共查询到20条相似文献,搜索用时 15 毫秒
1.
Strittmatter F Walther S Gratzke C Göttinger J Beckmann C Roosen A Schlenker B Hedlund P Andersson KE Stief CG Hennenberg M 《British journal of pharmacology》2012,166(6):1926-1935
BACKGROUND AND PURPOSE α(1) -Adrenoceptor-induced contraction of prostate smooth muscle is mediated by calcium- and Rho kinase-dependent mechanisms. In addition, other mechanisms, such as activation of c-jun N-terminal kinase (JNK) may be involved. Here, we investigated whether JNK participates in α(1)-adrenoceptor-induced contraction of human prostate smooth muscle. EXPERIMENTAL APPROACH Prostate tissue was obtained from patients undergoing radical prostatectomy. Effects of the JNK inhibitors SP600125 (50 μM) and BI-78D3 (30 μM) on contractions induced by phenylephrine, noradrenaline and electric field stimulation (EFS) were studied in myographic measurements. JNK activation by noradrenaline (30 μM) and phenylephrine (10 μM), and the effects of JNK inhibitors of c-Jun phosphorylation were assessed by Western blot analyses with phospho-specific antibodies. Expression of JNK was studied by immunohistochemistry and fluorescence double staining. KEY RESULTS The JNK inhibitors SP600125 and BI-78D3 reduced phenylephrine- and noradrenaline-induced contractions of human prostate strips. In addition, SP600125 reduced EFS-induced contraction of prostate strips. Stimulation of prostate tissue with noradrenaline or phenylephrine in vitro resulted in activation of JNK. Incubation of prostate tissue with SP600125 or BI-78D3 reduced the phosphorylation state of c-Jun. Immunohistochemical staining demonstrated the expression of JNK in smooth muscle cells of human prostate tissue. Fluorescence staining showed that α(1A)-adrenoceptors and JNK are expressed in the same cells. CONCLUSIONS AND IMPLICATIONS Activation of JNK is involved in α(1)-adrenoceptor-induced prostate smooth muscle contraction. Models of α(1)-adrenoceptor-mediated prostate smooth muscle contraction should include this JNK-dependent mechanism. 相似文献
2.
Roscioni SS Prins AG Elzinga CR Menzen MH Dekkers BG Halayko AJ Meurs H Maarsingh H Schmidt M 《British journal of pharmacology》2011,164(3):958-969
BACKGROUND AND PURPOSE
Platelet-derived growth factor (PDGF) modulates the airway smooth muscle (ASM) ‘contractile’ phenotype to a more ‘proliferative’ phenotype, resulting in increased proliferation and reduced contractility. Such phenotypic modulation may contribute to airway remodelling in asthma. We have previously shown that the cAMP effector molecules, protein kinase A (PKA) and the exchange protein directly activated by cAMP (Epac) inhibited PDGF-induced phenotypic modulation in bovine ASM. Here, we investigated these mechanisms in human ASM strips and cells.EXPERIMENTAL APPROACH
ASM strips were incubated with PDGF in the absence or presence of the activators of Epac (8-pCPT-2′-O-Me-cAMP) or of PKA (6-Bnz-cAMP) for 4 days. Strips were mounted for isometric contraction experiments or analysed for the expression of contractile markers. Cell proliferation was measured and proliferative markers were analysed under similar conditions.KEY RESULTS
Activation of Epac and PKA prevented PDGF-induced ASM strip hypocontractility, and restored the expression of smooth muscle actin, myosin and calponin, which had been markedly diminished by PDGF. Epac and PKA activation inhibited the PDGF-induced ASM cell proliferation and G1/S phase transition and the expression and phosphorylation of cell cycle regulators.CONCLUSIONS AND IMPLICATIONS
Epac and PKA maintain a normally contractile ASM phenotype in a mitogenic environment, suggesting that specific activators of Epac and PKA may be beneficial in the treatment of airway remodelling in asthma. 相似文献3.
Evangelia Pantazaka Emily J A Taylor William G Bernard Colin W Taylor 《British journal of pharmacology》2013,169(7):1624-1634
Background and Purpose
Histamine and prostaglandin E2 (PGE2), directly and via their effects on other cells, regulate the behaviour of vascular smooth muscle (VSM), but their effects on human VSM are incompletely resolved.Experimental Approach
The effects of PGE2 on histamine-evoked changes in intracellular free Ca2+ concentration ([Ca2+]i) and adenylyl cyclase activity were measured in populations of cultured human aortic smooth muscle cells (ASMCs). Selective ligands of histamine and EP receptors were used to identify the receptors that mediate the responses.Key Results
Histamine, via H1 receptors, stimulates an increase in [Ca2+]i that is entirely mediated by activation of inositol 1,4,5-trisphosphate receptors. Selective stimulation of EP2 or EP4 receptors attenuates histamine-evoked Ca2+ signals, but the effects of PGE2 on both Ca2+ signals and AC activity are largely mediated by EP2 receptors.Conclusions and Implications
Two important inflammatory mediators, histamine via H1 receptors and PGE2 acting largely via EP2 receptors, exert opposing effects on [Ca2+]i in human ASMCs. 相似文献4.
H H Al-Sa'doni I L Megson S Bisland A R Butler F W Flitney 《British journal of pharmacology》1997,121(6):1047-1050
- A study has been made of the effect of neocuproine, a specific Cu(I) chelator, on vasodilator responses of rat isolated perfused tail artery to two nitrosothiols: S-nitroso-N-acetyl-D,L-penicillamine (SNAP) and S-nitroso-glutathione (GSNO).
- Bolus injections (10 μl) of SNAP or GSNO (10−7–10−3 M) were delivered into the lumen of perfused vessels pre-contracted with sufficient phenylephrine (1–7 μM) to develop pressures of 100–120 mmHg. Two kinds of experiment were made: SNAP and GSNO were either (a) pre-mixed with neocuproine (10−4 M) and then injected into arteries; or (b) vessels were continuously perfused with neocuproine (10−5 M) and then injected with either pure SNAP or GSNO.
- In each case, neocuproine significantly attenuated vasodilator responses to both nitrosothiols, although the nature of the inhibitory effect differed in the two types of experiment. We conclude that the ability of exogenous nitrosothiols to relax vascular smooth muscle in our ex vivo model is dependent upon a Cu(I) catalyzed process. Evidence is presented which suggests that a similar Cu(I)-dependent mechanism is responsible for the release of NO from endogenous nitrosothiols and that this process may assist in maintaining vasodilator tone in vivo.
5.
6.
Regulation of the rolipram-sensitive cAMP-specific phosphodiesterase 4 (PDE4) gene family was studied in rat pulmonary microvascular endothelial cells (RPMVECs). Total PDE4 hydrolysis was increased within 10 min after addition of forskolin (10 microM), reached a maximum at 20-40 min, and then gradually declined in the cells. A similar activation of PDE4 activity was observed using a protein kinase A (PKA) activator, N(6)-monobutyryl cAMP. Both the forskolin and the N(6)-monobutyryl cAMP activated PDE4 activities were blocked by the PKA-specific inhibitor, H89. This forskolin-stimulated and PKA-mediated short-term activation of PDE4 activity was further confirmed by in vitro phosphorylation of 87kDa PDE4A6 and 83kDa PDE4B3 polypeptides using exogenous PKA Calpha. Increased immunoreactivity of phosphorylated PDE4A6 in situ was detected in Western blots by a PDE4A-phospho antibody specific to the putative PKA phosphorylation sites. Following long-term treatment of RPMVECs with rolipram and forskolin medium (RFM) for more than 60 days, PDE4 activity reached ten-fold higher values than control RPMVECS with twenty-fold increases detected in intracellular cAMP content. The RFM cells showed increased immunoreactivities of the constitutive 4A6 and 4B3 isoforms plus two novel splice variants at 101kDa (4B1) and 71kDa (4B2). Treatment with H89 did not inhibit the PDE4 elevation in RFM cells. In addition to the increased levels of PDE4 in RFM cells, immunofluorescence showed a translocation of PDE4A and 4B to a nuclear region, which was normally not observed in RPMVECs. The PDE4 activity in RFM cells decayed rapidly with an even faster decline of intracellular cAMP content when forskolin/rolipram were removed from the medium. These results suggest that both the activation (short-term) and induction (long-term) of PDE4A/4B isoforms in RPMVECs are closely modulated by the intracellular cAMP content via both post-translational and synthetic mechanisms. 相似文献
7.
Earlier investigations on vitamin-induced experimental atherosclerosis in rats suggested that smooth muscle cells (SMCs) play a pivotal role in development of these vascular abnormalities. This study demonstrates the effects of vitamin D (ergocalciferol) on SMCs of rat aorta in tissue culture. SMCs were obtained from aortas of newborn rats by enzymatic digestion and maintained for 6 wk in primary culture with vitamin D (1.2 n
) in the culture medium. The effects of vitamin D on SMCs, as compared with control SMCs cultures, were evaluated by light and electron microscopy. Growth of SMCs was characterized by cell counting, measurement of DNA and protein content, and by analysis of the nucleolar organizing regions. Vitamin D had no effect on proliferation of SMCs but stimulated synthesis and intercellular deposition of elastic fibres and had a stabilizing effect on the musculo-elastic multilayer formed by the cultured cells. In addition, it prevented degeneration of SMCs, with long-term preservation of the typical phenotype in primary culture. 相似文献
8.
Hikaru Hashitani Richard J Lang Retsu Mitsui Yoshio Mabuchi Hikaru Suzuki 《British journal of pharmacology》2009,158(8):2030-2045
Background and purpose:
We investigated the cellular mechanisms underlying spontaneous contractions in the mouse renal pelvis, regulated by calcitonin gene-related peptide (CGRP).Experimental approach:
Spontaneous contractions, action potentials and Ca2+ transients in typical and atypical smooth muscle cells (TSMCs and ATSMCs) within the renal pelvis wall were recorded separately using tension and intracellular microelectrode recording techniques and Fluo-4 Ca2+ imaging. Immunohistochemical and electron microscopic studies were also carried out.Key results:
Bundles of CGRP containing transient receptor potential cation channel, subfamily V, member 1-positive sensory nerves were situated near both TSMCs and ATSMCs. Nerve stimulation reduced the frequency but augmented the amplitude and duration of spontaneous phasic contractions, action potentials and Ca2+ transients in TSMCs. CGRP and agents increasing internal cyclic adenosine monophosphate (cAMP) mimicked the nerve-mediated modulation of TSMC activity and suppressed ATSMCs Ca2+ transients. Membrane hyperpolarization induced by CGRP or cAMP stimulators was blocked by glibenclamide, while their negative chronotropic effects were less affected. Glibenclamide enhanced TSMC Ca2+ transients but inhibited ATSMC Ca2+ transients, while both 5-hydroxydecanoate and diazoxide, a blocker and opener of mitochondrial ATP-sensitive K+ channels, respectively, reduced the Ca2+ transient frequency in both TSMCs and ATSMCs. Inhibition of mitochondrial function blocked ATSMCs Ca2+ transients and inhibited spontaneous excitation of TSMCs.Conclusions and implications:
The negative chronotropic effects of CGRP result primarily from suppression of ATSMC Ca2+ transients rather than opening of plasmalemmal ATP-sensitive K+ channels in TSMCs. The positive inotropic effects of CGRP may derive from activation of TSMC L-type Ca2+ channels. Mitochondrial Ca2+ handling in ATSMCs also plays a critical role in generating Ca2+ transients. 相似文献9.
Jennifer L Albert John P Boyle Jonathan A Roberts R A John Challiss Sharon E Gubby Michael R Boarder 《British journal of pharmacology》1997,122(5):935-941
- The blood-brain barrier is formed by capillary endothelial cells and is regulated by cell-surface receptors, such as the G protein-coupled P2Y receptors for nucleotides. Here we investigated some of the characteristics of control of brain endothelial cells by these receptors, characterizing the phospholipase C and Ca2+ response and investigating the possible involvement of mitogen-activated protein kinases (MAPK).
- Using an unpassaged primary culture of rat brain capillary endothelial cells we showed that ATP, UTP and 2-methylthio ATP (2MeSATP) give similar and substantial increases in cytosolic Ca2+, with a rapid rise to peak followed by a slower decline towards basal or to a sustained plateau. Removal of extracellular Ca2+ had little effect on the peak Ca2+-response, but resulted in a more rapid decline to basal. There was no response to α,β-MethylATP (α,βMeATP) in these unpassaged cells, but a response to this P2X agonist was seen after a single passage.
- ATP (log EC50 −5.1±0.2) also caused an increase in the total [3H]-inositol (poly)phosphates ([3H]-InsPx) in the presence of lithium with a rank order of agonist potency of ATP=UTP=UDP>ADP, with 2MeSATP and α,βMeATP giving no detectable response.
- Stimulating the cells with ATP or UTP gave a rapid rise in the level of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), with a peak at 10 s followed by a decline to a sustained plateau phase. 2MeSATP gave no detectable increase in the level of Ins(1,4,5)P3.
- None of the nucleotides tested affected basal cyclic AMP, while ATP and ATPγS, but not 2MeSATP, stimulated cyclic AMP levels in the presence of 5 μM forskolin.
- Both UTP and ATP stimulated tyrosine phosphorylation of p42 and p44 mitogen-activated protein kinase (MAPK), while 2MeSATP gave a smaller increase in this index of MAPK activation. By use of a peptide kinase assay, UTP gave a substantial increase in MAPK activity with a concentration-dependency consistent with activation at P2Y2 receptors. 2MeSATP gave a much smaller response with a lower potency than UTP.
- These results are consistent with brain endothelial regulation by P2Y2 receptors coupled to phospholipase C, Ca2+ and MAPK; and by P2Y1-like (2MeSATP-sensitive) receptors which are linked to Ca2+ mobilization by a mechanism apparently independent of agonist stimulated Ins (1,4,5)P3 levels. A further response to ATP, acting at an undefined receptor, caused an increase in cyclic AMP levels in the presence of forskolin. The differential MAPK coupling of these receptors suggests that they exert fundamentally distinct influences over brain endothelial function.
10.
Guerra de González L González de Alfonzo R Lippo de Bécemberg I Alfonzo MJ 《Biochemical pharmacology》2004,68(4):651-658
In bovine tracheal smooth muscle (TSM) strips, muscarinic antagonists (atropine, 4-DAMP, AFDX-116 and methoctramine) were able to increase simultaneously and a similar fashion the intracellular levels of cyclic nucleotides, with a cAMP/cGMP ratio higher than 2.0. These original pharmacological responses were time-and dose-dependent, exhibiting maximal values at 15 min, with a pEC(50) of 7.4 +/- 0.2 for atropine and 4-DAMP. These effects on cAMP and cGMP levels were similar to the ones obtained with isobutyl-methylxantine (IBMX, 10 microM), a non-selective cyclic nucleotide phosphodiesterase (PDE) inhibitor, suggesting the involvement of PDEs in these muscarinic antagonist responses. Neither, rolipram (10 microM), a specific PDEIV inhibitor, nor zaprinast (10 microM), a PDEV inhibitor, exhibited this "atropine-like" responses. Instead, atropine enhanced the increments of cAMP levels induced by rolipram and cGMP levels by zaprinast. However, vinpocetine (20 microM), a non-calmodulin dependent PDEIC inhibitor was able to mimic these muscarinic antagonist responses in intact smooth muscle strips. In addition, in cell free systems, muscarinic antagonists inhibited the membrane-bound PDEIC activity whereas soluble (cytosol) PDEIC activity was not affected by these muscarinic drugs. These results indicate that muscarinic antagonists acting possibly as inverse agonists on M(2)/M(3)mAChRs anchored to sarcolemma membranes can initiate a new signal transducing cascade leading to the PDEIC inhibition, which produced a simultaneous rise in both cAMP and cGMP intracellular levels in tracheal smooth muscle. 相似文献
11.
Kramer HJ Mensikova V Bäcker A Meyer-Lehnert H Gonick HC 《Biochemical pharmacology》2003,65(10):1741-1746
Dimercaptosuccinic acid (DMSA) was shown to lower blood pressure in rat models of arterial hypertension. Thus, there is evidence that-besides its chelating properties-DMSA has a direct vascular effect, e.g. through scavenging of reactive oxygen species (ROS). We speculated that, in addition, intracellular calcium mobilization may be involved in this action. Therefore, the present study examined the effects of DMSA on Ca(2+) mobilization in cultured vascular smooth muscle cells (VSMCs) from rat aorta. Intracellular free Ca(2+) concentration ([Ca(2+)](i)) was measured with fura-2 AM. In a first series of experiments DMSA, 10(-11) to 10(-6)M, induced an immediate dose-dependent up to 4-fold rise of [Ca(2+)](i) (P<0.001) which was almost completely blunted by the calcium channel blocker verapamil or the intracellular calcium release blocker TMB-8. In a second series of experiments, when VSMCs were exposed acutely to DMSA (10(-11) to 10(-6)M), the angiotensin (ANG) II (10(-8)M)-induced rise in [Ca(2+)](i) to 295+/-40nM was attenuated at the average by 49% independent of the dose of DMSA. Preincubation of VSMCs with DMSA (10(-6)M) for 60min reduced basal [Ca(2+)](i) by 77% (P<0.001) and dose-dependently attenuated the ANG II (10(-8)M)-induced rise in [Ca(2+)](i) between 28 and 69% at concentrations between 10(-9) and 10(-5)M DMSA, respectively (P<0.05 and <0.01). In the presence of TMB-8, which attenuated the ANG II (10(-8)M)-induced rise in [Ca(2+)](i) by 66%, DMSA (10(-6)M) had no additional suppressive effect on [Ca(2+)](i). The results suggest that DMSA acutely raises [Ca(2+)](i) by stimulating transmembrane calcium influx via L-type calcium channels and by calcium release from intracellular stores followed by a decrease in [Ca(2+)](i) probably due to cellular calcium depletion. Thus, in addition to its action as scavenger of ROS, which in part mediate the vasoconstrictor response, e.g. to ANG II, DMSA may exert its hypotensive effect through decreasing total cell calcium, thereby attenuating the vasoconstrictor-induced rise in [Ca(2+)](i) in VSMCs. 相似文献
12.
Sook-Kyoung Heo Hyo-Seung YiHyun-Jeong Yun Chang-Hyun KoJae-Woo Choi Sun-Dong Park 《Food and chemical toxicology》2010
DraconisResina (DR) is a type of dragon’s blood resin obtained from Daemomoropsdraco BL. (Palmae). DR has long been used as a traditional Korean herbal medicine, and is currently used in traditional clinics to treat wounds, tumors, diarrhea, and rheumatism, insect bites and other conditions. In this study, we evaluated fractionated extracts of DR to determine if they inhibited the production of interleukin-1β (IL-1β) and the expression of cyclooxygenase (COX)-2. The results of this analysis revealed that the ethylacetate extract of DraconisResina (DREA) was more potent than that of other extracts. Moreover, DREA inhibited the production of nitric oxide (NO), reactive oxygen species (ROS), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), IL-8 and IL-6 in lipopolysaccharide (LPS)-treated human aortic smooth muscle cells (HASMC) and RAW 264.7 macrophages. Furthermore, treatment with an NADPH oxidase assembly inhibitor, AEBSF, efficiently blocked LPS-induced mitogen-activated protein kinases (MAPKs) activation, as did DREA. These findings indicate that DREA inhibits the production of NO, PGE2, TNF-α, IL-8, and IL-6 by LPS via the inhibition of ROS production, which demonstrates that DREA inhibits LPS-induced inflammatory responses via the suppression of ROS production. Taken together, these results indicate that DREA has the potential for use as an anti-atherosclerosis agent. 相似文献
13.
Günther Sillero MA de Diego A Pérez-Zúñiga FJ Sillero A 《Biochemical pharmacology》2008,75(10):1959-1965
T4 DNA ligase and the ubiquitin activating enzyme (E1), catalyze the synthesis of ATP beta,gamma-bisphosphonate derivatives. Concerning T4 DNA ligase: (i) etidronate (pC(OH)(CH(3))p) displaced the AMP moiety of the complex E-AMP in a concentration dependent manner; (ii) the K(m) values and the rate of synthesis k(cat) (s(-1)), determined for the following compounds were, respectively: etidronate, 0.73+/-0.09 mM and (70+/-10)x10(-3) s(-1); clodronate (pCCl(2)p), 0.08+/-0.01 mM and (4.1+/-0.3)x10(-3) s(-1); methylenebisphosphonate (pCH(2)p), 0.024+/-0.001 mM and (0.6+/-0.1)x10(-3) s(-1); tripolyphosphate (P(3)) (in the synthesis of adenosine 5'-tetraphosphate, p(4)A), 1.30+/-0.30 mM and (6.2+/-1.1)x10(-3) s(-1); (iii) in the presence of GTP and ATP, inhibition of the synthesis of Ap(4)G was observed with clodronate but not with pamidronate (pC(OH)(CH(2)-CH(2)-NH(3))p). Concerning the ubiquitin activating enzyme (E1): methylenebisphosphonate was the only bisphosphonate, out of the ones tested, that served as substrate for the synthesis of an ATP derivative (K(m)=0.36+/-0.09 mM and k(cat)=0.15+/-0.02 s(-1)). None of the above bisphosphonates were substrates of the reaction catalyzed by luciferase or by acyl-CoA synthetase. The ability of acetyl-CoA synthetase to use methylenebisphosphonate as substrate depended on the commercial source of the enzyme. In our view this report widens our knowledge of the enzymes able to metabolize bisphosphonates, a therapeutic tool widely used in the treatment of osteoporosis. 相似文献
14.
Bauer PI Mendeleyeva J Kirsten E Comstock JA Hakam A Buki KG Kun E 《Biochemical pharmacology》2002,63(3):455-462
E-ras 20 tumorigenic malignant cells and CV-1 non-tumorigenic cells were treated with a drug combination of 4-iodo-3-nitrobenzamide (INO(2)BA) and buthionine sulfoximine (BSO). Growth inhibition of E-ras 20 cells by INO(2)BA was augmented 4-fold when cellular GSH content was diminished by BSO, but the growth rate of CV-1 cells was not affected by the drug combination. Analyses of the intracellular fate of the prodrug INO(2)BA revealed that in E-ras 20 cells about 50% of the intracellular reduced drug was covalently protein-bound, and this binding was dependent upon BSO, whereas in CV-1 cells BSO did not influence protein binding. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified as the protein that covalently binds the reduction product of INO(2)BA, which is 4-iodo-3-nitrosobenzamide. Since only the enzymatically reduced drug INOBA bound covalently to GAPDH, the BSO-dependent covalent protein-drug association indicated an apparent nitro-reductase activity present in E-ras 20 cells, but not in CV-1 cells, explaining the selective toxicity. Covalent binding of INOBA to GAPDH inactivated this enzyme in vitro; INO(2)BA+BSO also inactivated cellular glycolysis in E-ras 20 cells because it provided the precursor to the inhibitory species: INOBA. Another event that occurred in INO(2)BA+BSO-treated E-ras 20 cells was the progressive appearance of a poly(ADP-ribose) polymerase protease. This enzyme was partially purified and characterized by the polypeptide degradation product generated from PARP I, which exhibited a 50kDa mass. This pattern of proteolysis of PARP I is consistent with a drug-induced necrotic cell killing pathway. 相似文献
15.
16.
Prostaglandin-endoperoxide synthase-2 (PGH-synthase) or cyclooxygenase-2 (COX-2) is inducible by a variety of stimuli, e.g. inflammatory mediators, growth factors and hormones and is believed to be responsible for the majority of inflammatory prostanoid production. Moreover, it has been demonstrated that COX-2 contributes substantially to prostacyclin-synthesis in patients with atherosclerosis. In this study, we demonstrate an up-regulation of COX-2 mRNA, protein and product formation by the prostacyclin-mimetic iloprost in human vascular smooth muscle cells (hSMC). COX-2 mRNA expression was induced transiently between 1 and 6 hr and returned to basal levels after 16 hr of iloprost stimulation. COX-2 protein was induced concomitantly between 3 and 6 hr of iloprost stimulation. This was accompanied by an increase in PGI(2) formation. Forskolin, a direct activator of adenylyl cyclase, and dibutyryl cAMP, a cell-permeable cAMP analogue-induced COX-2 mRNA, suggesting a cAMP-dependent COX-2 expression in hSMC. Iloprost-induced COX-2 protein expression and PGI(2) formation was synergistically elevated by co-stimulation with the phorbolester PMA (phorbol-12-myristate-13-acetate). It is concluded, that the observed up-regulation of COX-2 with subsequent release of newly synthesized PGI(2) and the synergistic effect of iloprost and phorbolester on PGI(2) formation provide a positive feedback of prostaglandins on their own synthesizing enzyme. This might be important for control of hSMC proliferation, migration and differentiation as well as inhibition of platelet aggregation. 相似文献
17.
Chronic airway inflammation induces numerous structural changes of the airways involving hypertrophy and hyperplasia of airway smooth muscle (ASM). Thrombin has been identified in the bronchoalveolar lavage fluid of asthmatic subjects and displays potent bronchoconstrictor and mitogenic activity towards ASM. This study has addressed which proteinase-activated receptors (PARs) and signalling pathways are involved in mediating distinct effects of thrombin. Using cultured bovine tracheal smooth muscle (BTSM) cells as a model system, thrombin stimulated a marked increase in [3H]inositol phosphate ([3H]InsPs) accumulation, which was fully mimicked by a selective PAR1 activating peptide. In contrast, PAR1, PAR2, PAR3 and PAR4 activating peptides were unable to replicate the ability of thrombin to stimulate DNA synthesis as assessed by [3H]thymidine incorporation. Further investigation demonstrated that the mitogenic effect of thrombin did not involve stimulation of PDGF secretion but did involve activation of PDGF or EGF receptors and a Gi/o-dependent activation of phosphoinositide 3-kinase. Thrombin, but not the PAR1, PAR2, PAR3 or PAR4 activating peptides was able to stimulate PtdIns(3,4,5)P3 mass accumulation. PAR3 antisense oligonucleotides substantially inhibit thrombin-stimulated [3H]thymidine incorporation and PtdIns(3,4,5)P3 generation but had no effect on thrombin-induced phosphoinositide hydrolysis. These data indicate that while PI hydrolysis and Ca2+ mobilisation induced by thrombin operates via PAR1-dependent activation of phospholipase C, phosphoinositide 3-kinase activation and DNA synthesis occurs via a distinct proteinase-activated receptor pathway, possibly involving PAR3. 相似文献
18.
Shin VY Jin HC Ng EK Yu J Leung WK Cho CH Sung JJ 《Toxicology and applied pharmacology》2008,233(2):254-261
Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor (α7 nAChR) and β-adrenergic receptors. Treatment of cells with α-bungarotoxin (α-BTX, α7nAChR antagonist) or propranolol (β-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE2 and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE2 induction can only be suppressed by propranolol, but not α-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis. 相似文献
19.
Chalupsky K Lobysheva I Nepveu F Gadea I Beranova P Entlicher G Stoclet JC Muller B 《Biochemical pharmacology》2004,67(6):1203-1214
Various oxime derivatives were evaluated as nitric oxide (NO) donors in arteries. Relaxation of rat aortic rings was used for bioassay of NO production, and electron paramagnetic resonance spectroscopy for demonstration of NO elevation. In rings with or without endothelium or adventitia, hydroxyguanidine and hydroxyurea were almost inactive, whereas formamidoxime, acetaldoxime, acetone oxime, acetohydroxamic acid and formaldoxime elicited relaxation. Active compounds increased NO levels in endothelium-denuded rings. Formaldoxime was the most potent agent for both relaxation and NO elevation in aortic rings, and it also increased NO in human aortic smooth muscle cells. In endothelium-denuded rings, relaxation was inhibited by a NO scavenger (2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide) and by inhibitors of soluble guanylyl-cyclase (1H[1,2,4,]oxadiazolo[4,3-a]quinoxalin-1-one) or cyclic GMP-dependent protein kinases (Rp-8-bromo cyclic GMP monophosphorothioate). Neither N(omega)-nitro-l-arginine methylester (a NO synthases inhibitor) nor proadifen (a cytochrome P450 inhibitor) decreased the effect of oxime derivatives. However, 7-ethoxyresorufin (7-ER, an inhibitor of P4501A(1) which can also inhibit various NADPH-dependent reductases) abolished the relaxant effect of these compounds, without affecting the one of glyceryl trinitrate (GTN) or 2-(N,N-diethylamino)-diazenolate-2-oxide. 7-ER also abolished formaldoxime-induced NO increase in aortic rings. In rings tolerant to GTN, formaldoxime-induced relaxation and NO elevation were not different from those obtained in control rings. In conclusion, some oxime derivatives release NO by 7-ER-sensitive pathways in aortic smooth muscle, thus eliciting vasorelaxation. Pathways of NO formation are likely distinct from NO synthases and from those responsible for GTN biotransformation. Oxime derivatives could be useful for NO delivery in arteries in which endothelial NO synthase activity is impaired. 相似文献
20.
Rajendra Mistry Nicki Golding R A John Challiss 《British journal of pharmacology》1998,123(3):581-589
- The interactive effects of different metabotropic glutamate (mGlu) receptor subtypes to regulate phosphoinositide turnover have been studied in neonatal rat cerebral cortex and hippocampus by use of agonists and antagonists selective between group I and II mGlu receptors.
- The group II-selective agonist 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (2R,4R-APDC; 100 μM) had no effect on basal total inositol phosphate ([3H]-InsPx) accumulation (in the presence of Li+) in myo-[3H]-inositol pre-labelled slices, but enhanced the maximal [3H]-InsPx response to the group I-selective agonist (S)-3,5-dihydroxyphenylglycine (DHPG) by about 100% in both hippocampus and cerebral cortex. In cerebral cortex the enhancing effect of 2R,4R-APDC occurred with respect to the maximal responsiveness and had no effect on EC50 values for DHPG (-log EC50 (M): control, 5.56±0.05; +2R,4R-APDC, 5.51±0.08). 2R,4R-APDC also caused a significant enhancement of the DHPG-stimulated inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) mass response over an initial 0–300 s time-course.
- The enhancing effects of 2R,4R-APDC on DHPG-stimulated [3H]-InsPx accumulation were observed in both the presence and nominal absence of extracellular Ca2+, and irrespective of whether 2R,4R-APDC was added before, simultaneous with, or subsequent to DHPG. Furthermore, increasing the tissue cyclic AMP concentration up to 100 fold had no effect on DHPG-stimulated Ins(1,4,5)P3 accumulation in the absence or presence of 2R,4R-APDC.
- 2R,4R-APDC and (2S, 1′R, 2′R, 3′R)-2-(2,3-dicarboxylcyclopropyl)glycine (DCG-IV), the latter agent in the presence of MK-801 to prevent activation of NMDA-receptors, each inhibited forskolin-stimulated cyclic AMP accumulation by about 50%, with respective EC50 values of 1.3 and 0.04 μM (-log EC 50 (M): 2R,4R-APDC, 5.87±0.09; DCG-IV, 7.38±0.05). In the presence of DHPG (30 μM), 2R,4R-APDC and DCG-IV also concentration-dependently increased [3H]-InsPx accumulation with respective EC50 values of 4.7 and 0.28 μM (-log EC50 (M): 2R,4R-APDC, 5.33±0.04; DCG-IV, 6.55±0.09) which were 3–7 fold rightward-shifted relative to the adenylyl cyclase inhibitory responses.
- The group II-selective mGlu receptor antagonist (30 μ LY307452M) caused parallel rightward shifts in the concentration-effect curves for inhibition of forskolin-stimulated adenylyl cyclase, and enhancement of DHPG-stimulated [3H]-InsPx accumulation, by 2R,4R-APDC yielding similar equilibrium dissociation constants (Kds, 3.7±1.1 and 4.1±0.4 μM respectively) for each response.
- The ability of 2R,4R-APDC to enhance receptor-mediated [3H]-InsPx accumulation appeared to be agonist-specific; thus although DHPG (100 μM) and the muscarinic cholinoceptor agonist carbachol (10 μM) stimulated similar [3H]-InsPx accumulations, only the response to the former agonist was enhanced by co-activation of group II mGlu receptors.
- These data demonstrate that second messenger-generating phosphoinositide responses stimulated by group I mGlu receptors are positively modulated by co-activation of group II mGlu receptors in cerebral cortex and hippocampus. The data presented here are discussed with respect to the possible mechanisms which might mediate the modulatory activity, and the physiological and pathophysiological significance of such crosstalk between mGlu receptors.