement in corneal and intraepidermal nerve morphology in relation to change in glucose tolerance status.  相似文献   

11.
SCN5A encodes the α subunit of the major cardiac sodium channel NaV1.5. Mutations in SCN5A are associated with conduction disease and ventricular fibrillation (VF); however, the mechanisms that link loss of sodium channel function to arrhythmic instability remain unresolved. Here, we generated a large-animal model of a human cardiac sodium channelopathy in pigs, which have cardiac structure and function similar to humans, to better define the arrhythmic substrate. We introduced a nonsense mutation originally identified in a child with Brugada syndrome into the orthologous position (E558X) in the pig SCN5A gene. SCN5AE558X/+ pigs exhibited conduction abnormalities in the absence of cardiac structural defects. Sudden cardiac death was not observed in young pigs; however, Langendorff-perfused SCN5AE558X/+ hearts had an increased propensity for pacing-induced or spontaneous VF initiated by short-coupled ventricular premature beats. Optical mapping during VF showed that activity often began as an organized focal source or broad wavefront on the right ventricular (RV) free wall. Together, the results from this study demonstrate that the SCN5AE558X/+ pig model accurately phenocopies many aspects of human cardiac sodium channelopathy, including conduction slowing and increased susceptibility to ventricular arrhythmias.  相似文献   

12.
We present clinical, neuropathological, and molecular genetic findings of a family with a new pain phenotype of the sodium channel gene SCN9A polymorphism R1150W. A 46-year-old woman presented with a 5-year history of episodic temperature- and exercise-dependent burning pain of the feet and lower legs associated with numbness of the distal upper and lower limbs. Her monozygotic twin sister and their mother and her twin presented similar symptoms. Clinical evaluation was normal except for a mild distal sensory deficit in fingers and feet. Electrophysiological testing was unremarkable, as were serum and cerebrospinal fluid laboratory findings. Skin biopsies of the distal lower limbs revealed an epidermal nerve fiber density at the lower limit of normal. Myelinated dermal nerve fibers showed elongated nodes of Ranvier, but normal distribution of nodal and paranodal proteins. Genetic testing for ion channel-associated pain disorders revealed an amino acid R1150W substitution of the Nav1.7 sodium channel. The combination of a Nav1.7 polymorphism with dysmyelinating features in small-caliber peripheral nerves has not been described before and may suggest an explanation for the clinical syndrome in our patients. Treatment with the sodium channel blocker lamotrigine provided some relief, consistent with a role of sodium channel dysfunction in the pain syndrome of this family.  相似文献   

13.
HIV associated sensory neuropathy is a common neurological disorder with reported prevalence of 53%. When only small fibers are involved, the diagnosis of neuropathy remains difficult since standard nerve conduction studies generally are unremarkable. We assessed a method to identify small-fiber neuropathy using electrically evoked pain-related potentials and correlated the electrophysiological results with intraepidermal nerve fiber density in patients with HIV associated sensory neuropathy. Nineteen HIV positive patients were investigated for clinically diagnosed peripheral neuropathy with Neuropathy Symptoms Score (NSS)  3 and Neuropathy Disability Score (NDS)  5. Nine healthy HIV negative control subjects were recruited. We performed standard nerve conduction testing, electrically evoked pain-related potentials and skin biopsy in all participants. Pain-related evoked potentials revealed abnormalities in all HIV positive neuropathy patients, while standard nerve conduction testing was abnormal in eight patients only. Pain-related evoked potential latencies and amplitudes strongly correlated with intraepidermal nerve fiber density. The method of pain-related evoked potential conduction appears to be a sensitive, fast, non-invasive technique for the detection of small-fiber neuropathy and may prove to become a valuable diagnostic asset.  相似文献   

14.
Dysesthesias of the lower limbs are a common complaint of patients and may be indicative of peripheral neuropathy. Here we investigated the prevalence and type of neuropathy in patients presenting with this complaint and compared the diagnostic performance of different diagnostic modalities. Forty‐two patients were recruited prospectively and underwent a clinical examination, nerve conduction studies, quantitative sensory testing (QST), and skin biopsy at the dorsum of the foot. All patients had a correlate for their dysesthesias in at least one diagnostic modality. Most patients (>90%) had signs of small fiber loss or dysfunction. In about half of all patients large fibers were also affected. Nerve conduction studies were abnormal in 23/42 patients (54.8%). Cold or warm detection thresholds in QST were abnormal in 15/42 (35.7%) patients. Decreased intraepidermal nerve fiber density (IENFD) was found in 37 patients (88.1%), including some patients with normal QST findings. Nearly all patients with pathological QST had a reduced IENFD, indicating a high positive predictive value (93%) of QST in screening for reduced IENFD as correlate for neuropathy. Therefore in all patients with lower limb dysesthesias of unknown origin, the non‐invasive methods of NCS and QST should be used and potentially complemented by skin biopsy.  相似文献   

15.
Chronic ischemic pain in peripheral arterial disease (PAD) is a leading cause of pain in the lower extremities. A neuropathic component of chronic ischemic pain has been shown independent of coexisting diabetes. We aimed to identify a morphological correlate potentially associated with pain and sensory deficits in PAD. Forty patients with symptomatic PAD (Fontaine stages II-IV), 20 with intermittent claudication (CI), and 20 with critical limb ischemia (CLI) were enrolled; 12 volunteers served as healthy controls. All patients were examined using pain scales and questionnaires. All study participants underwent quantitative sensory testing (QST) at the distal calf and skin punch biopsy at the distal leg for determination of intraepidermal nerve fiber density (IENFD). Additionally, S100beta serum levels were measured as a potential marker for ischemic nerve damage. Neuropathic pain questionnaires revealed slightly higher scores and more pronounced pain-induced disability in CLI patients compared to CI patients. QST showed elevated thermal and mechanical detection pain thresholds as well as dynamic mechanical allodynia, particularly in patients with advanced disease. IENFD was reduced in PAD compared to controls (P < 0.05), more pronounced in the CLI subgroup (CLI: 1.3 ± 0.5 fibers/mm, CI: 2.9 ± 0.5 fibers/mm, controls: 5.3 ± 0.6 fibers/mm). In particular, increased mechanical and heat pain thresholds negatively correlated with lower IENFD. Mean S100beta levels were in the normal range but were higher in advanced disease. Patients with chronic ischemic pain had a reduced IENFD associated with impaired sensory functions. These findings support the concept of a neuropathic component in ischemic pain.  相似文献   

16.
De novo variation in SCN2A can give rise to severe childhood disorders. Biophysical gain of function in SCN2A is seen in some patients with early seizure onset developmental and epileptic encephalopathy (DEE). In these cases, targeted reduction in SCN2A expression could substantially improve clinical outcomes. We tested this theory by central administration of a gapmer antisense oligonucleotide (ASO) targeting Scn2a mRNA in a mouse model of Scn2a early seizure onset DEE (Q/+ mice). Untreated Q/+ mice presented with spontaneous seizures at P1 and did not survive beyond P30. Administration of the ASO to Q/+ mice reduced spontaneous seizures and significantly extended life span. Across a range of behavioral tests, Scn2a ASO-treated Q/+ mice were largely indistinguishable from WT mice, suggesting treatment is well tolerated. A human SCN2A gapmer ASO could likewise impact the lives of patients with SCN2A gain-of-function DEE.  相似文献   

17.
Routine nerve conduction studies are normal in patients with small fiber neuropathy (SFN), and a definitive diagnosis is based on skin biopsy revealing reduced intra-epidermal nerve fiber density (IENFD). In large fiber polyneuropathy, ultrasound (US) parameters indicate enlargement in cross-sectional area (CSA). This study was aimed at determining if similar changes in large fibers on US are apparent in patients with SFN. Twenty-five patients with SFN diagnosed by reduced IENFD and 25 age- and body mass index (BMI)-matched healthy controls underwent US studies of sural and superficial peroneal sensory nerves. The mean CSA of the sural nerve in SFN patients was 3.2 ± 0.8 mm2, and in controls, 2.7 ± 0.6 mm2 (p < 0.0070), and this was independent of sex. There was no difference in the thickness-to-width ratio or echogenicity of the nerves. US of the sural nerve in patients diagnosed with small fiber neuropathy reveals an enlarged cross-sectional area similar to that in large fiber polyneuropathy.  相似文献   

18.
Pain sensitivity is characterized by interindividual variability, determined by factors including genetic variation of nociceptive receptors and pathways. The sigma-1 receptor (SIGMAR1) is involved in pain modulation especially under pre-sensitized conditions. However, the contribution of SIGMAR1 genetic variants to pain generation and sensitivity is unknown yet. This study aimed to identify effects of 5 SIGMAR1 variants on the somatosensory phenotype of neuropathic pain patients (n?=?228) characterized by standardized quantitative sensory testing. Principal component analysis revealed that the SIGMAR1 variants ?297G>T (rs10814130) and 5A>C (rs1800866) significantly lowered thermal detection and heat/pressure nociception in particular in neuropathic pain patients with mainly preserved somatosensory function. Compared to wild-type, the variant allele ?297T was associated with loss of warm detection (P?=?.049), lower heat-pain sensitivity (P?=?.027) and wind-up ratio (P?=?.023) as well as increased paradoxical heat sensation (P?=?.020). Likewise for 5A>C the strongest genotype-associated differences observed were reduced peripheral (less heat hyperalgesia; P?=?.026) and central sensitization (lower mechanical pain sensitivity; P?=?.026) in variant compared to wild-type carriers. This study indicates lack of association of SIGMAR1 ?297G>T and 5A>C genetic variants to susceptibility to develop chronic pain, but significant modulation of somatosensory function in neuropathic pain patients.

Perspective

This article presents the first study indicating a modulation of somatosensory function in neuropathic pain patients by selected genetic variants in SIGMAR1. As our findings could contribute to the explanation of interindividual differences in drug response they might help to improve the treatment of neuropathic pain.  相似文献   

19.
Background/aim: This is the first investigation of the central processing of itch in the brain in 8 subjects with atopic dermatitis (AD) in comparison to 6 healthy controls (HC), comparing histamine‐induced itch related activations in the frontal, prefrontal, parietal, cingulate cortex, thalamus, basal ganglia and cerebellum. Methods: We employed 1% histamine‐dihydrochlorid‐iontophoresis of the left hand, recorded H2 15O‐PET‐scans and perception of itch intensity on a numeric rating scale. Results: There was no significant difference in perceived itch intensity between AD and HC. Significant increase in rCBF was found in HC in the contralateral somatosensory and motor cortex, midcingulate gyrus, and ipsilateral prefrontal cortex; in AD: in the contralateral thalamus, somatosensory, motor and prefrontal cortex and cerebellum, in the ipsilateral precentral, prefrontal, orbitofrontal cortex, insula, pallidum and cerebellum. More brain sites were activated in AD than in HC. Activation in AD was significantly higher in the contralateral thalamus, ipsilateral caudate and pallidum. Conclusions: We interpret our findings as possible central correlates of changes in the motor system in subjects with chronic itch, with activation of the basal ganglia possibly correlating to the vicious itch‐scratch‐circle in subjects with chronic itching skin diseases. However, further neuroimaging studies in healthy subjects and also in different skin diseases are needed to understand the complex mechanisms of the processing of itch.  相似文献   

20.
Mutations in SCN5A, which encodes the α subunit of the major cardiac sodium channel NaV1.5, are associated with multiple cardiac arrhythmias, including Brugada syndrome. It is not clear why mutations in SCN5A result in such a variety of cardiac phenotypes, and introduction of analogous Scn5a mutations into small-animal models has not recapitulated alterations in cardiac physiology associated with human disease. In this issue of the JCI, Park and colleagues present a pig model of cardiac sodium channelopathy that was generated by introducing a human Brugada syndrome–associated SCN5A allele. This large-animal model exhibits many phenotypes seen in patients with SCN5A loss-of-function mutations and has the potential to provide important insight into sodium channelopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号