首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L-Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. Termination of glutamate receptor activation and maintenance of low extracellular glutamate concentrations are primarily achieved by glutamate transporters (excitatory amino acid transporters 1-5, EAATs1-5) located on both the nerve endings and the surrounding glial cells. To identify the physiological roles of each subtype, subtype-selective EAAT ligands are required. In this study, we developed a binding assay system to characterize EAAT ligands for all EAAT subtypes. We recently synthesized novel analogs of threo-beta-benzyloxyaspartate (TBOA) and reported that they blocked glutamate uptake by EAATs 1-5 much more potently than TBOA. The strong inhibitory activity of the TBOA analogs suggested that they would be suitable to use as radioisotope-labeled ligands, and we therefore synthesized a tritiated derivative of (2S,3S)-3-{3-[4-ethylbenzoylamino]benzyloxy}aspartate ([3H]ETB-TBOA). [3H]ETB-TBOA showed significant high-affinity specific binding to EAAT-transfected COS-1 cell membranes with each EAAT subtype. The Hill coefficient for the Na+-dependence of [3H]ETB-TBOA binding revealed a single class of noncooperative binding sites for Na+, suggesting that Na+ binding in the ligand binding step is different from Na+ binding in the substrate uptake process. The binding was displaced by known substrates and blockers. The rank order of inhibition by these compounds was consistent with glutamate uptake assay results reported previously. Thus, the [3H]ETB-TBOA binding assay will be useful to screen novel EAAT ligands for all EAAT subtypes.  相似文献   

2.
The excitatory amino acid transporters (EAATs) play key roles in the regulation of CNS L-glutamate, especially related to synthesis, signal termination, synaptic spillover, and excitotoxic protection. Inhibitors available to delineate EAAT pharmacology and function are essentially limited to those that non-selectively block all EAATs or those that exhibit a substantial preference for EAAT2. Thus, it is difficult to selectively study the other subtypes, particularly EAAT1 and EAAT3. Structure activity studies on a series of beta-substituted aspartate analogues identify L-beta-benzyl-aspartate (L-beta-BA) as among the first blockers that potently and preferentially inhibits the neuronal EAAT3 subtype. Kinetic analysis of D-[(3)H]aspartate uptake into C17.2 cells expressing the hEAATs demonstrate that L-beta-threo-BA is the more potent diastereomer, acts competitively, and exhibits a 10-fold preference for EAAT3 compared to EAAT1 and EAAT2. Electrophysiological recordings of EAAT-mediated currents in Xenopus oocytes identify L-beta-BA as a non-substrate inhibitor. Analyzing L-beta-threo-BA within the context of a novel EAAT2 pharmacophore model suggests: (1) a highly conserved positioning of the electrostatic carboxyl and amino groups; (2) nearby regions that accommodate select structural modifications (cyclopropyl rings, methyl groups, oxygen atoms); and (3) a unique region L-beta-threo-BA occupied by the benzyl moieties of L-TBOA, L-beta-threo-BA and related analogues. It is plausible that the preference of L-beta-threo-BA and L-TBOA for EAAT3 and EAAT2, respectively, could reside in the latter two pharmacophore regions.  相似文献   

3.
We characterized the interaction of two conformationally constrained aspartate and glutamate analogs, 3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]isoxazole-4-carboxylic acid (HIP-A) and 3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]isoxazole-6-carboxylic acid (HIP-B), with excitatory amino acid transporters (EAATs) in rat brain cortex synaptosomes. HIP-A and HIP-B were potent and noncompetitive inhibitors of [(3)H]L-glutamate uptake, with IC(50) values (17-18 microM) very similar to that of the potent EAAT inhibitor dl-threo-beta-benzyloxyaspartic acid (TBOA). The two compounds had little effect in inducing [(3)H]D-aspartate release from superfused synaptosomes but they potently inhibited l-glutamate-induced [(3)H]D-aspartate release, thus behaving as EAAT blockers, not substrates, in a manner similar to those of TBOA and dihydrokainate (DHK). HIP-A and HIP-B, but not TBOA and DHK, unexpectedly inhibited L-glutamate-induced [(3)H]D-aspartate release with IC(50) values (1.2-1.6 microM) 10 times lower than those required to inhibit [(3)H]L-glutamate uptake. There is therefore a concentration window (1-3 microM) in which the two compounds significantly inhibited l-glutamate-induced release with very little effect on L-glutamate uptake. This selective inhibitory effect required quite long preincubation (>5 min) of synaptosomes with the drugs. At these low concentrations, however, HIP-A and HIP-B had no effect on the EAAT-mediated [(3)H]d-aspartate release induced by altering the ion gradients, indicating that they specifically affect some L-glutamate-triggered process(es)--different from L-glutamate translocation itself--responsible for the induction of reverse transport. These data are inconsistent with the classic model of facilitated exchange-diffusion and provide the first evidence that EAAT-mediated substrate uptake and substrate-induced EAAT-mediated reverse transport are independent. Compounds such as HIP-A and HIP-B could be useful to further clarify the mechanisms underlying these operating modes of transporters.  相似文献   

4.
Glutamate transporters rapidly take up synaptically released glutamate and maintain the glutamate concentration in the synaptic cleft at a low level. (2S, 3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-TBOA) is a novel glutamate transporter blocker that potently suppresses the activity of glial transporters. TFB-TBOA inhibited synaptically activated transporter currents (STCs) in astrocytes in the stratum radiatum in rat hippocampal slices in a dose-dependent manner with an IC50 of 13 nM, and reduced them to approximately 10% of the control at 100 nM. We investigated the effects of TFB-TBOA on glutamatergic synaptic transmission and cell excitability in CA1 pyramidal cells. TFB-TBOA (100 nM) prolonged the decay of N-methyl-D-aspartic acid receptor (NMDAR)-mediated excitatory postsynaptic currents (EPSCs), whereas it prolonged that of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated EPSCs only when the desensitization of AMPARs was reduced by cyclothiazide (CTZ). Furthermore, long-term application of TFB-TBOA induced spontaneous epileptiform discharges with a continuous depolarization shift of membrane potential. These epileptiform activities were mainly attributed to NMDAR activation. Even after pharmacological block of NMDARs, however, TFB-TBOA induced similar changes by activating AMPARs in the presence of CTZ. Thus, the continuous uptake of synaptically released glutamate by glial transporters is indispensable for protecting hippocampal neurons from glutamate receptor-mediated hyperexcitabilities.  相似文献   

5.
Within the mammalian central nervous system, the efficient removal of L-glutamate from the extracellular space by excitatory amino acid transporters (EAATs) has been postulated to contribute to signal termination, the recycling of transmitter, and the maintenance of L-glutamate at concentrations below those that are excitotoxic. The development of potent and selective inhibitors of the EAATs has contributed greatly to the understanding of the functional roles of these transporters. In the present study, we use a library of conformationally constrained glutamate analogs to address two key issues: the differentiation of substrates from nontransportable inhibitors and the comparison of the pharmacological profile of synaptosomal uptake with those of the individual EAAT clones. We demonstrate that the process of transporter-mediated heteroexchange can be exploited in synaptosomes to rapidly distinguish transportable from nontransportable inhibitors. Using this approach, we demonstrate that 2,4-methanopyrrolidine-2,4-dicarboxylate, cis-1-aminocyclobutane-1,3-dicarboxylate, and L-trans-2, 4-pyrrolidine dicarboxylate act as substrates for the rat forebrain synaptosomal glutamate uptake system. In contrast, L-anti-endo-3, 4-methanopyrrolidine-3,4-dicarboxylate, L-trans-2,3-pyrrolidine dicarboxylate, and dihydrokainate proved to be competitive inhibitors of D-[(3)H]aspartate uptake that exhibited little or no activity as substrates. When these same compounds were characterized for substrate activity by recording currents in voltage-clamped Xenopus laevis oocytes expressing the human transporter clones EAAT1, EAAT2, or EAAT3, it was found that the pharmacological profile of the synaptosomal system exhibited the greatest similarity with the EAAT2 subtype, a transporter believed to be expressed primarily on glial cells.  相似文献   

6.
In the central nervous system (CNS), glutamate rapidly upregulates the activities of different excitatory amino-acid transporter subtypes (EAATs) in order to help protect neurons from excitotoxicity. Since human platelets display a specific sodium-dependent glutamate uptake activity, and express the three major glutamate transporters, which may be affected in neurological disorders, we investigated whether platelets are subject to substrate-induced modulation as described for CNS. A time- and dose-dependent upregulation of [3H]-glutamate uptake (up to two-fold) was observed in platelets preincubated with glutamate. There was an increase in maximal velocity rate without affinity changes. Glutamate receptor agonists and antagonists did not modulate this upregulation and preincubation with glutamate analogues failed to mimic the glutamate effect. Only aspartate preincubation increased the uptake, albeit approximately 35% less with respect to glutamate. The effect of glutamate preincubation on the expression of the three major transporters was studied by Western blotting, showing an increase of approximately 70% in EAAT1 immunoreactivity that was completely blocked by cycloheximide (CEM). However, L-serine-O-sulphate, at a concentration (200 microM) known to block EAAT1/3 selectively, did not completely inhibit the effect of glutamate stimulation, indicating the possible involvement of EAAT2. In fact, glutamate stimulation was completely abolished only when, following CEM pre-incubation, the experiment was run in the presence of the selective EAAT2 inhibitor dihydrokainic acid. Since surface biotinylation experiments failed to show evidence of EAAT2 translocation, our results suggest the existence of a different way of regulating EAAT2 activity. These findings indicate that human platelets display a substrate-dependent modulation of glutamate uptake mediated by different molecular mechanisms and confirm that ex vivo platelets are a reliable model to investigate the dysfunction of glutamate uptake regulation in patients affected by neurological disorders.  相似文献   

7.
Of the five excitatory amino acid transporters (EAATs) identified, two genes are expressed by neurons (EAAT3 and EAAT4) and give rise to transporters confined to neuronal cell bodies and dendrites. At an ultrastructural level, EAAT3 and EAAT4 proteins are clustered at the edges of postsynaptic densities of excitatory synapses. This pattern of localization suggests that postsynaptic EAATs may help to limit spillover of glutamate from excitatory synapses. In an effort to study transporter localization in living neurons and ultimately to manipulate uptake at intact synapses, we have developed viral reagents encoding neuronal EAATs tagged with GFP. We demonstrate that these fusion proteins are capable of Na(+)-dependent glutamate uptake, that they generate ionic conductances indistinguishable from their wild-type counterparts, and that GFP does not alter their glutamate dose-dependence. Two-photon microscopy was used to examine fusion protein expression in Purkinje neurons in acute cerebellar slices. Both EAAT3-GFP and EAAT4-GFP were observed at high levels in the dendritic spines of transfected Purkinje neurons. These findings indicate that functional EAAT fusion proteins can be synthesized and appropriately trafficked to postsynaptic compartments. Furthermore, they validate a powerful system for looking at EAAT function in situ.  相似文献   

8.
L-Glutamate is a major excitatory neurotransmitter in the mammalian central nervous system (CNS). It contributes not only to fast synaptic neurotransmission but also to complex physiological processes like plasticity, learning, and memory. Glutamate is synthesized in the cytoplasm and stored in synaptic vesicles by a proton gradient-dependent uptake system (VGLUTs). Following its exocytotic release, glutamate activates different kinds of glutamate receptors and mediates excitatory neurotransmission. To terminate the action of glutamate and maintain its extracellular concentration below excitotoxic levels, glutamate is quickly removed by Na(+)-dependent glutamate transporters (EAATs). Recently, three vesicular glutamate transporters (VGLUT1-3) and five Na(+)-dependent glutamate transporters (EAAT1-5) were identified. VGLUTs and EAATs are thought to play important roles in neuronal disorders, such as amyotrophic lateral sclerosis, Alzheimer's disease, cerebral ischemia, and Huntington's disease. In this review, the development of new compounds to regulate the function of VGLUTs and EAATs will be described.  相似文献   

9.
In this study, we describe the pharmacological characterization of novel aryl-ether, biaryl, and fluorene aspartic acid and diaminopropionic acid analogs as potent inhibitors of EAAT2, the predominant glutamate transporter in forebrain regions. The rank order of potency determined for the inhibition of human EAAT2 was N(4)-[4-(2-bromo-4,5-difluorophenoxy)phenyl]-L-asparagine (WAY-213613) (IC(50) = 85 +/- 5 nM) > N(4)-(2'-methyl-1,1'-biphenyl-4-yl)-L-asparagine (WAY-213394) (IC(50) = 145 +/- 22 nM) = N(4)-[7-(trifluoromethyl)-9H-fluoren-2-yl]-L-asparagine (WAY-212922) (IC(50) = 157 +/- 11 nM) = 3-{[(4'-chloro-2-methyl-1,1'-biphenyl-4-yl)carbonyl]amino}-L-alanine (WAY-211686) (IC(50) = 190 +/- 10 nM). WAY-213613 was the most selective of the compounds examined, with IC(50) values for inhibition of EAAT1 and EAAT3 of 5 and 3.8 microM, respectively, corresponding to a 59- and 45-fold selectivity toward EAAT2. An identical rank order of potency [WAY-213613 (35 +/- 7 nM) > WAY-213394 (92 +/- 13 nM) = WAY-212922 (95 +/- 8 nM) = WAY-211686 (101 +/- 20 nM)] was observed for the inhibition of glutamate uptake in rat cortical synaptosomes, consistent with the predominant contribution of EAAT2 to this activity. Kinetic studies with each of the compounds in synaptosomes revealed a competitive mechanism of inhibition. All compounds were determined to be nonsubstrates by evaluating both the stimulation of currents in EAAT2-injected oocytes and the heteroexchange of d-[(3)H]aspartate from cortical synaptosomes. WAY-213613 represents the most potent and selective inhibitor of EAAT2 identified to date. Taken in combination with its selectivity over ionotropic and metabotropic glutamate receptors, this compound represents a potential tool for the further elucidation of EAAT2 function.  相似文献   

10.
Although the ionotropic and metabotropic receptors for synaptically released glutamate have been extensively mined in the pursuit of novel therapeutic agents for a diverse array of central nervous system disorders, pursuit of the transport proteins--or excitatory amino acid transporters (EAATs)--toward a similar end has been a road much less travelled. Recent progress has seen the use of cloned EAAT subtypes to develop transporter inhibitors with improved subtype selectivity, providing important tools for elucidating the precise contribution of each transporter subtype to the regulation of extracellular glutamate homeostasis. In addition, momentum has been gained with the discovery of compounds capable of upregulating the activity of the predominant forebrain glutamate transporter, EAAT2.  相似文献   

11.
The pharmacological profile of a novel glutamate transport inhibitor, WAY-855 (3-amino-tricyclo[2.2.1.0(2.6)]heptane-1,3-dicarboxylic acid), on the activity of the human forebrain glutamate transporters EAAT1, EAAT2 and EAAT3 expressed in stable mammalian cell lines and in Xenopus laevis oocytes is presented. WAY-855 inhibited glutamate uptake mediated by all three subtypes in a concentration-dependent manner, with preferential inhibition of the CNS-predominant EAAT2 subtype in both cells and oocytes. IC50 values for EAAT2 and EAAT3 inhibition in cells were 2.2 and 24.5 microM, respectively, while EAAT1 activity was inhibited by 50% at 100 microM (IC50 values determined in oocytes were 1.3 microM (EAAT2), 52.5 microM (EAAT3) and 125.9 microM (EAAT1)). Application of WAY-855 to EAAT-expressing oocytes failed to induce a transporter current, and the compound failed to exchange with accumulated [3H]d-aspartate in synaptosomes consistent with a nonsubstrate inhibitor. WAY-855 inhibited d-aspartate uptake into cortical synaptosomes by a competitive mechanism, and with similar potency to that observed for the cloned EAAT2. WAY-855 failed to agonise or antagonise ionotropic glutamate receptors in cultured hippocampal neurones, or the human metabotropic glutamate receptor subtype 4 expressed in a stable cell line. WAY-855 represents a novel structure in glutamate transporter pharmacology, and exploration of this structure might provide insights into the discrimination between EAAT2 and other EAAT subtypes.  相似文献   

12.
This review provides an overview of ligands for the excitatory amino acid transporters (EAATs), a family of high-affinity glutamate transporters localized to the plasma membrane of neurons and astroglial cells. Ligand development from the perspective of identifying novel and more selective tools for elucidating transporter subtype function, and the potential of transporter ligands in a therapeutic setting are discussed. Acute pharmacological modulation of EAAT activity in the form of linear and conformationally restricted glutamate and aspartate analogs is presented, in addition to recent strategies aimed more toward modulating transporter expression levels, the latter of particular significance to the development of transporter based therapeutics.  相似文献   

13.
L-Glutamate (Glu) is the major excitatory neurotransmitter in the mammalian CNS and five types of high-affinity Glu transporters (EAAT1-5) have been identified. The transporters EAAT1 and EAAT2 in glial cells are responsible for the majority of Glu uptake while neuronal EAATs appear to have specialized roles at particular types of synapses. Dysfunction of EAATs is specifically implicated in the pathology of neurodegenerative conditions such as amyotrophic lateral sclerosis, epilepsy, Huntington's disease, Alzheimer's disease and ischemic stroke injury, and thus treatments that can modulate EAAT function may prove beneficial in these conditions. Recent advances have been made in our understanding of the regulation of EAATs, including their trafficking, splicing and post-translational modification. This article summarises some recent developments that improve our understanding of the roles and regulation of EAATs.  相似文献   

14.
15.
16.
The idea that excitatory amino acid transporters (EAATs) can control the activation of specific metabotropic glutamate receptors (mGluRs) was investigated in rat hippocampal slices. Using the accumulation of inositol phosphates as a measure of group I mGluR activity, we have shown that the broad spectrum, non-transportable EAAT blocker, TBOA, produces a significant shift to the left of agonist concentration-response curves. Moreover, this increase in potency did not occur if endogenous glutamate was enzymatically removed, suggesting a glutamate-dependent mechanism. This shift in potency was shown to be NMDA and group II mGlu receptor independent. Additionally, experiments with selective antagonists indicated that the group I receptor responsible for the stimulation of inositol phosphate production in this preparation is likely to be mGluR5. Inhibition of forskolin-stimulated cyclic AMP (cAMP) production was used as an index of group II/III mGluR activity. TBOA produced a rightward shift of the forskolin concentration-response curve. A group III, but not a group II, mGluR agonist also produced this effect, suggesting that the TBOA-mediated increase in glutamate activates a receptor, which appears to be a member of the group III mGluR subset. This was confirmed by the observation that an antagonist of group III mGluRs, prevented the TBOA-induced rightward shift in forskolin potency. These results provide evidence of a role for EAATs in the regulation of mGluR5 and group III mGluRs in the rat hippocampus, which may have therapeutic implications.  相似文献   

17.
L-Glutamic acid acts as the major excitatory neurotransmitter and, at the same time, represents a potential neurotoxin for the mammalian central nervous system (CNS). The termination of excitatory transmission and the maintenance of physiologic levels of extracellular glutamate, which is necessary to prevent excitotoxicity, are prominently mediated by a family of high-affinity sodium-dependent excitatory amino acid transporters (EAATs). Five subtypes of EAATs have been cloned, possessing distinct pharmacology, localization, sensitivity to transport inhibitors and modulatory mechanisms. Expression and activity of EAATs have been shown to be amenable to fine endogenous and, potentially, pharmacological regulation by substrate itself, growth factors, second messengers, hormones, biological oxidants, inflammatory mediators and pathological conditions. The present review describes basic pharmacological studies, mostly performed on animal models or cell preparations, in order to obtain an updated picture of the known regulatory mechanisms of single EAAT expression and activity. New insight into molecular pathways involved in EAAT regulation will allow pharmacological manipulation of excitatory CNS activity, possibly avoiding adverse effects of glutamate receptor blockade.  相似文献   

18.
We have expressed the human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 stably in HEK293 cells and characterized the transporters pharmacologically in a conventional [(3) H]-d-aspartate uptake assay and in a fluorescence-based membrane potential assay, the FLIPR Membrane Potential (FMP) assay. The K(m) and K(i) values obtained for 12 standard EAAT ligands at EAAT1, EAAT2 and EAAT3 in the FMP assay correlated well with the K(i) values obtained in the [(3) H]-d-aspartate assay (r(2) values of 0.92, 0.92, and 0.95, respectively). Furthermore, the pharmacological characteristics of the cell lines in the FMP assay were in good agreement with previous findings in electrophysiology studies of the transporters. The FMP assay was capable of distinguishing between substrates and non-substrate inhibitors and to discriminate between "full" and "partial" substrates at the transporters. Taking advantage of the prolific nature of the FMP assay, interactions of the EAATs with substrates and inhibitors were studied in some detail. This is the first report of a high throughput screening assay for EAATs. We propose that the assay will be of great use in future studies of the transporters. Although conventional electrophysiology set-ups might be superior in terms of studying sophisticated kinetic aspects of the uptake process, the FMP assay enables the collection of considerable amounts of highly reproducible data with relatively little labor. Furthermore, considering that the number of EAAT ligands presently available is limited, and that almost all of these are characterized by low potency and a low degree of subtype selectivity, future screening of compound libraries at the EAAT-cell lines in the FMP assay could help identify structurally and pharmacologically novel ligands for the transporters.  相似文献   

19.
Background: Excitatory amino acid transporters (EAATs) are transmembrane proteins responsible for the uptake of (S)-glutamate (Glu) from the synaptic cleft, thereby terminating the glutamatergic neurotransmitter signal. Today five subtypes have been identified. Except for EAAT2, their individual roles or functions in the CNS are yet to be fully understood due to the shortage of subtype-selective ligands. Objective/methods: We examine the latest developments in this field by addressing EAAT expression pattern, localization and pharmacology. We present highlights of published work on inhibitors as well as enhancers which display subtype preference or selectivity and discuss which pathological conditions in the CNS such ligands may be beneficial to. Results/conclusions: Not until subtype-selective enhancers, inhibitors and substrates for all five EAAT subtypes have been discovered can a full and detailed understanding of EAATs be obtained. Thus we encourage collaboration between organic chemists and molecular pharmacologists, who, together, may pave the way for new EAAT ligands of importance.  相似文献   

20.
We examined the effects of a potent glutamate transporter inhibitor, (2S,3S)-3-{3-[4-(trifluoromethyl)benzoylamino]benzyloxy}aspartate (TFB-TBOA), on the expression of methamphetamine-induced behavioral sensitization in rats. Rats were intraperitoneally treated with 2 mg/kg methamphetamine for 5 days and then challenged with 1 mg/kg methamphetamine. Intracerebroventricular administration of TFB-TBOA (0.1 nmol) 10 min before the challenge significantly facilitated the expression of behavioral sensitization. On the other hand, it had no effect on the locomotor activation elicited by the challenge with methamphetamine in repeated-saline-treated (non-sensitized) rats. These results suggest that central glutamate transporters may play an inhibitory role in the expression of behavioral sensitization to methamphetamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号