首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
  1. Responses in brain produced by the activation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) subtype of ionotropic receptor for L-glutamate are often rapidly desensitizing. AMPA-induced desensitization and its characteristics, and the potentiating effect of cyclothiazide were investigated in vitro by analysing AMPA-induced release of [3H]-noradrenaline from prisms of rat hippocampus.
  2. AMPA (1–1000 μM) stimulated the release of [3H]-noradrenaline in a concentration-dependent manner that was both calcium-dependent and tetrodotoxin-sensitive, and attenuated by the AMPA-selective antagonists, NBQX (1 and 10 μM), LY 293558 (1 and 10 μM) and GYKI 52466 (10 and 30 μM).
  3. By use of an experimental procedure with consecutive applications of AMPA (100 μM, 28 min apart), the second response was reduced, indicative of receptor desensitization, and was reversed by cyclothiazide in a concentration-dependent manner (1–300 μM). The concentration-response curve for AMPA-induced release of [3H]-noradrenaline was shifted leftwards, but the reversal by cyclothiazide of the desensitized response was partial and failed to reach the maximal response of the first stimulus.
  4. Observations made with various schedules of cyclothiazide application indicated that the initial AMPA-evoked response was already partially desensitized (150% potentiation by 100 μM cyclothiazide) and that the desensitization was not likely to be due to a time-dependent diminution and was long-lasting (second application of cyclothiazide was ineffective).
  5. Co-application of a number of drugs with actions on second messenger systems, in association with the second AMPA stimulus, revealed significant potentiation of the AMPA-induced release of [3H]-noradrenaline: forskolin (10 μM, +78%), Rp-cAMPS (100 μM, +65%), Ro 31-8220 (10 μM, + 163%) and thapsigargin (100 μM, +161%).
  6. The AMPA receptor-mediated response regulating the release of [3H]-noradrenaline from rat hippocampal slices was desensitized and cyclothiazide acted to reverse partially the desensitization in a concentration-dependent manner. Since the time-course of desensitization was longer lasting than that noted in previous electrophysiological studies, multiple events may be involved in the down-regulation of AMPA receptor activity including receptor phosphorylation and depletion of intracellular Ca2+ stores.
  相似文献   

2.
  1. Levcromakalim caused concentration-dependent relaxations of methoxamine-induced tone in both endothelium-denuded and intact vessels. Its potency was reduced by the nitric oxide donor, S-nitroso-N-acetylpenicillamine (SNAP; 0.1 μM or 1 μM) in both denuded and intact vessels. The maximal relaxation (Rmax) was reduced only in denuded vessels.
  2. SNAP was more potent in endothelium-denuded than intact vessels but there were no differences in Rmax. Glibenclamide (10 μM) did not affect relaxation to SNAP in endothelium-denuded or intact vessels.
  3. The soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 μM) increased the potency and Rmax of levcromakalim in endothelium-intact vessels. ODQ had no effect in denuded vessels.
  4. ODQ (10 μM) reduced the vasorelaxant potency of SNAP in both intact and endothelium-denuded vessels by 190-fold and 620-fold, respectively.
  5. 8-bromo cyclic GMP (10 or 30 μM) reduced both the potency and Rmax of levcromakalim in de-endothelialized vessels, but had no effect in intact vessels although it reduced both the potency and Rmax of levcromakalim in intact vessels incubated with ODQ (10 μM).
  6. In the presence of ODQ (10 μM), SNAP (0.1 μM or 1 μM) reduced the potency of levcromakalim in intact vessels, without altering Rmax, but had no effect in denuded vessels. SNAP (50 μM) reduced both the potency and Rmax of levcromakalim in intact and endothelium-denuded vessels.
  7. Therefore, although SNAP causes relaxation principally through generation of cyclic GMP, it can modulate the actions of levcromakalim through mechanisms both dependent on, and independent of, cyclic GMP; the former predominate in endothelium-denuded vessels and the latter in intact vessels.
  相似文献   

3.
  1. Interations were investigated between loreclezole, chlormethiazole and pentobarbitone as potentiators of depolarization responses mediated by γ-aminobutyric acidA (GABAA) receptors on afferent nerve terminals in the rat cuneate nucleus in vitro. These drugs were also compared as modulators of [3H]-flunitrazepam (FNZ) binding to synaptic membranes prepared from rat whole brain homogenate.
  2. In rat cuneate nucleus slices, the drugs shifted muscimol log dose–response lines to the left in an approximately parallel fashion with the result that 200 μM chlormethiazole potentiated muscimol responses by 0.567±0.037 log unit (mean±s.e.mean, n=4) while loreclezole gave a maximal potentiation at 10 μM of only 0.121±0.037 (n=6) log unit and 0.071±0.039 (n=22) at 50 μM.
  3. While 50 μM chlormethiazole and 30 μM pentobarbitone showed no significant interactions between each other when potentiating muscimol responses in combination, 50 μM loreclezole in combination with either chlormethiazole or pentobarbitone attenuated their potentiating effects, possibly by inducing desensitization of GABAA receptors.
  4. In the [3H]-FNZ binding studies on well-washed membranes, loreclezole enhanced binding to a maximum of 47.3±2.83% of control (mean±s.e.mean, n=3) at 300 μM. Scatchard analysis revealed no change in Bmax but a decrease in KD for [3H]-FNZ from 3.9±0.29 nM to 2.7±0.10 nM (mean±s.e.mean, n=4) in the presence of 100 μM loreclezole. In contrast, 100 μM chlormethiazole caused no potentiation. A small component of the enhancement by loreclezole could be blocked by 100 μM bicuculline and could also be blocked by 100 μM chlormethiazole. It seems likely that the effects on [3H]-FNZ binding are due predominantly to direct actions of the drugs on the GABAA receptor and are separate from the GABA-potentiating effects.
  5. The results indicate distinctly different profiles of action for loreclezole, chlormethiazole and pentobarbitone on GABAA receptors.
  相似文献   

4.
  1. The haeme-containing soluble guanylyl cyclase (α1β1-heterodimer) is a major intracellular receptor and effector for nitric oxide (NO) and carbon monoxide (CO) and mediates many of their biological actions by increasing cyclic GMP. We have synthesized new oxadiazolo-benz-oxazins and have assessed their inhibitory actions on guanylyl cyclase activity in vitro, on the formation of cyclic GMP in cultured cells and on the NO-dependent relaxation of vascular and non-vascular smooth muscle.
  2. Soluble guanylyl cyclase, purified to homogeneity from bovine lung, was inhibited by 4H-8-bromo-1,2,4-oxadiazolo(3,4-d)benz(b)(1,4)oxazin-1-one (NS 2028) in a concentration-dependent and irreversible manner (IC50 30 nM for basal and 200 nM for NO-stimulated enzyme activity). Evaluation of the inhibition kinetics according to Kitz & Wilson yielded a value of 8 nM for Ki, the equilibrium constant describing the initial reversible reaction between inhibitor and enzyme, and 0.2 min−1 for the rate constant k3 of the subsequent irreversible inhibition. Inhibition was accompanied by a shift in the soret absorption maximum of the enzyme''s haem cofactor from 430 to 390 nm.
  3. S-nitroso-glutathione-enhanced soluble guanylyl cyclase activity in homogenates of mouse cerebellum was inhibited by NS 2028 (IC50 17 nM) and by 17 structural analogues in a similar manner, albeit with different potency, depending on the type of substitution at positions 1, 7 and 8 of the benzoxazin structure. Small electronegative ligands such as Br and Cl at position 7 or 8 increased and substitution of the oxygen at position 1 by -S-,- NH- or -CH2- decreased the inhibition.
  4. In tissue slices prepared from mouse cerebellum, neuronal NO synthase-dependent activation of soluble guanylyl cyclase by the glutamate receptor agonist N-methyl-D-aspartate was inhibited by NS 2028 (IC50 20 nM) and by two of its analogues. Similarly, 3-morpholino-sydnonimine (SIN-1)-elicited formation of cyclic GMP in human cultured umbilical vein endothelial cells was inhibited by NS 2028 (IC50 30 nM).
  5. In prostaglandin F-constricted, endothelium-intact porcine coronary arteries NS 2028 elicited a concentration-dependent increase (65%) in contractile tone (EC50 170 nM), which was abolished by removal of the endothelium. NS 2028 (1 μM) suppressed the relaxant response to nitroglycerin from 88.3±2.1 to 26.8±6.4% and induced a 9 fold rightward shift (EC50 15 μM) of the concentration-relaxation response curve to nitroglycerin. It abolished the relaxation to sodium nitroprusside (1 μM), but did not affect the vasorelaxation to the KATP channel opener cromakalim. Approximately 50% of the relaxant response to sodium nitroprusside was recovered after 2 h washout of NS 2028.
  6. In phenylephrine-preconstricted, endothelium-denuded aorta of the rabbit NS 2028 (1 μM) did not affect relaxant responses to atrial natriuretic factor, an activator of particulate guanylyl cyclase, or forskolin, an activator of adenylyl cyclase.
  7. NO-dependent relaxant responses in non-vascular smooth muscle were also inhibited by NS 2028. The nitroglycerin-induced relaxation of guinea-pig trachea preconstricted by histamine was fully inhibited by NS 2028 (1 μM), whereas the relaxations to terbutaline, theophylline and vasoactive intestinal polypeptide (VIP) were not affected. The relaxant responses to electrical field stimulation of non-adrenergic, non-cholinergic nerves in the same tissue were attenuated by 50% in the presence of NS 2028 (1 μM).
  8. NS 2028 and its analogues, one of which is the previously characterized 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ), appear to be potent and specific inhibitors of soluble guanylyl cyclase present in various cell types. Oxidation and/or a change in the coordination of the haeme-iron of guanylyl cyclase is a likely inhibitory mechanism.
  相似文献   

5.
  1. Clozapine has recently been claimed to behave as a selective and full agonist at the cloned m4 muscarinic receptor artificially expressed in Chinese hamster ovary (CHO) cells. In the present study we have investigated whether clozapine could activate the rat striatal muscarinic receptors coupled to the inhibition of adenylyl cyclase activity, considered as pharmacologically equivalent to the m4 gene product. In addition, we have examined the effect of the drug on various functional responses following the activation of the cloned m4 receptor expressed in CHO cells.
  2. In rat striatum, clozapine (1 nM–10 μM) caused a slight inhibition of forskolin-stimulated adenylyl cyclase activity, which was not counteracted by 10 μM atropine. On the other hand, clozapine antagonized the inhibitory effect of acetylcholine with a pA2 value of 7.51. Moreover, clozapine (1 μM) failed to inhibit dopamine D1 receptor stimulation of adenylyl cyclase activity, but counteracted the inhibitory effect of carbachol (CCh). Clozapine displaced [3H]-N-methylscopolamine ([3H]-NMS) bound to striatal M4 receptors with a monophasic inhibitory curve and a pKi value of 7.69. The clozapine inhibition was not affected by the addition of guanosine-5′-O-(thio)triphosphate (GTPγS).
  3. In intact CHO cells, clozapine inhibited forskolin-stimulated cyclic AMP accumulation with an EC50 of 31 nM. This effect was antagonized by atropine. CCh produced a biphasic effect on cyclic AMP levels, inhibiting at concentrations up to 1 μM (EC50=50 nM) and stimulating at higher concentrations (EC50=7 μM). Clozapine (0.3–5 μM) antagonized the CCh stimulation of cyclic AMP with a pKi value of 7.47. Similar results were obtained when the adenylyl cyclase activity was assayed in CHO cell membranes.
  4. In CHO cells pretreated with the receptor alkylating agent 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (10 μM), the maximal inhibitory effect of clozapine on cyclic AMP formation was markedly reduced, whereas the CCh inhibitory curve was shifted to the right with no change in the maximum.
  5. As in rat striatum, in CHO cell membranes the displacement of [3H]-NMS binding by clozapine yielded a monophasic curve which was not affected by GTPγS.
  6. Clozapine (10 nM–10 μM) had a small stimulant effect (∼20%) on the binding of [35S]-GTPγS to CHO cell membranes, whereas CCh caused a 250% increase of radioligand binding. Moreover, clozapine (50 nM–5 μM) antagonized the CCh-stimulated [35S]-GTPγS binding with a pA2 value of 7.48.
  7. These results show that at the striatal M4 receptors clozapine is a potent and competitive antagonist, whereas at the cloned m4 receptor it elicits both agonist and antagonist effects. Thus, clozapine behaves as a partial agonist, rather than as a full agonist, at the m4 receptor subtype, with intrinsic activity changing as a function of the coupling efficiency of the receptor to effector molecules.
  相似文献   

6.
  1. The pharmacological features of the pre- and postsynaptic metabotropic glutamate receptors (mGluRs) present in the guinea-pig olfactory cortex, were examined in brain slices in vitro by use of a conventional intracellular current clamp/voltage clamp recording technique.
  2. Bath-application of trans-aminocyclopentane-1,3-dicarboxylic acid (trans-ACPD) (50 μM) produced a sustained membrane depolarization, increase in cell excitability and induction of a post-stimulus inward (afterdepolarizing) tail current (IADP) (measured under ‘hybrid'' voltage clamp) similar to those evoked by the muscarinic receptor agonist oxotremorine-M (OXO-M, 2 μM).
  3. L-Glutamate (0.25–1 mM, in the presence of 20 μM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 100 μM DL-amino-5-phosphono valeric acid (DL-APV)) or the broad spectrum mGluR agonists 1S,3R-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD, 10 μM), 1S,3S-ACPD (50 μM), ibotenate (Ibo; 25 μM, in the presence of 100 μM DL-APV), the selective mGluR I agonists (S)-3,5-dihydroxyphenylglycine ((S)-3,5-DHPG, 10 μM), (S)-3-hydroxyphenylglycine ((S)-3HPG, 50 μM), or quisqualate (10 μM, in the presence of 20 μM CNQX), but not the mGluR II agonist 2S,1′S,2′S-2-(2′-carboxycyclopropyl)-glycine (L-CCGI, 1 μM) or mGluR III agonist L(+)-2-amino-4-phosphonobutyric acid (L-AP4, 1 mM), were all effective in producing membrane depolarization and inducing a post-stimulus IADP. Unexpectedly, the proposed mGluR II-selective agonist (2S,1′R,2′R,3′R)-2-(2′,3′-dicarboxycyclopropyl)-glycine (DCG-IV, 10 μM, in the presence of 100 μM DL-APV) was also active.
  4. The excitatory effects induced by 10 μM 1S,3R-ACPD were reversibly antagonized by the mGluR I/II antagonist (+)-α-methyl-4-carboxyphenylglycine ((+)-MCPG, 0.5–1 mM), as well as the selective mGluR I antagonists (S)-4-carboxyphenylglycine ((S)-4CPG) and (S)-4-carboxy-3-hydroxyphenyl glycine ((S)-4C3HPG) (both at 1 mM), but not the nonselective mGluR antagonist L(+)-2-amino-3-phosphonopropionic acid (L-AP3, 1 mM) or the selective mGluR III antagonist (S)-α-methyl-L-AP4 (MAP4, 1 mM).
  5. The excitatory postsynaptic potentials (e.p.s.ps), induced by single focal stimulation of cortical excitatory fibre tracts, were markedly reduced by 1S,3R-ACPD or L-AP4 (both at 10 μM), and by the selective mGluR II agonists (mGluR I antagonists) (S)-4CPG or (S)-4C3HPG (both at 1 mM) but not (S)-3,5-DHPG or (S)-3HPG (both at 100 μM).
  6. The inhibitory effects of 1S-3R-ACPD, but not L-AP4, were reversibly blocked by (+)-MCPG (1 mM), whereas those produced by L-AP4, but not 1S,3R-ACPD, were blocked by the selective mGluR III antagonist MAP4 (1 mM).
  7. It is concluded that a group I mGluR is most likely involved in mediating excitatory postsynaptic effects, whereas two distinct mGluRs (e.g. group II and III) might serve as presynaptic inhibitory autoreceptors in the guinea-pig olfactory cortex.
  相似文献   

7.
  1. The aim of the study was to determine whether a nerve-derived hyperpolarizing factor (NDHF) might contribute to non-adrenergic, non-cholinergic (NANC) relaxations of the mouse anococcygeus when low concentrations of contractile agent are used to raise tone and low frequencies of field stimulation applied; such a non-nitrergic NDHF has been proposed to contribute to NANC relaxations of the rat anococcygeus and guinea-pig taenia coli.
  2. Phenylephrine (0.1–100 μM) produced concentration-related contractions of the mouse isolated anococcygeus muscle; 0.2 μM phenylephrine (EC26) was used to raise tone in subsequent experiments.
  3. Field stimulation (0.5, 1.0 and 5.0 Hz) produced frequency-dependent relaxations of phenylephrine-induced tone. In the presence of the nitric oxide synthase inhibitor L-NG-nitro-arginine (L-NOARG; 100 μM), the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxodiazolo[4,3-a]quinoxalin-1-one (ODQ; 5 μM), or a combination of these two drugs, relaxations to field stimulation were abolished at all frequencies studied. Relaxations to sodium nitroprusside (0.01–5 μM) were unaffected by L-NOARG but strongly inhibited by ODQ; neither enzyme inhibitor affected relaxations to 8-Br-cyclic GMP (10 μM).
  4. Nifedipine (1 μM) reduced the contractile response to 0.2 μM phenylephrine by 38%; however, it had no effect on NANC relaxations.
  5. It is concluded that NANC relaxations of the mouse anococcygeus are purely nitrergic and that there is no significant contribution from a putative NDHF.
  相似文献   

8.
  1. The present study has utilized the two electrode voltage-clamp technique to examine the pharmacological profile of a splice variant of the rat orthologue of the 5-hydroxytryptamine type 3A subunit (5-HT3A(b)) heterologously expressed in Xenopus laevis oocytes.
  2. At negative holding potentials, bath applied 5-HT (300 nM–10 μM) evoked a transient, concentration-dependent (EC50=1.1±0.1 μM), inward current. The response reversed in sign at a holding potential of −2.1±1.6 mV.
  3. The response to 5-HT was mimicked by the 5-HT3 receptor selective agonists 2-methyl-5-HT (EC50=4.1±0.2 μM), 1-phenylbiguanide (EC50=3.0±0.1 μM), 3-chlorophenylbiguanide (EC50=140± 10 nM), 3,5-dichlorophenylbiguanide (EC50=14.5±0.4 nM) and 2,5-dichlorophenylbiguanide (EC50= 10.2±0.6 nM). With the exception of 2-methyl-5-HT, all of the agonists tested elicited maximal current responses comparable to those produced by a saturating concentration (10 μM) of 5-HT.
  4. Responses evoked by 5-HT at EC50 were blocked by the 5-HT3 receptor selective antagonist ondansetron (IC50=231±22 pM) and by the less selective agents (+)-tubocurarine (IC50=31.9± 0.01 nM) and cocaine (IC50=2.1±0.2 μM).
  5. The data are discussed in the context of results previously obtained with the human and mouse orthologues of the 5-HT3A subunit. Overall, the study reinforces the conclusion that species differences detected for native 5-HT3 receptors extend to, and appear largely explained by, differences in the properties of homo-oligomeric receptors formed from 5-HT3A subunit orthologues.
  相似文献   

9.
  1. The β-adrenoceptor agonist, isoprenaline, inhibited the IgE-mediated release of histamine from human lung mast cells (HLMC) in a dose-dependent manner. Maximal inhibitory effects were obtained with 0.1 μM isoprenaline. However, the inhibition of histamine release from HLMC by isoprenaline (0.1 μM) was highly variable ranging from 33 to 97% inhibition (mean, 59±3%, n=27).
  2. Long-term (24 h) incubation of HLMC with isoprenaline led to a subsequent reduction in the ability of a second exposure of isoprenaline to inhibit IgE-mediated histamine release from HLMC. The impairment in the ability of isoprenaline (0.1 μM) to inhibit histamine release following desensitizing conditions (1 μM isoprenaline for 24 h) was highly variable amongst HLMC preparations ranging from essentially negligible levels of desensitization in some preparations to complete abrogation of the inhibitory response in others (mean, 65±6% desensitization, n=27).
  3. The ability of HLMC to recover from desensitization was investigated. Following desensitizing conditions (1 μM isoprenaline for 24 h), HLMC were washed and incubated for 24 h in buffer and the effectiveness of isoprenaline (0.1 μM) to inhibit IgE-mediated histamine release from HLMC was assessed. The extent of recovery was highly variable with some HLMC preparations failing to recover and others displaying a complete restoration of responsiveness to isoprenaline (mean, 40±6% recovery, n=23).
  4. The effects of the glucocorticoid, dexamethasone, were also investigated. Long-term (24–72 h) treatments with dexamethasone (0.1 μM) had no effect on IgE-mediated histamine release from HLMC. Additionally, long-term (24–72 h) treatments with dexamethasone (0.1 μM) had no effect on the effectiveness of isoprenaline to inhibit histamine release. However, long-term (24–72 h) treatments with dexamethasone (0.1 μM) protected against the functional desensitization induced by incubation (24 h) of HLMC with isoprenaline (1 μM). The protective effect was time-dependent and pretreatment of HLMC with dexamethasone for either 24, 48 or 72 h prevented desensitization by either 15±7, 19±5 or 51±10%, respectively (n=5–7).
  5. HLMC preparations which were relatively refractory to isoprenaline even after withdrawal (24 h) from desensitizing conditions responded more effectively to isoprenaline (0.1 μM) if dexamethasone (0.1 μM) was also included during the recovery period (19±9% recovery after 24 h in buffer; 50±8% recovery after 24 h with dexamethasone, n=5).
  6. These data indicate that the responses of different HLMC preparations to isoprenaline, the susceptibility of HLMC to desensitization and the ability of HLMC to recover from desensitizing conditions varies markedly. Dexamethasone, which itself has no direct effects on IgE-mediated histamine release from HLMC, protected HLMC from the functional desensitization to β-adrenoceptor agonists. Because β2-adrenoceptor agonists and glucocorticoids are important in the therapeutic management of asthma and as the HLMC is probably important in certain types of asthma, these findings may have wider clinical implications.
  相似文献   

10.
  1. The electrophysiological actions of several agonists which may differentiate between P2X1- and P2X3-receptors were studied under concentration and voltage-clamp conditions in dissociated neurones of 1–4 day old rat dorsal root ganglia.
  2. β,γ-Methylene-D-ATP (β,γ-me-D-ATP) (1–300 μM), diadenosine 5′,5′′′-P1,P5-pentaphosphate (AP5A) (100 nM–300 μM), diadenosine 5′,5′′′-P1,P4-tetraphosphate (AP4A) (300 nM–300 μM) and uridine 5′-triphosphate (UTP) (1 μM–1 mM) all activated concentration-dependent inward currents with a latency to onset of a few ms.
  3. The concentration-response curves for β,γ-me-D-ATP and AP5A and ATP had similar maximum values, while that for AP4A had a lower maximum. The concentration-response curve to UTP was shallow and did not reach a maximum. β,γ-Methylene-L-ATP was virtually inactive. The rank order of agonist potency was ATP>AP5A≈amp;AP4A>β,γ-me-D-ATP>UTP>>β,γ-methylene-L-ATP.
  4. The inward currents were inhibited by the P2-receptor antagonists suramin (100 μM) and pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS) (10 μM). PPADS also inhibited responses to ATP (800 nM) and α,β-methylene ATP (2 μM) in a concentration-dependent manner.
  5. This study shows that β,γ-me-D-ATP, AP5A, AP4A and UTP all act via a suramin- and PPADS-sensitive P2X-receptor to evoke rapid, transient inward currents in dissociated neurones of rat dorsal root ganglia. The very low activity of β,γ-methylene-L-ATP suggests that the agonists were acting at the P2X3-subtype to produce these effects.
  相似文献   

11.
  1. The rat μ-opioid receptor has recently been cloned, yet its second messenger coupling remains unclear. The endogenous μ-opioid receptor in SH-SY5Y cells couples to phospholipase C (PLC), increases [Ca2+]i and inhibits adenylyl cyclase (AC). We have examined the effects of μ-opioid agonists on inositol(1,4,5)trisphosphate (Ins(1,4,5)P3), [Ca2+]i and adenosine 3′ : 5′-cyclic monophosphate (cyclic AMP) formation in Chinese hamster ovarian (CHO) cells transfected with the cloned μ-opioid receptor.
  2. Opioid receptor binding was assessed with [3H]-diprenorphine ([3H]-DPN) as a radiolabel. Ins(1,4,5)P3 and cyclic AMP were measured by specific radioreceptor assays. [Ca2+]i was measured fluorimetrically with Fura-2.
  3. Scatchard analysis of [3H]-DPN binding revealed that the Bmax varied between passages. Fentanyl (10 pM–1 μM) dose-dependently displaced [3H]-DPN, yielding a curve which had a Hill slope of less than unity (0.6±0.1), and was best fit to a two site model, with pKi values (% of sites) of 9.97±0.4 (27±4.8%) and 7.68±0.07 (73±4.8%). In the presence of GppNHp (100 μM) and Na+ (100 mM), the curve was shifted to the right and became steeper (Hill slope=0.9±0.1) with a pKi value of 6.76±0.04.
  4. Fentanyl (0.1 nM–1 μM) had no effect on basal, but dose-dependently inhibited forskolin (1 μM)-stimulated, cyclic AMP formation (pIC50=7.42±0.23), in a pertussis toxin (PTX; 100 ng ml−1 for 24 h)-sensitive and naloxone-reversible manner (Ki=1.7 nM). Morphine (1 μM) and [D-Ala2, MePhe4, gly(ol)5]-enkephalin (DAMGO, 1 μM) also inhibited forskolin (1 μM)-stimulated cyclic AMP formation, whilst [D-Pen2, D-Pen5], enkephalin (DPDPE, 1 μM) did not.
  5. Fentanyl (0.1 nM–10 μM) caused a naloxone (1 μM)-reversible, dose-dependent stimulation of Ins(1,4,5)P3 formation, with a pEC50 of 7.95±0.15 (n=5). PTX (100 ng ml−1 for 24 h) abolished, whilst Ni2+ (2.5 mM) inhibited (by 52%), the fentanyl-induced Ins(1,4,5)P3 response. Morphine (1 μM) and DAMGO (1 μM), but not DPDPE (1 μM), also stimulated Ins(1,4,5)P3 formation. Fentanyl (1 μM) also caused an increase in [Ca2+]i (80±16.4 nM, n=6), reaching a maximum at 26.8±2.5 s. The increase in [Ca2+]i remained elevated until sampling ended (200 s) and was essentially abolished by the addition of naloxone (1 μM). Pre-incubation with naloxone (1 μM, 3 min) completely abolished fentanyl-induced increases in [Ca2+]i.
  6. In conclusion, the cloned μ-opioid receptor when expressed in CHO cells stimulates PLC and inhibits AC, both effects being mediated by a PTX-sensitive G-protein. In addition, the receptor couples to an increase in [Ca2+]i. These findings are consistent with the previously described effector-second messenger coupling of the endogenous μ-opioid receptor.
  相似文献   

12.
  1. The influence of L-NG-nitro-arginine (L-NOARG, 30 μM) on contractile responses to exogenous noradrenaline was studied in the rat anococcygeus muscle.
  2. Noradrenaline (0.1–100 μM) contracted the muscle in a concentration-dependent manner. L-NOARG (30 μM) had no effect on noradrenaline responses.
  3. Phenoxybenzamine (Pbz 0.1 μM) depressed by 46% (P<0.001) the maximum response and shifted to the right (P<0.001) the E/[A] curve to noradrenaline (pEC50 control: 6.92±0.09; pEC50 Pbz: 5.30±0.10; n=20).
  4. The nested hyperbolic null method of analysing noradrenaline responses after phenoxybenzamine showed that only 0.61% of the receptors need to be occupied to elicit 50% of the maximum response, indicating a very high functional receptor reserve.
  5. Contractile responses to noradrenaline after partial α1-adrenoceptor alkylation with phenoxybenzamine (0.1 μM) were clearly enhanced by L-NOARG.
  6. The potentiating effect of L-NOARG on noradrenaline responses after phenoxybenzamine was reversed by (100 μM) L-arginine but not by (100 μM) D-arginine.
  7. These results indicate that spontaneous release of NO by nitrergic nerves can influence the α1-adrenoceptor-mediated response to exogenous noradrenaline.
  相似文献   

13.
  1. Nicotine-induced relaxation and release of vasoactive intestinal polypeptide (VIP)- and peptide histidine isoleucine (PHI)-like immunoreactivity (LI) were measured in longitudinal muscle strips from the rat gastric fundus.
  2. Under non-cholinergic conditions (0.3 μM atropine), nicotine (3–300 μM) produced concentration-dependent relaxations of the 5-hydroxytryptamine (3 μM)-precontracted strips. Under non-adrenergic non-cholinergic (NANC) conditions (0.3 μM atropine+1 μM phentolamine+1 μM nadolol), relaxations induced by sub-maximal nicotine concentrations (10 and 30 μM) were significantly smaller, while that produced by the highest concentration used (300 μM) was similar to that seen under non-cholinergic conditions.
  3. Re-exposure to the same nicotine concentration 1 h later induced smaller relaxations, indicating desensitization. The reductions seen in the second responses were proportional to the concentration used.
  4. Under non-cholinergic conditions, the relaxant response to 30 μM nicotine was abolished by hexamethonium (100 μM) and significantly reduced by tetrodotoxin (TTX, 3 μM). The TTX-resistant component was not observed under NANC conditions.
  5. NANC relaxation induced by 30 μM nicotine was significantly reduced by a specific anti-VIP serum (approximately 35% less than that seen with normal rabbit serum).
  6. Nicotine (30–300 μM) caused significant, concentration-dependent increases in the outflow of VIP- and PHI-LI from the strips; these effects were also diminished with re-exposure. The increases in both types of immunoreactivity evoked by nicotine (300 μM) were abolished by hexamethonium (300 μM), TTX (3 μM) and a calcium-free medium.
  7. These findings indicate that VIP and possibly PHI are involved in NANC relaxation of the rat gastric fundus induced by nicotine.
  相似文献   

14.
  1. Previous studies have shown that ciprofloxacin and biphenylacetic acid (BPAA) synergistically inhibit γ-aminobutyric acid (GABA)A receptors. In the present study, we have investigated the actions of these two drugs on other neuronal ligand-gated ion channels.
  2. Agonist-evoked depolarizations were recorded from rat vagus and optic nerves in vitro by use of an extracellular recording technique.
  3. GABA (50 μM)-evoked responses, in the vagus nerve in vitro, were inhibited by bicuculline (0.3–10 μM) and picrotoxin (0.3–10 μM), with IC50 values and 95% confidence intervals (CI) of 1.2 μM (1.1–1.4) and 3.6 μM (3.0–4.3), respectively, and were potentiated by sodium pentobarbitone (30 μM) and diazepam (1 μM) to (mean±s.e.mean) 168±18% and 117±4% of control, respectively. 5-Hydroxytryptamine (5-HT; 0.5 μM)-evoked responses were inhibited by MDL 72222 (1 μM) to 10±4% of control; DMPP (10 μM)-evoked responses were inhibited by hexamethonium (100 μM) to 12±5% of control, and αbMeATP (30 μM)-evoked responses were inhibited by PPADS (10 μM) to 21±5% of control. Together, these data are consistent with activation of GABAA, 5-HT3, nicotinic ACh and P2X receptors, respectively.
  4. Ciprofloxacin (10–3000 μM) inhibited GABAA-mediated responses in the vagus nerve with an IC50 (and 95% CI) of 202 μM (148–275). BPAA (1–1000 μM) had little or no effect on the GABAA-mediated response but concentration-dependently potentiated the effects of ciprofloxacin by up to 33,000 times.
  5. Responses mediated by 5-HT3, nicotinic ACh and P2X receptors in the vagus nerve and strychnine-sensitive glycine receptors in the optic nerve were little or unaffected by ciprofloxacin (100 μM), BPAA (100 μM) or the combination of these drugs (both at 100 μM).
  6. GABA (1 mM)-evoked responses in the optic nerve were inhibited by bicuculline with an IC50 of 3.6 μM (2.8–4.5), a value not significantly different from that determined in the vagus nerve. Ciprofloxacin also inhibited the GABA-evoked response with an IC50 of 334 μM (256–437) and BPAA (100 μM) potentiated these antagonist effects. However, the magnitude of the synergy was 48 times less than that seen in the vagus nerve.
  7. These data indicate that ciprofloxacin and BPAA are selective antagonists of GABAA receptors, an action that may contribute to their excitatory effects in vivo. Additionally, our data suggest that the molecular properties of GABAA receptors in different regions of the CNS influence the extent to which these drugs synergistically inhibit the GABAA receptor.
  相似文献   

15.
  1. In this study we have determined the pharmacological profile of (S)-quisqualic acid, (S)-2-amino-4-phosphonobutyric acid ((S)-AP4) and their higher homologues (S)-homoquisqualic acid, (S)-2-amino-5-phosphonopentanoic acid ((S)-AP5), respectively, and (R)-AP5 at subtypes of metabotropic (S)-glutamic acid (mGlu) receptors expressed in Chinese hamster ovary cells.
  2. (S)-Quisqualic acid was a potent mGlu1/mGlu5 agonist (EC50 values of 1.1 μM and 0.055 μM, respectively) showing no activity at mGlu2 and weak agonism at mGlu4 (EC50∼1000 μM).
  3. (S)-Homoquisqualic acid displayed competitive antagonism at mGlu1 (KB=184 μM) and full agonism at mGlu5 (EC50=36 μM) and mGlu2 (EC50=23 μM), but was inactive at mGlu4.
  4. (S)-AP4 was a potent and selective mGlu4 agonist (EC50=0.91 μM) being inactive at mGlu1, mGlu2 and mGlu5 both as agonist and antagonist.
  5. (S)-AP5 displayed very weak agonist activity at mGlu4. At the mGlu2 receptor subtype (S)-AP5 acted as a competitive antagonist (KB=205 μM), whereas the compound was inactive at mGlu1 and mGlu5. (R)-AP5 was inactive at all mGlu receptor subtypes tested both as agonist and antagonist.
  6. These studies demonstrate that incorporation of an additional carbon atom into the backbone of (S)-glutamic acid and its analogues, to give the corresponding homologues, and replacement of the terminal carboxyl groups by isosteric acidic groups have profound effects on the pharmacological profiles at mGlu receptor subtypes. Furthermore, (S)-homoquisqualic acid has been shown to be a potentially useful tool for differentiating mGlu1 and mGlu5.
  相似文献   

16.
  1. The aim of the present study was to investigate the effects of bradykinin and [des-Arg9]-bradykinin and their relaxant mechanisms in the mouse isolated trachea.
  2. In the resting tracheal preparations with intact epithelium, bradykinin and [des-Arg9]-bradykinin (each drug, 0.01–10 μM) induced neither contraction nor relaxation. In contrast, bradykinin (0.01–10 μM) induced concentration-dependent relaxation when the tracheal preparations were precontracted with methacholine (1 μM). The relaxation induced by bradykinin was inhibited by the B2 receptor antagonist, D-Arg0-[Hyp3,Thi5,D-Tic7,Oic8]-bradykinin (Hoe 140, 0.01–1 μM) in a concentration-dependent manner whereas the B1 receptor antagonist, [des-Arg9,Leu8]-bradykinin (0.01–1 μM), had no inhibitory effect on bradykinin-induced relaxation. [des-Arg9]-bradykinin (0.01–10 μM) also caused concentration-dependent relaxation after precontraction with methacholine. The relaxation induced by [des-Arg9]-bradykinin was concentration-dependently inhibited by the B1 receptor antagonist, [des-Arg9,Leu8]-bradykinin (0.01–1 μM), whereas the B2 receptor antagonist, Hoe 140 (0.01–1 μM) was without effect.
  3. In the presence of the cyclo-oxygenase inhibitor, indomethacin (0.01–1 μM), the relaxations induced by bradykinin and [des-Arg9]-bradykinin were inhibited concentration-dependently.
  4. Two nitric oxide (NO) biosynthesis inhibitors NG-nitro-L-arginine methyl ester (L-NAME, 100 μM) and NG-nitro-L-arginine (L-NOARG, 100 μM) had no inhibitory effects on the relaxations induced by bradykinin and [des-Arg9]-bradykinin. Neither did the selective inhibitor of the soluble guanylate cyclase, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 μM) inhibit the relaxations induced by bradykinin and [des-Arg9]-bradykinin.
  5. Prostaglandin E2 (PGE2, 0.01–33 μM) caused concentration-dependent relaxation of the tracheal preparations precontracted with methacholine. Indomethacin (1 μM) and ODQ (10 μM) exerted no inhibitory effects on the relaxation induced by PGE2.
  6. The NO-donor, sodium nitroprusside (SNP; 0.01–100 μM) also caused concentration-dependent relaxation of the tracheal preparations precontracted with methacholine. ODQ (0.1–1 μM) concentration-dependently inhibited the relaxation induced by SNP.
  7. These data demonstrate that bradykinin and [des-Arg9]-bradykinin relax the mouse trachea precontracted with methacholine by the activation of bradykinin B2-receptors and B1-receptors, respectively. The stimulation of bradykinin receptors induces activation of the cyclo-oxygenase pathway, leading to the production of relaxing prostaglandins. The NO pathway is not involved in the bradykinin-induced relaxation. The relaxation caused by NO-donors in the mouse trachea is likely to be mediated via activation of soluble guanylate cyclase.
  相似文献   

17.
  1. An enhancement of promoted release of γ-aminobutyric acid (GABA) and a change in GABA-metabolism have been suggested as mechanisms of action of gabapentin. Vigabatrin is supposed to act mainly via inhibition of GABA-transaminase but it also interferes with GABA-release and GABA-uptake. On the basis of these mechanisms of action, a pharmacodynamic interaction of the two antiepileptic drugs could be supposed which might be of relevance in the sense of a rational polypharmacy.
  2. To address the aforementioned hypothesis, experiments were carried out on hippocampal slices (n=107) of guinea-pigs (n=70). Epileptiform field potentials (e.f.p.) were induced by omission of magnesium from the bath solution and recorded in the stratum pyramidale of the CA3 region. Gabapentin (30–600 μM; 5.1–102.72 μg ml−1), vigabatrin (50–200 μM, 6.45–25.8 μg ml−1) and the GABAA-receptor antagonist bicuculline (100 μM) were added to the bath solution for 3 h.
  3. Gabapentin, in concentrations up to 600 μM, failed to decrease the repetition rate or duration of e.f.p. (n=19). However, vigabatrin, evoked a dose-dependent reduction of the repetition rate of e.f.p. For a concentration of 100 μM (12.9 μg ml−1) there was a reduction down to 48±5% (mean±s.e.mean) of the initial value within 3 h (n=11). With simultaneous administration of vigabatrin (100 μM) and gabapentin (60 μM) for 3 h (n=15), the repetition rate of e.f.p. decreased down to 8±3%, which is significantly different from the values obtained after administration of 100 μM vigabatrin alone (P<0.0001). Both, the antiepileptic effect of vigabatrin alone and the enhancement by gabapentin were blocked by the GABAA-receptor antagonist bicuculline (100 μM, n=16).
  4. These results demonstrate that gabapentin is able to augment the antiepileptic effects of vigabatrin significantly. It is possible that a change in the GABA-release machinery is induced by vigabatrin which then can be augmented by gabapentin.
  相似文献   

18.
  1. The signalling pathway which causes contractions to adenosine 5′-O-2-thiodiphosphate (ADPβS) and α,β-methylene adenosine 5′-diphosphate (α,β-Me ADP) was investigated in rat urinary bladder smooth muscle by measuring isotonic tension.
  2. The responses to 10 μM α,β-methylene adenosine 5′-triphosphate (α,β-Me ATP) in 0 and 3.6 mM Ca2+ were 5.9±1.3 (n=10) and 122.2±6.4 (n=8) % respectively of those obtained in 1.8 mM Ca2+, whereas those to 100 μM ADPβS were 34.6±3.3 (n=8) and 96.8±7.2 (n=8) %, in 0 and 3.6 mM Ca2+, respectively. In both experimental conditions, the responses to the two agonists expressed as % of the control responses were significantly different (P<0.01).
  3. Indomethacin at high concentrations (>1 μM) decreased the responses to α,β-Me ATP (10 μM), ADPβS (100 μM) and α,β-Me ADP (100 μM). However, no significant difference was obtained between the responses to all the agonists at 30 μM indomethacin.
  4. 2-Nitro-4-carboxphenyl n,n-diphenylcarbamate (NCDC) at concentrations between 1 μM and 100 μM concentration-dependently decreased the responses to ADPβS (100 μM) and α,β-Me ADP (100 μM) and almost completely inhibited them at 100 μM. Although the responses to α,β-Me ATP (10 μM) were also inhibited by the drug, at 50 and 100 μM NCDC the responses to α,β-Me ATP were significantly larger than those to ADPβS and α,β-Me ADP (P<0.01).
  5. NCDC 100 μM significantly inhibited the KCl-induced contraction to 65.9±4.9% (n=6) of the control (P<0.01).
  6. It is suggested that the contraction via ADPβS-sensitive receptors in the rat urinary bladder smooth muscle mainly depends on Ca2+ ions liberated from intracellular Ca2+ stores, though the contribution of Ca2+ ions from the extracellular space cannot be neglected. The release of Ca2+ ions from stores is mainly mediated by the production of inositol trisphosphate (IP3) via the activation of phospholipase C.
  相似文献   

19.
  1. Extracellular single unit recording techniques were used to compare the effects of (-)-3-amino-1-hydroxypyrrolidin-2-one ((–)-HA-966) and (±)-baclofen on the activity of dopamine-containing neurones in 300 μm slices of rat substantia nigra. Electrophysiological data were compared with the outcome of in vitro binding experiments designed to assess the affinity of (–)-HA-966 for γ-aminobutyric acid (GABAB) receptors.
  2. Bath application of (–)-HA-966 produced a concentration-dependent inhibition of dopaminergic neuronal firing (EC50=444.0 μM; 95% confidence interval: 277.6 μM–710.1 μM, n=27) which was fully reversible upon washout from the recording chamber. Although similar effects were observed in response to (±)-baclofen, the direct-acting GABAB receptor agonist proved to be considerably more potent than (–)-HA-966 (EC50=0.54 μM; 95% confidence interval: 0.44 μM–0.66 μM, n=29) in vitro.
  3. Low concentrations of chloral hydrate (10 μM) were without effect on the basal firing rate of nigral dopaminergic neurones but significantly increased the inhibitory effects produced by concomitant application of (–)-HA-966.
  4. The inhibitory effects of (–)-HA-966 were completely reversed in the presence of the GABAB receptor antagonists, CGP-35348 (100 μM) and 2-hydroxysaclofen (500 μM). Bath application of CGP-35348 alone increased basal firing rate. However, the magnitude of the excitation (9.2±0.3%) was not sufficient to account for the ability of the antagonist to reverse fully the inhibitory effects of (–)-HA-966.
  5. (–)-HA-966 (0.1–1.0 mM) produced a concentration-dependent displacement of [H]-GABA from synaptic membranes in the presence of isoguvacine (40 μM). However, the affinity of the drug for GABAB binding sites was significantly less than that of GABA (0.0005 potency ratio) and showed no apparent stereoselectivity.
  6. These results indicate that while (–)-HA-966 appears to act as a direct GABAB receptor agonist in vitro, its affinity for this receptor site is substantially less than that of GABA or baclofen and unlikely to account for the depressant actions of this drug which occur at levels approximately ten fold lower in vivo.
  相似文献   

20.
  1. The effects of NF023, the symmetrical 3′-urea of 8-(benzamido)naphthalene-1,3,5-trisulphonic acid), and its parent compound suramin were investigated on vasoconstrictor responses to α,β-methylene ATP in rabbit isolated saphenous artery and vasodilator responses to ATP in noradrenaline-precontracted rabbit isolated thoracic aorta.
  2. In rabbit isolated saphenous artery, α,β-methylene ATP-induced vasoconstrictor responses via P2X-receptors were concentration-dependently and competitively antagonised by NF023 (30–300 μM; pA2=5.69±0.04). Suramin (100–1000 μM) also competitively blocked vasoconstrictor responses to α,β-methylene ATP, albeit with lower potency (pA2=4.79±0.05). In contrast, NF023 (100 μM) did not significantly affect contractile responses to noradrenaline or histamine in the saphenous artery.
  3. In noradrenaline-precontracted rabbit isolated thoracic aorta preparations, ATP (3–3000 μM) concentration-dependently induced relaxations via endothelium-dependent or smooth muscle P2Y-receptor subtypes. NF023 (30–300 μM) failed to block relaxant responses to ATP at endothelium-dependent P2Y-receptors, whereas suramin (100–1000 μM) did antagonise endothelium-dependent vasodilator responses to ATP. Neither NF023 (100 μM) nor suramin (300 μM) influenced vasorelaxant responses to ATP via endothelium-independent P2Y-receptors.
  4. In conclusion, this study outlines the selectivity of NF023 as an effective P2X-receptor antagonist in rabbit isolated blood vessels without affecting endothelium-dependent or endothelium-independent P2Y-receptor subtypes, adrenoceptors or histamine receptors.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号