首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The ND4 gene encoding a subunit of respiratory NADH dehydrogenase has been identified on the linear 15.8 kb mitochondrial DNA of Chlamydomonas reinhardtii. The gene maps downstream of ND5. The 1,332 bp nucleotide sequence presented is the first complete reported ND4 sequence from a photoautotrophic organism. The deduced protein of 443 amino acid residues shows 34%, 29% and 27% homology to the protein sequences of Aspergillus amstelodami, Drosophila yakuba and mouse, respectively. ND4 is the fifth and last mitochondrial gene of the NADH dehydrogenase complex on the 15.8 kb mitochondrial genome of C. reinhardtii.  相似文献   

2.
Summary Southern blot analysis of AvaI-digested total cellular DNA from the interfertile species Chlamydomonas eugametos and Chlamydomonas moewusii with a coxI mitochondrial gene probe from Chlamydomonas reinhardtii revealed single hybridizing fragments of 5.0 and 3.5 kb, respectively. The transmission of these mitochondrial DNA physical markers along with that of chloroplast genetic markers for resistance to streptomycin and resistance to erythromycin was studied in the fourth backcrosses of F1 hybrids to one or the other parent. Viability in these backcrosses is high in contrast to the cross C. eugametos x C. moewusii and its reciprocal which are associated with considerable meiotic product lethality. The resulting zygospores were found to transmit the mitochondrial and chloroplast genome markers uniparentally or preferentially from the mating-type-plus parent. Thus the species pair C. eugametos and C. moewusii differs from the pair Chlamydomonas reinhardtii and Chlamydomonas smithii in which mitochondrial genome markers are transmitted uniparentally by the mating-type minus parent, while the chloroplast genome markers are transmitted uniparentally by the opposite parental mating-type (Boynton et al. 1987).  相似文献   

3.
Summary In Chlamydomonas reinhardtii, one displacement loop region which initiates the replication of chloroplast DNA was located on a 1.05 kb restriction fragment. This fragment was cloned and sequenced. In this report, the galK expression plasmid, pK01 was used to screen for the presence of any prokaryotic promoter within the cloned fragment. The insertion of 2 AluI fragments yielded galK+ colonies. Sequence analyses of these Alul inserts revealed prokaryotic promoter consensus regions. Cloning into pKOTWI and subsequent DNA sequencing were used to determine the promoter-active orientation of each insert. Two back-to-back prokaryotic promoters were mapped on a 79 by Alul fragment located within the displacement loop region.  相似文献   

4.
Summary We report the cloning and physical mapping of the mitochondrial genome of Chlamydomonas eugametos together with a comparison of the overall sequence structure of this DNA with the mitochondrial genome of Chlamydomonas moewusii, its closely related and interfertile relative. The C. eugametos mitochondrial DNA (mtDNA) has a 24 kb circular map and is thus 2 kb larger than the 22 kb circular mitochondrial genome of C. moewusii. Restriction mapping and heterologous fragment hybridization experiments indicate that the C. eugametos and C. moewusii mtDNAs are colinear. Nine cross-hybridizing restriction fragments common to the C. eugametos and C. moewusii mtDNAs, and spanning the entirety of these genomes, show length differences between homologous fragments which vary from 0.1 to 2.3 kb. A 600 bp subfragment of C. moewusii mtDNA, within one of these conserved fragments, showed no hybridization with the C. eugametos mtDNA. Of the 73 restriction sites identified in the C. eugametos and C. moewusii mtDNAs, five are specific to C. moewusii, eight are specific to C. eugametos and 30 are common to both species. Hybridization experiments with gene probes derived from protein-coding and ribosomal RNA-coding regions of wheat and Chlamydomonas reinhardtii mtDNAs support the view that the small and large subunit ribosomal RNA-coding regions of the C. eugametos and C. moewusii mtDNAs are interrupted and interspersed with each other and with protein-coding regions, as are the ribosomal RNA-coding regions of C. reinhardtii mtDNA; however, the specific arrangement of these coding elements in the C. eugametos and C. moewusii mtDNAs appears different from that of C. reinhardtii mtDNA.  相似文献   

5.
Summary Two minicircular DNAs of 1.2 kb (K1) and 1.4 kb (K2) were found in mitochondria of fertile lupin (Lupinus albus). The plasmid-like DNA, K1, was cloned, labelled and hybridized with mitochondrial DNA from three different species of lupin. We have found no evidence for integrated copies of K1 in any of the mitochondrial genomes probed in this study. No sequence homology between plasmid K1 and K2, and no homology of either with chloroplast DNA, has been detected. The K1 DNA is two-fold more abundant than the K2 DNA and about seven-fold more abundant than a unique segment of the mtDNA. The entire nucleotide sequence of the K1 DNA has been determined. This sequence exibits a 340 base pair region with highly organized repeats. The sequence of K1 shows no substantial homology with sequence of other mitochondrial plasmids of higher plants.  相似文献   

6.
Summary The plasmid pSC4 which carries a 7.8 kb yeast DNA insert at the BamHI site of the Vector YEp13, complemented simultaneously MO-59-13c lys4, LU75 1ys15 and LU32 lys4lys15 (double) mutations of Saccharomyces cerevisiae. The 1.9 kb BamHl-XbaI DNA insert of the subclone pS051 complemented the LU75 lys15 mutation. The 2.8 kb XhoI-XhoI DNA insert of the pS052 subclone, like pSC4, complemented all three mutations. The 1.9 kb BamHI-XbaI DNA and the 2.8 kb XhoI-XhoI DNA were 100 bp apart in the pSC4 DNA insert and exhibited no homology with each other upon Southern hybridization. The 1.9 kb BamHI-XbaI DNA insert exhibited homology with the pSC4 and pS051 DNA as well as the genomic DNA of MO-59-13c lys4, LU75 lys15, LU32 lys4lys15, and RC1 (LYS) when digested with appropriate restriction enzymes. The 2.8 kb Xhol-XhoI DNA insert exhibited homology with the pSC4 and pS052 DNA as well as MO-59-13c lys4, LU75 lys15, LU32 lys4lys15, and RC1 (LYS) genomic DNA, when digested with XhoI enzyme. The 2.8 kb DNA probe also hybridized with ply(A)+ RNA from RC1 and lys4 transformant but not that from. MO-59-13c lys4 mutant.  相似文献   

7.
The introduction of exogenous DNA into the nuclear genome of Chlamydomonas reinhardtii occurs predominantly via non-homologous (illegitimate) recombination and results in integration at apparently-random loci. Using truncated and modified versions of the C. reinhardtii ARG7 gene in a series of transformation experiments, we demonstrate that homologous recombination between introduced DNA molecules occurs readily in C. reinhardtii, requires a region of homology of no more than 230 bp, and gives rise to intact copies of ARG7 in the nuclear genome. Evidence is presented for homologous recombination between introduced ARG7 DNA and the resident copy of the gene, and for the de-novo synthesis of the ARG7 sequence during transformation.  相似文献   

8.
Summary Only three tRNA genes are present within a sequenced 12.35 kbp region of the 15.8 kbp mtDNA of Chlamydomonas reinhardtii, a unicellular green alga. The corresponding tRNAs, whose anticodons are specific for TGG (Trp), CAA/G (Gln) and ATG (Met) codons, all display conventional secondary structures. The tRNAMet gene encodes an elongator rather than initiator species. The standard genetic code is used in C. reinhardtii mitochondria, but codon distribution is highly biased: in a collection of six identified protein coding genes, nine codons (including TGA) are not used at all, while four other sense codons occur very infrequently. In spite of the absence of certain codons, a minimum of 23 tRNAs (assuming separate initiator and elongator tRNAsMet are used) is needed to translate the C. reinhardtii mitochondrial genetic code. It appears unlikely that this minimal tRNA set is encoded by C. reinhardtii mtDNA.  相似文献   

9.
Summary The mitochondrial genome of four Epilobium species has been characterized by restriction analysis and hybridizations with gene probes from Oenothera. Mitochondrial DNA of Epilobium has a complex restriction fragment pattern and an estimated size of about 320 kb. All species exhibit specific restriction patterns. Plasmid-like DNA molecules of 0.3 kb to 1.2 kb are found in preparations of undigested nucleic acids of mitochondria from E. montanum, E. watsonii, and E. lanceolatum. In contrast, the mitochondria of E. hirsutum contain double-stranded RNAs of 2.7 kb. The location of the genes for cytochrome c oxidase subunits I and III on the mitochondrial DNA seems to be conserved in those species analyzed. However, the genes for subunit II of this complex, and for the alpha subunit of ATPase, are located on different restriction fragments in the mitochondrial genomes of certain species. The location of the COX II gene on different BamHI fragments in E. watsonii and E. lanceolatum has been used for the analysis of mitochondrial inheritance in reciprocal hybrids. Like the plastids, mitochondria are inherited maternally in Epilobium.Abbreviations kb kilobase pairs - mtDNA mitochondrial DNA  相似文献   

10.
Summary 15N-14N density transfer experiments with synchronized vegetative cultures of Chlamydomonas reinhardtii revealed a dispersive labelling of chloroplast DNA (cpDNA) while the labelling of nuclear DNA was consistent with semiconservative replication. The dispersive labelling of cpDNA was progressive and extensive as after less than two net doublings of this DNA in 14N-medium no significant amount of fully heavy, 15N-strands could be detected in denatured cpDNA preparations; the average size of DNA in these preparations corresponded to 6% of the intact chloroplast genome or about 12 kbp. The density shifts of native cpDNA samples were found to be consistent with the net amounts of cpDNA synthesized. This observation indicates that essentially all 15N atoms incorporated prior to the transfer were conserved and that metabolic turnover of cpDNA was probably absent. Our results are best explained by the exchange of homologous single-stranded segments between cpDNA molecules to form heteroduplex regions and by each DNA molecule undergoing several rounds of heteroduplex formation.  相似文献   

11.
Summary The extranuclearly-inherited ragged growth phenotype (Rgd) of Aspergillus amstelodami is always accompanied by excision and head-to-tail amplification of mtDNA sequences. In one mutant strain (Rgd1) the amplified mtDNA segment (rgd1 DNA, monomeric length 0.9 kb) maps downstream of the large subunit ribosomal RNA gene (Region 1), whereas in all other strains analyzed the amplified sequences (rdg3-7DNA) are located in Region 2 between genes coding for cytochrome b and ATPase subunit 6. The various region 2 sequences differ in lengths (1.5 to 2.7 kb) but have in common a 215 bp sequence mapping between an. unidentified protein gene (corresponding to URF4 of human mtDNA) and an arginine tRNA gene. This common sequence may contain an origin of replication, because a looped-out hairpin structure similar to that of yeast and human mitochondrial origin sequences can be formed. Furthermore, Region 2 DNA suppresses replication of Region 1 DNA, indicating that the former group of molecules contains the more efficient origin. The nucleotide sequence of the rgd6 repeat unit starts and ends within protein genes of mtDNA, and no homologies were found between heads and tails or their flanking sequences.Abbreviations mtDNA DNA isolated from DNase — treated mitochondria - Rgd ragged mutant strain - rgdDNA highly-reiterated DNA sequences isolated simultaneously with the wild-type genome from mitochondria of ragged mutants - bp base pairs - kb kilobase pairs - URF unassigned reading frame  相似文献   

12.
Summary The gene for the mitochondrial small subunit rRNA (SSUrNA) from the heterotrophic alga Prototheca wickerhamii has been isolated from a gene library of extranuclear DNA. Sequence and structural analyses allow the determination of a secondary structure model for this rRNA. In addition, several sequence motifs are present which are typically found in SSUrRNAs of various mitochondrial origins. Unexpectedly, the Prototheca RNA sequence has more features in common with mitochondrial SSUrRNAs from plants than with that from the green alga Chlamydomonas reinhardtii. The phylogenetic relationship between mitochondria from plants and algae is discussed.  相似文献   

13.
Summary The accumulation of chloroplast and nuclear DNAs during the 12 h light and 12 h dark synchronized vegetative cell-cycle of Chlamydomonas reinhardtii was monitored by the direct optical quantification of these DNAs in the analytical ultracentrifuge. Net synthesis of nuclear DNA was sharply discontinuous and this synthesis occurred during the first 6 h of the dark period. In contrast, the net synthesis of chloroplast DNA appeared continuous throughout the cell-cycle. The rate of this accumulation, however, was greatest in the dark period.  相似文献   

14.
Summary In order to study the mechanism responsible for the uniparental transmission of the mitochondrial genome in crosses between Chlamydomonas reinhardtii and C. smithii, we have analyzed the fate of mitochondrial DNA during gametogenesis, zygospore differentiation and sporulation by hybridization experiments. Both mt + and mt gametes contain the same amount of mitochondrial DNA and the two parental genomes persist for several days in the zygotes. The DNA of mt + origin is slowly eliminated during the period of zygote maturation. Light is required for total elimination of mt + mitochondrial DNA in the zygospores. Using appropriate restriction enzymes, we have been unable to detect methylation of the mitochondrial DNA during gametogenesis or zygospore formation. The possibility that the mt + mitochondria themselves are specifically eliminated in the course of zygote maturation is discussed.  相似文献   

15.
16.
Summary A physical map of the mitochondrial genome of the aquatic phycomycete Allomyces macrogynus strain Burma 3–35 (35°C) has previously been published (Borkhardt and Delius 1983). This map has been extended in this study by locating 37 additional recognition sites for five new restriction enzymes in the mitochondrial genome. Homologous regions for the genes coding for cytochrome oxidase subunits 1, 2, and 3, apocytochrome b, ATPase subunits 6 and 9, the small and large ribosomal RNA, URF1, URF5, and perhaps urfa, a presumptive gene hitherto found only in the mitochondrial genome of the fission yeast Schizosaccharomyces pombe, were located in the mitochondrial genome of A. macrogynus by heterologous hybridizations with specific, mitochondria) gene probes from Saccharomyces cerevisiae, Aspergillus nidulans, Neurospora crassa, and S. pombe. The mitochondrial gene order in A. macrogynus was found to be identical to that of A. arbuscula; a gene order hitherto found only among members of the family Blastocladiaceae. Spontaneous insertion mutations have been found to occur quite frequently in the mitochondrial genome of A. macrogynus. In all mutated mitochondrial genomes so far studied, insertions have been located in a specific region located between the genes coding for the ATPase subunit 9 and the large ribosomal RNA. In two of the mutated mitochondrial genomes the insertional event(s) resulted in the presence of mitochondrial DNA molecules differing in size by multiples of approximately 70 base pairs.  相似文献   

17.
Summary A 5.3 kb chloroplast restriction fragment of Chlamydomonas reinhardii containing an origin of DNA replication and a sequence capable of promoting autonomous replication in C. reinhardii (ARC sequence) also carries an ARS sequence (autonomous replication in yeast). The ARC and ARS elements have been physically mapped and shown to be distinct from the origin of DNA replication. Similarly, restriction fragments containing the origin of chloroplast DNA replication from Euglena gracilis are unable to promote autonomous replication in yeast.  相似文献   

18.
We have sequenced a 6.8-kb segment of the Chlamydomonas eugametos chloroplast DNA which contains the psbF, psbL, petG and rps3 genes. As in the distantly related green alga Chlamydomonas reinhardtii, these genes reside in this order (53) on the same DNA strand, suggesting that such a chloroplast gene cluster was present in the most recent common ancestor of all Chlamydomonas species. For each of the four genes, with the exception of rps3, the C. eugametos and C. reinhardtii coding regions were found to be identical, or very similar, in length, whereas each of the intergenic spacers is substantially longer in C. eugametos than in C. reinhardtii. The central portion of both Chlamydomonas rps3 genes features a long extra coding region relative to other rps3 sequences. We have shown that the insertion sequence in the C. eugametos rps3 is not excised at the RNA level.  相似文献   

19.
Summary A DNA fragment which carries the leul gene encoding beta-isopropylmalate dehydrogenase in Schizosaccharomyces pombe has been isolated by complementation of an E. coli leuB mutation. This 1.5 kb DNA fragment complements not only the S. pombe leul mutation, but also the S. cerevisiae leu2 mutation. The nucleotide sequence of the essential part of the leul gene and its flanking regions was determined. This sequence contains an open reading frame of 371 codons, from which a protein having a Mr = 39,732 can be predicted. The deduced amino acid sequence and its codon usage were compared with those of the S. cerevisiae LEU2 protein. The cloned DNA will be a useful marker when transforming S pombe.  相似文献   

20.
Summary The relative abundance of a cloned 4.5 kilobase (kb) pair mitochondrial DNA sequence in two suspension cultures of tobacco (Nicotiana tabacum cv Turkish samsun and Nicotiana tabacum NT-1) has been examined. This sequence is 70-fold reduced in NT-1 relative to Turkish samsun; the reduction is correlated with an increase in supercoiled mitochondrial DNA. This sequence does not hybridize with mitochondrial DNA from watermelon, maize, or Saccharomyces cerevisiae, nor with several cloned mitochondrial genes and is thus probably not a gene. It may represent most of the plant mitochondria) genome thought to be non-essential for mitochondrial function. The sequence complexity of supercoiled mitochondrial DNA from NT-1 cells is about one-third that found for the entire mitochondrial genome and does not include the cytochrome oxidase subunit II gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号