首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Much effort has been recently directed to identify the transport-modulating agents in order to overcome the P-gp- and MRP1-mediated drug resistance. Contrary to what is observed for P-gp, very few compounds have been shown to reverse multi-drug resistance (MDR) mediated by MRP1. On the other hand, despite of critical role of GSH in transporting the MRP1 substrates, not much is known about GSH interactions with MRP1. In this work, three compounds that were shown to inhibit the MRP1-mediated efflux of daunorubicin (DNR) have been studied. Depending on their nature the selected compounds have different effects, e.g. at 40 microM, verapamil inhibits 50% of DNR efflux whereas GSH efflux is increased about two-fold. PAK-104P has shown the same effect, i.e. the inhibition of the MRP1-mediated efflux of DNR is accompanied by a stimulation of GSH efflux. However, the PAK-104P concentration required to obtain the same effect is about 40 times smaller that in the case of verapamil. MK571 has been shown to inhibit the efflux of both DNR and GSH. Based on these observations and those reported earlier, a working model is proposed.  相似文献   

2.
Increases in the intracellular levels of glutathione (GSH) in cancer cells have been implicated in the development of acquired resistance to platinum antitumor agents. On the other hand, little information is available on the relationships between intracellular GSH levels in non-treated cancer cells and their response to platinum complexes. The present work investigated for possible correlations between concentrations of intracellular GSH/GSSG in 14 human cancer cell lines growing in vitro and the cell growth inhibitory activities of cisplatin, carboplatin, oxaliplatin, and d,l-trans-1,2-diaminocyclohexane-dichloro-platinum(II) (DACH-Pt).No statistically significant correlation between GSH levels and the activities of any of the four Pt-complexes could be found.  相似文献   

3.
Reduced glutathione (GSH) is present in millimolar concentrations in mammalian cells. It is involved in many cellular functions such as detoxification, amino acid transport, production of coenzymes, and the recycling of vitamins E and C. GSH acts as a redox buffer to preserve the reduced intracellular environment. Decreased glutathione levels have been found in numerous diseases such as cancer, viral infections, and immune dysfunctions. Many antioxidant molecules, such as GSH and N-acetylcysteine (NAC), have been demonstrated to inhibit in vitro and in vivo viral replication through different mechanisms of action. Accumulating evidence suggests that intracellular GSH levels in antigen-presenting cells such as macrophages, influence the Th1/Th2 cytokine response pattern, and more precisely, GSH depletion inhibits Th1-associated cytokine production and/or favours Th2 associated responses. It is known that GSH is not transported to most cells and tissues in a free form. Therefore, a number of different approaches have been developed in the last years to circumvent this problem. This review discusses the capacity of some new molecules with potent pro-GSH effects either to exert significant antiviral activity or to augment GSH intracellular content in macrophages to generate and maintain the appropriate Th1/Th2 balance. The observations reported herein show that pro-GSH molecules represent new therapeutic agents to treat antiviral infections and Th2-mediated diseases such as allergic disorders and AIDS.  相似文献   

4.
Previous studies have demonstrated that treating cultured cells with cisplatin (CDDP) up-regulated the expression of glutathione (GSH) and its de novo rate-limiting enzyme glutamate-cysteine ligase (GCL), which consists of a catalytic (GCLC) and a modifier (GCLM) subunit. It has also been shown that many CDDP-resistant cell lines exhibit high levels of GCLC/GCLM and GSH. Because the GSH system is the major intracellular regulator of redox conditions that serve as an important detoxification cytoprotector, these results have been taken into consideration that elevated levels of GCL/GSH are responsible for the CDDP resistance. In contrast to this context, we demonstrated here that overexpression of GSH by transfection with an expression plasmid containing the GCLC cDNA conferred sensitization to CDDP through up-regulation of human copper transporter (hCtr) 1, which is also a transporter for CDDP. Depleting GSH levels in these transfected cells reversed CDDP sensitivity with concomitant reduction of hCtr1 expression. Although rates of copper transport were also up-regulated in the transfected cells, these cells exhibited biochemical signature of copper deficiency, suggesting that GSH functions as an intracellular copper-chelator and that overexpression of GSH can alter copper metabolism. More importantly, our results reveal a new role of GSH in the regulation of CDDP sensitivity. Overproduction of GSH depletes the bioavailable copper pool, leading to up-regulation of hCtr1 and sensitization of CDDP transport and cell killing. These findings also have important implications in that modulation of the intracellular copper pool may be a novel strategy for improving chemotherapeutic efficacy of platinum-based antitumor agents.  相似文献   

5.
Prolonged ingestion of Yellow Starthistle (Centaurea solstitialis) and Russian Knapweed (Centaurea repens) by horses has been shown to result in a fatal neurodegenerative disorder called equine nigropallidal encephalomalacia (ENE). Bioassay-guided fractionation of extracts from Centaurea species using the PC12 cell line have led to the identification of one of several putative agents, which may contribute to ENE, namely, the sesquiterpene lactone (SQL) repin (1), previously linked to ENE due to its abundance in C. repens. To characterize the molecular basis of repin-induced neurotoxicity, the present study was designed to identify reactive functional groups that may contribute overall to its toxicity. The reaction of repin (1) with glutathione (GSH) led to the exclusive addition of GSH to the alpha-methylenebutyrolactone affording a GSH conjugate (3b) that lacked toxicity in the PC12 cell assay, while selective reduction of the alpha-methylenebutyrolactone double bond of 1 also resulted in an analogue (2) that was devoid of toxicity relative to the parent compound. Unlike repin, analogue 2 failed to decrease cellular dopamine levels in PC12 cells, further substantiating the requirement of the alpha-methylenebutyrolactone group. Results from this study are suggestive that GSH depletion by the SQL repin may be a primary event in the etiology of ENE, increasing the susceptibility to oxidative damage.  相似文献   

6.
Rooney JP 《Toxicology》2007,234(3):145-156
Mercury has been a known as a toxic substance for centuries. Whilst the clinical features of acute mercury poisoning have been well described, chronic low dose exposure to mercury remains poorly characterised and its potential role in various chronic disease states remains controversial. Low molecular weight thiols, i.e. sulfhydryl containing molecules such as cysteine, are emerging as important factors in the transport and distribution of mercury throughout the body due to the phenomenon of "Molecular Mimicry" and its role in the molecular transport of mercury. Chelation agents such as the dithiols sodium 2,3-dimercaptopropanesulfate (DMPS) and meso-2,3-dimercaptosuccinic acid (DMSA) are the treatments of choice for mercury toxicity. Alpha-lipoic acid (ALA), a disulfide, and its metabolite dihydrolipoic acid (DHLA), a dithiol, have also been shown to have chelation properties when used in an appropriate manner. Whilst N-acetyl-cysteine (NAC) and glutathione (GSH) have been recommended in the treatment of mercury toxicity in the past, an examination of available evidence suggests these agents may in fact be counterproductive. Zinc and selenium have also been shown to exert protective effects against mercury toxicity, most likely mediated by induction of the metal binding proteins metallothionein and selenoprotein-P. Evidence suggests however that the co-administration of selenium and dithiol chelation agents during treatment may also be counter-productive. Finally, the issue of diagnostic testing for chronic, historical or low dose mercury poisoning is considered including an analysis of the influence of ligand interactions and nutritional factors upon the accuracy of "chelation challenge" tests.  相似文献   

7.
The development of acquired resistance to alkylating agents frequently limits the effectiveness of chemotherapy in the treatment of ovarian cancer. While the resistance to alkylating agents is multifactorial, the association of drug resistance with elevations in glutathione (GSH) is of potential clinical relevance since there exist pharmacologic means to lower intracellular GSH levels. We have used in vitro and in vivo models of human ovarian cancer to demonstrate that selective inhibition of GSH synthesis with L-buthionine-S,R-sulfoximine (L-BSO) leads to a lowering of GSH levels and an increase in cytotoxicity of the alkylating agent melphalan. In the human ovarian cancer cell line NIH:OVCAR-3, derived from a patient clinically refractory to alkylating agents, L-BSO resulted in a 3.6-fold enhancement of melphalan cytotoxicity. This cell line was also adapted for intraperitoneal growth in athymic nude mice. In this in vivo model, in which the mice die of massive ascites and intraabdominal carcinomatosis, L-BSO given orally in drinking water for 5 days decreased GSH levels in the tumor cells by 96% compared to a 79 and 86% reduction in GSH levels in the bone marrow and gastrointestinal mucosa respectively. Lowering of GSH levels with BSO was not accompanied by an increase in lethality for melphalan in non-tumored nude mice. However, in tumor-bearing nude mice, a single melphalan (5 mg/kg) treatment following GSH depletion with L-BSO was markedly superior to treatment with melphalan alone, producing a 72% increase in median survival time. Furthermore, L-BSO treatment of human bone marrow cells prior to melphalan exposure had little effect on melphalan toxicity as assessed in a CFUc-GM assay. These results suggest that treatment with the GSH synthesis inhibitor BSO may preferentially enhance the cytotoxic effects of alkylating agents against human ovarian cancer and overcome acquired resistance.  相似文献   

8.
The over-expression of ABCC1 transmembrane protein has been shown to cause multidrug resistance in tumor cell lines. ABCC1 is a member of the ABC transmembrane proteins that function as efflux pumps with diverse substrate specificity. Several endogenous cell metabolites, including the leukotriene C4 (LTC(4)) and glutathione (GSH) are substrates for ABCC1 protein. ABCC1 expression in certain tumor cells was demonstrated to confer hypersensitivity to glutathione modulating agents. In this report we have investigated the mechanism of collateral sensitivity seen in tumor cells over-expressing ABCC1 protein. The results of this study show that ABCC1 expression in tumor cells correlates with their hypersensitivity to various glutathione modulating agents, as demonstrated in H69AR-drug selected and HeLa/ABCC1-transfectant cells. This effect was triggered either through inhibition of GSH synthesis with BSO or by increasing ABCC1-mediated GSH transport with verapamil or apigenin. In addition, our results show that the hypersensitivity of ABCC1-expressing cells to BSO, verapamil or apigenin was preceded by an increase in reactive oxygen species (or ROS). A decrease in GSH level is also observed prior the increase in ROS. In addition, we show that hypersensitivity to the BSO, verapamil or apigenin leads to tumor cell death by apoptosis. Together, the results of this study demonstrate that ABCC1 potentiates oxidative stress in tumor cells through reductions in cellular GSH levels.  相似文献   

9.
Halogenated organic compounds, such as 1-bromobutane (1-BB), have been used as cleaning agents, agents for chemical syntheses, or extraction solvents. In the present study, hepatotoxic effects of 1-BB and its conjugation with glutathione (GSH) were investigated in female BALB/c mice. Animals were treated orally with 1-BB at 375, 750 and 1500 mg/kg in corn oil once for dose–response study or treated orally with 1-BB at 1500 mg/kg for 6, 12, 24 and 48 h for time–course study. Three kinds of GSH conjugates, including S-butyl GSH, S-butyl cysteine, and (hydroxybutyl)mercapturic acid, were identified in livers by liquid chromatography–electrospray ionization-tandem mass spectrometry. When the production of S-butyl GSH from 1-BB was investigated in the liver, the conjugate was detected maximally 6 h after treatment. Hepatic GSH levels were almost depleted by single treatment with 1-BB within 6 h. Treatment of mice with 1-BB increased in serum activities of alanine aminotransferase and aspartate aminotransferase dose-dependently. Hepatic contents of thiobarbituric acid reactive substances were significantly increased by 1-BB at 12 and 24 h after treatment. Our present results suggested that 1-BB could cause hepatotoxicity as well as depletion of GSH content, due to the formation of GSH conjugates with 1-BB in mice.  相似文献   

10.
Chemotherapy is central to the current treatment modality for primary human brain tumors, but despite high-dose and intensive treatment regimens there has been little improvement in patient outcome. The development of tumor chemoresistance has been proposed as a major contributor to this lack of response. While there have been some improvements in our understanding of the molecular mechanisms underlying brain tumor drug resistance over the past decade, the contribution of glutathione (GSH) and the GSH-related enzymes to drug resistance in brain tumors have been largely overlooked. GSH constitutes a major antioxidant defense system in the brain and together with the GSH-related enzymes plays an important role in protecting cells against free radical damage and dictating tumor cell response to adjuvant cancer therapies, including irradiation and chemotherapy. Glutamate cysteine ligase (GCL), glutathione synthetase (GS), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferases (GST), and GSH complex export transporters (GS-X pumps) are major components of the GSH-dependent enzyme system that function in a dynamic cascade to maintain redox homeostasis. In many tumors, the GSH system is often dysregulated, resulting in a more drug resistant phenotype. This is commonly associated with GST-mediated GSH conjugation of various anticancer agents leading to the formation of less toxic GSH-drug complexes, which can be readily exported from the cell. Advances in our understanding of the mechanisms of drug resistance and patient selection based on biomarker profiles will be crucial to adapt therapeutic strategies and improve outcomes for patients with primary malignant brain tumors.  相似文献   

11.
Helanalin, a sesquiterpene lactone antineoplastic agent, is toxic at therapeutic doses in murine tumors. The toxicity has been assumed to be correlated with the binding of the drug to cellular thiol groups. Studies were undertaken to increase the intracellular level of GSH in the liver, kidney and other tissues to eliminate the toxicity of helenalin in vivo. Combination of helenalin 8 mg/kg/day i.p.) with L-cysteine (100 mg/kg/day), beta-mercaptoethanolamine (20 mg/kg/day), 18-beta-glycyrrhetinic acid (15 mg/kg/day), or 4,4'-diaminodiphenylsulfone (10 mg/kg/day) afforded improvement in survival of mice bearing P-388 lymphocytic leukemia. However, other thiol-elevating agents, anti-oxidants, intracellular buffering agents, and cardiac treatment drugs were not effective. Hydrocortisone, Cortef, treatment with helenalin afforded improvement in life expectancy. Reduced glutathione (GSH) and non-protein sulfhydryl (NPS) levels were not reduced in the liver, kidney, or circulating red blood cells (rbc) by helenalin treatment. After three days treatment of mice with helenalin, GSH levels were reduced and NPS levels elevated in P-388 tumor cells. Administration of L-cysteine, beta-mercaptoethanolamine, 4,4'-diaminodiphenylsulfone, or 18-beta-glycyrrhetinic acid alone caused no alteration in liver GSH but elevated NPS levels; P388 cell GSH and NPS levels were lowered. Combination of any of these agents, after three days, with helenalin afforded increases in P-388 cell GSH and NPS levels. This data would suggest that helenalin toxicity is not related to the lowering of GSH or NPS levels in critical tissues of mice.  相似文献   

12.
Ionizing radiation and photosensitization are highly damaging events and they generate oxygen-derived free radicals as well as excited species. However, the types as well as extent of reactive oxygen species (ROS) differ. They have been linked to various pathological conditions. Hence natural compounds capable of preventing oxidative damage induced by these agents may have potential applications. Chlorophyllin (CHL), the water-soluble analogue of chlorophyll, has been examined for its ability to inhibit membrane damage induced by y-radiation and photosensitization involving methylene blue plus visible light. Using rat liver mitochondria as model systems the mechanisms of damage induced by these two agents as well as its possible prevention by CHL have been examined. The parameters used were lipid peroxidation as assessed by formation of thiobarbituric acid reactive substances (TBARS) and 4-hydroxynonenal (4-HNE), protein oxidation besides glutathione (GSH) and superoxide dismutase (SOD). Peroxidation increases with radiation dose, in the range of 75-600 Gy. A similar observation also was observed with photosensitization, as a function of time. CHL, at a concentration of 10 microM offered a high degree of protection against radiation and photosensitization as indicated by decreased peroxidation, protein oxidation as well as the restoration of GSH and SOD. When compared with the established antioxidants, ascorbic acid and GSH, CHL offered a much higher degree of protection. Pulse radiolysis studies show that this compound has a relatively high rate constant with hydroxyl radical (*OH), a crucial species generated during y-radiation. Hence the studies show that CHL is a potent antioxidant in mitochondrial membranes.  相似文献   

13.
The kinetics of the reactions of glutathione (GSH) with 4-hydroperoxycyclophosphamide (4OOH-CP) and acrolein, a metabolite of 4OOH-CP, were investigated in a cell-free medium (pH approximately 7.5) and peripheral blood mononuclear cells. The ability of the thiol drugs, sodium 2-mercaptoethane sulfonate (mesna) and S-2-(3-aminopropylamino)ethanethiol (WR-1065), to affect the reactions of cellular GSH with the alkyalting agents was also studied. The amount of unreacted thiols in the various reactions was determined by derivatization with monobromobimane, followed by separation of fluorescent-labeled thioether adducts using high-pressure liquid chromatography. The second-order rate constants (k(2)) for reactions of GSH, mesna, and WR-1065 with 4OOH-CP in solution were 38 +/- 5, 25 +/- 5, and 880 +/- 50 M(-1) s(-1), respectively. The corresponding k(2) for reactions of GSH, mesna, and WR-1065 with acrolein were 490 +/- 100, 700 +/- 150, and >2000 M(-1) s(-1), respectively. The apparent rate constants for reactions of cellular GSH with acrolein and 4OOH-CP were smaller than those obtained in solution. Assuming that the k(2) is the same inside and outside cells, we estimate the first-order rate constant (k(1)) for transfer of 4OOH-CP and acrolein across the cell membrane as approximately 0.01 and approximately 0.04 s(-1), respectively. WR-1065 was more effective than mesna in blocking depletion of cellular GSH (because it passes into the cell more quickly and has higher reaction rates with the alkylators than the latter compound). When WR-1065 and mesna were used together, the protection against cellular depletion of GSH was additive. Our results are relevant to the administration of thiol drugs with high-dose alkylating agents.  相似文献   

14.
The role of glutathione status in gastric mucosal cytoprotection has been a subject of controversy. Cysteamine, an exogenous sulfhydryl agent and diethyl maleate (DEM), an endogenous glutathione (GSH) depletor both appear to protect rats from ethanol-induced gastric lesions. In this study, we used various agents to alter gastric mucosal GSH levels and assessed the effects on susceptibility to ethanol injury. We found that DEM and buthionine sulfoximine both depleted gastric GSH but only DEM protected against ethanol-induced gastric lesions. L-Oxothiazolidine-4-carboxylate (OXT) and N-acetyl-L-cysteine (NAC) both potentiated ethanol-induced gastric lesions even though only NAC significantly raised the GSH level. The depletion of GSH by DEM was reversed by supplying cysteine in the form of OXT or NAC so that the net result was a GSH level close to normal control. The potentiation of ethanol injury by NAC and OXT was still apparent. These experiments show no relation between gastric GSH levels and susceptibility to ethanol injury.  相似文献   

15.
The 190 kDa multidrug resistance protein 1 (MRP1/ABCC1) is a founding member of a subfamily of the ATP binding cassette (ABC) superfamily of transport proteins and was originally identified on the basis of its elevated expression in multidrug resistant lung cancer cells. In addition to its ability to confer resistance in tumour cells, MRP1 is ubiquitously expressed in normal tissues and is a primary active transporter of GSH, glucuronate and sulfate conjugated and unconjugated organic anions of toxicological relevance. Substrates include lipid peroxidation products, herbicides, tobacco specific nitrosamines, mycotoxins, heavy metals, and natural product and antifolate anti-cancer agents. MRP1 also transports unmodified xenobiotics but often requires GSH to do so. Active efflux is generally an important aspect of cellular detoxification since it prevents the accumulation of conjugated and unconjugated compounds that have the potential to be directly toxic. The related transporters MRP2 and MRP3 have overlapping substrate specificities with MRP1 but different tissue distributions, and evidence that they also have chemoprotective functions are discussed. Finally, MRP homologues have been described in other species including yeast and nematodes. Those isolated from the vascular plant Arabidopsis thaliana (AtMRPs) decrease the cytoplasmic concentration of conjugated toxins through sequestration in vacuoles and are implicated in providing herbicide resistance to plants.  相似文献   

16.
Glutathione (GSH) provides a major source of thiol homeostasis critical to the maintenance of a reduced cellular environment that is conducive to cell survival. Mammals have accumulated a significant cadre of sulfur containing proteins, the interactive significance of which has become clear in recent times. Glutathione transferases (GST) are prevalent in eukaryotes and have been ascribed catalytic functions that involve detoxification of electrophiles through thioether bond formation with the cysteine thiol of GSH. The neutralizing impact of these reactions on products of reactive oxygen has contributed to the significant evolutionary conservation and adaptive functional redundancy of the multifaceted GSH system. Amongst the GSTs, GSTP has been implicated in tumorigenesis and in anticancer drug resistance. Emerging studies indicate that GSTP has ligand binding properties and contributes in the regulation of signaling kinases through direct protein:protein interactions. Furthermore, S-glutathionylation is a post-translational modification of low pK(a) cysteine residues in target proteins. The forward rate of the S-glutathionylation reaction can be influenced by GSTP, whereas the reverse rate is affected by a number of redox sensitive proteins including glutaredoxin, thioredoxin and sulfiredoxin. The functional importance of these reactions in governing how cells respond to oxidative or nitrosative stress exemplifies the broad importance of GSH/GST homeostasis in conditions such as cancer, ageing and neurodegenerative diseases. GSTP has also provided a platform for therapeutic drug development where some agents have completed preclinical testing and are in clinical trial for the management of cancer.  相似文献   

17.
H Nishiya  T Haga  N Nozue  T Komatsu  M Baba  Y Ueda  Y Ono  O Kunii 《Pharmacology》1989,39(4):213-223
Binding of cefpiramide (CPM) and other beta-lactam antimicrobial agents to 2(3)-tert-butyl-4-hydroxyanisole (BHA)-induced liver glutathione (GSH) S-transferases (EC 2.5.1.18) from CD-1 mice was studied. A marked induction of hepatic GSH S-transferase from mice fed BHA was observed. Gel chromatography of liver cytosol from mice fed BHA showed an increased binding of CPM, cefotetan and cefazolin to BHA-induced GSH S-transferases. The extent of their binding to GSH S-transferase seemed to be correlated with the extent of their excretion into the bile. Binding of CPM to the GSH S-transferase fraction was inhibited by both indocyanine green, which is known to bind liver GSH S-transferases intensively, and by cefoperazon, which is mainly excreted into the bile. This study suggests that GSH S-transferases are the main binding proteins of CPM in the liver cytosol fraction and play an important role as carrier proteins of CPM and some antimicrobial agents in mouse liver.  相似文献   

18.
The accepted pathway for MC biotransformation is GSH conjugation, occurring either spontaneously or catalyzed by GST. In the present work, the already available information on human MC metabolism have been expanded and the capacity of human GST to conjugate MC-LR has been confirmed in human liver cytosol. At physiological GSH content the spontaneous reaction predominated on the enzymatic one; the prevalence of the enzymatic reaction occurred following GSH depletion, and the shift was detectable at higher GSH levels, the lower was MC concentration. However, at low MC-LR concentrations (≤10 μM), representative of repeated oral exposure, the relevance of the enzymatic reaction became predominant at GSH concentration between 1 and 2 mM. MC-LR conjugate was detectable at ≥0.5 mM GSH, whereas, with 10 μM MC-RR detectable levels of conjugate were observed at 0.05 mM GSH, a 10-fold lower concentration. Overall, our data indicate that MC-RR is more efficiently conjugated than MC-LR, especially at low concentrations. Cytosol samples from rat and mouse were used to characterize GSH conjugation of MC-LR and MC-RR, and to check for possible species differences. At physiological GSH content, in both rodent species the enzymatic reaction accounted for half of the total conjugate formation, reducing the impact of spontaneous reaction with respect to human. Rat and mouse GST showed similar MC-LR and-RR GSH conjugation, but a two-fold higher catalytic efficiency than human sample. This is mainly due to higher affinity for the substrate, with Kmapp values being an order of magnitude lower in the animal models than in human liver cytosol. More pronounced differences in the metabolism of the two variants were evidenced in rodents than in humans.  相似文献   

19.
To exert cytotoxicity chromium VI (Cr(VI)) has to be reduced inside cells. This is achieved through both enzymatic and non-enzymatic mechanisms. Enzymatic mechanisms include DT-diaphorase, cytochrome P450, and NADPH cytochrome c reductase, and non-enzymatic mechanisms involve reduced glutathione (GSH) and ascorbic acid. The extent of cytotoxicity of Cr(VI) may thus be influenced by the availability of non-enzymatic reductants, and by the activities of the reductase enzymes. In the present paper we have investigated the effect of pretreatment with the inducing agents, phenobarbitone (PB) and 3-methylcholanthrene (3-MC), on the response of rat hepatocytes to Cr(VI). Pretreatment with PB increased the activity of NADPH cytochrome c reductase, and 3-MC increased DT-diaphorase activity in hepatocytes. Both inducers increased cytochrome P450 content, while neither influenced intracellular GSH content or the activity of glutathione reductase. Pretreatment with either PB or 3-MC resulted in amelioration of Cr(VI) toxicity both in terms of hepatocyte viability, and to a greater extent, in terms of Cr(VI) induced GSH loss. We propose that the inducing agents increase the amount of enzymatic reduction of Cr(VI) relative to non-enzymatic reduction. Thus, less GSH is used in the reduction of Cr(VI), and intracellular GSH does not fall as rapidly as in cells from control animals therefore cell integrity is better maintained. Exposure to environmental inducing agents in vivo may also alter the response of human tissues to Cr(VI).  相似文献   

20.
Glutathione (GSH) is involved in many cellular functions, including cell growth and differentiation. GSH also plays an important role in the protection of cells against oxidative damage and hence in determining the sensitivity of cells to the cytotoxicity of anticancer agents. Because of this, induction of GSH depletion has been proposed as a good strategy for sensitizing tumor cells to antitumor agents. The aim of the present work is to study the effect of buthionine sulfoximine (BSO, a specific cellular GSH-depleting agent) in two rat tumor cell lines derived from the same rhabdomyosarcoma tumor model, the moderately differentiated and low metastatic F21 cell line, and the poorly differentiated and high metastatic S4MH cell line, to investigate the influence of the degree of differentiation in the induction of GSH depletion-based therapy. We observed that, whereas in the S4MH cell line BSO induced a dose-dependent inhibition of both cell growth in vitro and tumorigenic potential in vivo, in F21 cells the administration of moderate doses of BSO enhanced tumor growth and only at high doses was there a slight reduction of their tumorigenic potential. These effects were in consonance with the fact that the activity of gamma-glutamyltranspeptidase (gamma-GT) present in the F21 cells was 4 times higher than in the S4MH cells. Indeed, inhibition of gamma-GT activity by acivicin not only abrogated the BSO-induced increase of GSH content and of cell growth, but also the combination of acivicin + BSO significantly decreased intracellular GSH levels and cell proliferation, and induced F21 cells to apoptosis. These studies suggest that, as occurs in the rhabdomyosarcoma tumor model, gamma-GT levels and the degree of differentiation of tumor cells might influence the response of tumor cells to inducers of GSH depletion, and should be taken into account in therapies based on GSH metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号