首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
  1. Helicobacter pylori (Hp) infection, which involves the gastric antrum and duodenal mucosa, may be involved in peptic ulceration by stimulating the local release of cytoxic or pro-inflammatory factors.
  2. Nitric oxide (NO) is known to be cytotoxic at high concentration. The aim of the present study was therefore to investigate the ability of a water soluble extract of Hp to induce NO synthase in duodenal mucosa and epithelial cells following its administration in vivo in rats and determine its association with cell damage.
  3. Administration of Hp water extract (4 ml kg−1) led to the expression of the calcium-independent inducible nitric oxide synthase (iNOS) after 4 h in the duodenum, determined as [14C]-arginine conversion to citrulline.
  4. This iNOS activity was not reduced by pretreatment with anti-neutrophil serum (0.4 ml kg−1, i.p., 3 h before challenge). However, dexamethasone pretreatment (1 mg kg−1, i.v., 2 h before the extract), or administration of the NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 5 mg kg−1, i.v., 2.5 h after the extract) reduced this activity.
  5. Furthermore, iNOS was expressed in duodenal isolated epithelial cells 4 h after the i.v. challenge with the extract, at a time when the cellular viability was also reduced, as assessed by trypan blue exclusion.
  6. Dexamethasone pretreatment, administration of L-NAME, or pretreatment with polymyxin B (1 mg kg−1, i.v.) which binds endotoxin, reduced both the iNOS activity and epithelial cell damage.
  7. The induction of NO synthase by the Hp extract thus results in duodenal epithelial cell injury and such actions could play a role in pathogenesis of peptic ulcer disease.
  相似文献   

2.
  1. We investigated the effect of the non-peptide neurotensin (NT) antagonist SR 48692 on renal function in rats and the involvement of nitric oxide (NO) in the diuretic action of this compound.
  2. In fed animals, SR 48692 dose-dependently (0.5 to 12.5 mg kg−1, p.o., 0.03 to 1 mg kg−1, i.p. and 0.1 to 1 μg/rat, i.c.v.) increased urine output and urinary excretion of Na+, K+ and Cl and reduced urine osmolality. The diuretic activity was also evident in water-deprived, fasted animals and in fasted, water-loaded rats.
  3. NT (0.1 μg/rat, i.c.v.) had no effect on urine output in fed rats, but reduced the diuretic action of SR 48692 (1 μg/rat, i.c.v.). The opposite result was obtained in fasted, water-loaded animals: NT dose-dependently (0.01 and 0.1 μg/rat, i.c.v.) inhibited diuresis and this effect was significantly inhibited by i.c.v. SR 48692. In this experimental condition, SR 48692 did not further increase the on-going diuresis.
  4. The NO synthesis inhibitor Nω-nitro-L-arginine methyl ester (L-NAME; 30 mg kg−1, i.p.) alone had no effect on urine output in fed rats but prevented the diuretic action of i.c.v. or i.p. SR 48692; L-arginine (1 g kg−1, i.p.) but not D-arginine (1 g kg−1, i.p.) restored the SR 48692-dependent increase in diuresis. L-NAME had no effect on furosemide-stimulated diuresis.
  5. Systemically administered L-NAME or i.c.v. NT in fasted, water-loaded rats significantly reduced water diuresis but this effect was no longer seen in animals given i.p. L-arginine. Rats receiving i.c.v. NT, whose diuresis was significantly reduced, also excreted less nitrates and nitrites in urine.
  6. Increased diuresis after central or systemic administration of SR 48692 to fed rats was paralleled by increased urinary excretion of nitrates and nitrites, this being consistent with peripheral enhancement of NO production after NT-receptor blockade by SR 48692. The increase in diuresis after furosemide also involved an increase of nitrates and nitrites in urine, but this effect was about half that attained with an equipotent diuretic dose of SR 48692.
  7. In fed rats, the NO donor isosorbide-dinitrate, reduced systolic blood pressure (unlike SR 48692 which did not affect blood pressure) but also dose-dependently (1 and 5 mg kg−1, i.p.) stimulated urine output.
  8. The overall effects of SR 48692 strongly support a link between the actions of endogenous NT, AVP and peripheral NO production in the modulation of renal excretion of water, Na+, K+ and Cl.
  相似文献   

3.
  1. Endotoxaemia causes an enhanced formation of reactive oxygen species (ROS) which contribute to the multiple organ dysfunction syndrome (MODS) in septic shock. Here we investigate (i) the effects of endotoxin on the expression of two isoforms of superoxide dismutase (SOD), namely Cu/Zn-SOD (cytosol) and Mn-SOD (mitochondria) in the rat kidney, and (ii) the effects of the radical scavenger tempol on the MODS caused by lipopolysaccharide (LPS, E. coli, 6 mg kg−1 i.v.) in the rat.
  2. Endotoxaemia resulted in a rapid, but transient, decline in the expression of both mRNA and protein of Cu/Zn-SOD as well as an increase in the expression of the mRNA of Mn-SOD in the kidney. Endotoxaemia for 6 h also caused hypotension, acute renal dysfunction, hepatocellular injury, pancreatic injury and an increase in the plasma levels of nitrite/nitrate.
  3. Pretreatment of rats with tempol (100 mg kg−1 i.v. bolus injection, 15 min prior to LPS followed by an infusion of 30 mg kg−1 i.v., n=9) did not affect the circulatory failure, but attenuated the renal dysfunction and the hepatocellular injury/dysfunction caused by LPS. Tempol did not affect the rise in nitrite/nitrate caused by endotoxin.
  4. These results imply that an enhanced formation of ROS (including superoxide anions) in conjunction with inadequate defences against such ROS contributes to the injury and dysfunction of the kidney and the liver in endotoxic shock.
  相似文献   

4.
  1. Sibutramine is a novel 5-hydroxytryptamine (5-HT) and noradrenaline reuptake inhibitor (serotonin- noradrenaline reuptake inhibitor, SNRI) which is currently being developed as a treatment for obesity. Sibutramine has been shown to decrease food intake in the rat. In this study we have used a variety of monoamine receptor antagonists to examine the pharmacological mechanisms underlying sibutramine-induced hypophagia.
  2. Individually-housed male Sprague-Dawley rats were maintained on reversed phase lighting with free access to food and water. Drugs were administered at 09 h 00 min and food intake was monitored over the following 8 h dark period.
  3. Sibutramine (10 mg kg−1, p.o.) produced a significant decrease in food intake during the 8 h following drug administration. This hypophagic response was fully antagonized by the α1-adrenoceptor antagonist, prazosin (0.3 and 1 mg kg−1, i.p.), and partially antagonized by the β1-adrenoceptor antagonist, metoprolol (3 and 10 mg kg−1, i.p.) and the 5-HT receptor antagonists, metergoline (non-selective; 0.3 mg kg−1, i.p.); ritanserin (5-HT2A/2C; 0.1 and 0.5 mg kg−1, i.p.) and SB200646 (5-HT2B/2C; 20 and 40 mg kg−1, p.o.).
  4. By contrast, the α2-adrenoceptor antagonist, RX821002 (0.3 and 1 mg kg−1, i.p.) and the β2-adrenoceptor antagonist, ICI 118,551 (3 and 10 mg kg−1, i.p.) did not reduce the decrease in food intake induced by sibutramine.
  5. These results demonstrate that β1-adrenoceptors, 5-HT2A/2C-receptors and particularly α1-adrenoceptors, are involved in the effects of sibutramine on food intake and are consistent with the hypothesis that sibutramine-induced hypophagia is related to its ability to inhibit the reuptake of both noradrenaline and 5-HT, with the subsequent activation of a variety of noradrenaline and 5-HT receptor systems.
  相似文献   

5.
  1. Effects of substances which are able to alter brain histamine levels and two histamine H1 receptor agonists were investigated in mice by means of an animal model of depression, the forced swim test.
  2. Imipramine (10 and 30 mg kg−1, i.p.) and amitriptyline (5 and 15 mg kg−1, i.p.) were used as positive controls. Their effects were not affected by pretreatment with the histamine H3 receptor agonist, (R)-α-methylhistamine, at a dose (10 mg kg−1, i.p.) which did not modify the cumulative time of immobility.
  3. The histamine H3 receptor antagonist, thioperamide (2–20 mg kg−1, s.c.), showed an antidepressant-like effect, with a maximum at the dose of 5 mg kg−1, which was completely prevented by (R)-α-methylhistamine.
  4. The histamine-N-methyltransferase inhibitor, metoprine (2–20 mg kg−1, s.c.), was effective with an ED50 of 4.02 (2.71–5.96) mg kg−1; its effect was prevented by (R)-α-methylhistamine.
  5. The histamine precursor, L-histidine (100–1000 mg kg−1, i.p.), dose-dependently decreased the time of immobility [ED30 587 (499–712) mg kg−1]. The effect of 500 mg kg−1 L-histidine was completely prevented by the selective histidine decarboxylase inhibitor, (S)-α-fluoromethylhistidine (50 mg kg−1, i.p.), administered 15 h before.
  6. The highly selective histamine H1 receptor agonist, 2-(3-trifluoromethylphenyl)histamine (0.3–6.5 μg per mouse, i.c.v.), and the better known H1 agonist, 2-thiazolylethylamine (0.1–1 μg per mouse, i.c.v.), were both dose-dependently effective in decreasing the time of immobility [ED50 3.6 (1.53–8.48) and 1.34 (0.084–21.5) μg per mouse, respectively].
  7. None of the substances tested affected mouse performance in the rota rod test at the doses used in the forced swim test.
  8. It was concluded that endogenous histamine reduces the time of immobility in this test, suggesting an antidepressant-like effect, via activation of H1 receptors.
  相似文献   

6.
  1. The effects of risperidone on brain 5-hydroxytryptamine (5-HT) neuronal functions were investigated and compared with other antipsychotic drugs and selective receptor antagonists by use of single cell recording and microdialysis in the dorsal raphe nucleus (DRN).
  2. Administration of risperidone (25–400 μg kg−1, i.v.) dose-dependently decreased 5-HT cell firing in the DRN, similar to the antipsychotic drug clozapine (0.25–4.0 mg kg−1, i.v.), the putative antipsychotic drug amperozide (0.5–8.0 mg kg−1, i.v.) and the selective α1-adrenoceptor antagonist prazosin (50–400 μg kg−1, i.v.).
  3. The selective α2-adrenoceptor antagonist idazoxan (10–80 μg kg−1, i.v.), in contrast, increased the firing rate of 5-HT neurones in the DRN, whereas the D2 and 5-HT2A receptor antagonists raclopride (25–200 μg kg−1, i.v.) and MDL 100,907 (50–400 μg kg−1, i.v.), respectively, were without effect. Thus, the α1-adrenoceptor antagonistic action of the antipsychotic drugs might, at least partly, cause the decrease in DRN 5-HT cell firing.
  4. Pretreatment with the selective 5-HT1A receptor antagonist WAY 100,635 (5.0 μg kg−1, i.v.), a drug previously shown to antagonize effectively the inhibition of 5-HT cells induced by risperidone, failed to prevent the prazosin-induced decrease in 5-HT cell firing. This finding argues against the notion that α1-adrenoceptor antagonism is the sole mechanism underlying the inhibitory effect of risperidone on the DRN cells.
  5. The inhibitory effect of risperidone on 5-HT cell firing in the DRN was significantly attenuated in rats pretreated with the 5-HT depletor PCPA (p-chlorophenylalanine; 300 mg kg−1, i.p., day−1 for 3 consecutive days) in comparison with drug naive animals.
  6. Administration of risperidone (2.0 mg kg−1, s.c.) significantly enhanced 5-HT output in the DRN.
  7. Consequently, the reduction in 5-HT cell firing by risperidone appears to be related to increased availability of 5-HT in the somatodendritic region of the neurones leading to an enhanced 5-HT1A autoreceptor activation and, in turn, to inhibition of firing, and is probably only to a minor extent caused by its α1-adrenoceptor antagonistic action.
  相似文献   

7.
  1. It has been hypothesized that 5-HT1A autoreceptor antagonists may enhance the therapeutic efficacy of SSRIs and other antidepressants. Although early clinical trials with the β-adrenoceptor/5-HT1 ligand, pindolol, were promising, the results of recent more extensive trials have been contradictory. Here we investigated the actions of pindolol at the 5-HT1A autoreceptor by measuring its effect on 5-HT neuronal activity and release in the anaesthetized rat.
  2. Pindolol inhibited the electrical activity of 5-HT neurones in the dorsal raphe nucleus (DRN). This effect was observed in the majority of neurones tested (10/16), was dose-related (0.2–1.0 mg kg−1, i.v.), and was reversed by the 5-HT1A receptor antagonist, WAY 100635 (0.1 mg kg−1, i.v.), in 6/7 cases tested.
  3. Pindolol also inhibited 5-HT neuronal activity when applied microiontophoretically into the DRN in 9/10 neurones tested. This effect of pindolol was current-dependent and blocked by co-application of WAY 100635 (3/3 neurones tested).
  4. In microdialysis experiments, pindolol caused a dose-related (0.8 and 4 mg kg−1, i.v.) fall in 5-HT levels in dialysates from the frontal cortex (under conditions where the perfusion medium contained 1 μM citalopram). In rats pretreated with WAY 100635 (0.1 mg kg−1, i.v.), pindolol (4 mg kg−1, i.v.) did not decrease, but rather increased 5-HT levels.
  5. We conclude that, under the experimental conditions used in this study, pindolol displays agonist effects at the 5-HT1A autoreceptor. These data are relevant to previous and ongoing clinical trials of pindolol in depression which are based on the rationale that the drug is an effective 5-HT1A autoreceptor antagonist.
  相似文献   

8.
  1. Endotoxaemia is associated with the expression of the inducible isoform of cyclo-oxygenase, cyclo-oxygenase-2 (COX-2), and an overproduction of arachidonic acid (AA) metabolites. The role of the AA metabolites generated by COX-2 in the circulatory failure and multiple organ dysfunction caused by endotoxin is unclear. Dexamethasone prevents the expression of COX-2 and exerts beneficial effects in animal models of shock.
  2. Here we compare the effects of two inhibitors of COX-2 activity, namely NS-398 (5 mg kg−1, i.p., n=7) and SC-58635 (3 mg kg−1, i.p., n=9) with those of dexamethasone (3 mg kg−1, i.p., n=9) on the circulatory failure and organ dysfunction caused by lipopolysaccharide (LPS, E. coli, 6 mg kg−1, i.v., n=11) in the rat.
  3. Endotoxaemia for 6 h caused hypotension, acute renal dysfunction, hepatocellular injury, pancreatic injury and an increase in the plasma levels of 6-keto-PGF (indicator of the induction of COX-2) and nitrite/nitrate (indicator of the induction of iNOS).
  4. Pretreatment of rats with dexamethasone attenuated the hypotension, the renal dysfunction, the hepatocellular and pancreatic injury and the induction of COX-2 and iNOS caused by LPS. In contrast, inhibition of COX-2 activity with SC-58635 or NS-398 neither attenuated the circulatory failure nor the multiple organ failure caused by endotoxin.
  5. Thus, the prevention of the circulatory failure and the multiple organ injury/dysfunction caused by dexamethasone in the rat is not due to inhibition of the activity of COX-2. Our results suggest that an enhanced formation of eicosanoids by COX-2 does not contribute to the development of organ injury and/or dysfunction in rats with endotoxaemia.
  相似文献   

9.
  1. We investigated whether andrographolide, a diterpenoid lactone found at Andrographis paniculata, influences the induction of the inducible nitric oxide synthase (iNOS) in RAW264.7 cells activated by bacterial endotoxin (LPS), as well as in the rats with endotoxic shock and in aortic rings treated with LPS.
  2. Incubation of RAW264.7 cells with andrographolide (1 to 50 μM) inhibited the LPS (1 μg ml−1)-induced nitrite accumulation in concentration- and time-dependent manners. Maximum inhibition was observed when andrographolide was added together with LPS and decreased progressively as the interval between andrographolide and LPS was increased to 20 h.
  3. Western blot analysis demonstrated that iNOS expression was markedly attenuated in the presence of andrographolide for 6–24 h, suggesting that andrographolide inhibited iNOS protein induction.
  4. Thoracic aorta incubation with LPS (300 ng ml−1) for 5 h in vitro exhibited a significant decrease in the maximal contractile response to phenylephrine (10−9–10−5M). Andrographolide (30 μM) restored the contractile response to control level.
  5. In anaesthetized rats, LPS (10 mg kg−1, i.v.) caused a fall in mean arterial blood pressure (MAP) from 116±4 to 77±5 mmHg. The pressor effect of phenylephrine (10 μg ml−1, i.v.) was also significantly reduced at 30, 60, 120 and 180 min after LPS injection. In contrast, animals pretreated with andrographolide (1 mg kg−1, i.v., 20 min prior to LPS) maintained a significantly higher MAP when compared to LPS-rats given with vehicle. Administration of andrographolide 60 min after LPS caused a increase in MAP and significantly reversed the reduction of the pressor response to phenylephrine.
  6. Our results indicated that andrographolide inhibits nitrite synthesis by suppressing expression of iNOS protein in vitro. And, this inhibition of iNOS synthesis may contribute to the beneficial haemodynamic effects of andrographolide in endotoxic shock.
  相似文献   

10.
  1. The effects of the potent 5-hydroxytryptamine (5-HT) and noradrenaline reuptake inhibitor (serotonin-noradrenaline reuptake inhibitor, SNRI), sibutramine, on the cumulative food intake of freely-feeding male Sprague-Dawley rats during an 8 h dark period were investigated and compared to those of the selective 5-HT reuptake inhibitor (selective serotonin reuptake inhibitor, SSRI), fluoxetine; the selective noradrenaline reuptake inhibitor, nisoxetine; the 5-HT and noradrenaline reuptake inhibitors, venlafaxine and duloxetine; and the 5-HT releaser and 5-HT reuptake inhibitor, (+)-fenfluramine.
  2. Sibutramine (3 and 10 mg kg−1, p.o.) and (+)-fenfluramine (1 and 3 mg kg−1, p.o.) produced a significant, dose-dependent decrease in food intake over the 8 h dark period. These responses became apparent within the first 2 h following drug administration.
  3. Fluoxetine (3, 10 and 30 mg kg−1, p.o.), and nisoxetine (3, 10 and 30 mg kg−1, p.o.) had no significant effect on food intake during the 8 h dark period. However, a combination of fluoxetine and nisoxetine (30 mg kg−1, p.o., of each) significantly decreased food intake 2 and 8 h after drug administration.
  4. Venlafaxine (100 and 300 mg kg−1, p.o.) and duloxetine (30 mg kg−1, p.o.) also significantly decreased food intake in the 2 and 8 h following drug administration.
  5. The results of this study demonstrate that inhibition of 5-HT and noradrenaline reuptake by sibutramine, venlafaxine, duloxetine, or by a combination of fluoxetine and nisoxetine, markedly reduces food intake in freely-feeding rats and suggest that this may be a novel approach for the treatment of obesity.
  相似文献   

11.
  1. The effect of BTS 67 582, a novel antidiabetic agent, has been evaluated on plasma glucose and plasma insulin in normal and streptozotocin-induced diabetic rats.
  2. BTS 67 582 (3 to 300 mg kg−1, p.o.) caused a dose- and time- dependent reduction in plasma glucose and an increase in plasma insulin in both fasted and glucose-loaded normal rats. The ED50 for the glucose lowering effect of BTS 67 582 in fasted rats was 37.6, 18.4 and 18.5 mg kg−1 at 1, 2 and 4 h after administration respectively.
  3. In streptozotocin-induced (50 mg kg−1, i.v.) diabetic rats, BTS 67 582 (37–147 mg kg−1, p.o.) caused significant reductions of plasma glucose following a glucose load, whereas glibenclamide (100 mg kg−1, p.o.) was ineffective. BTS 67 582 significantly increased plasma insulin compared to controls whereas glibenclamide did not.
  4. BTS 67 582 did not displace [3H]-glibenclamide from its binding sites in rat brain, guinea-pig ventricle or the HIT-T15 insulinoma β-cell line. BTS 67 582 does not therefore appear to modulate its action via an effect on the ‘sulphonylurea'' receptor.
  5. In fasted rats, the glucose lowering effect of BTS 67 582 (100 mg kg−1 p.o.) and glibenclamide (1 mg kg−1, p.o.) were antagonized by diazoxide (30 mg kg−1, i.p.). In addition BTS 67 582, like glibenclamide, caused a dose-dependent rightward shift of cromakalim-induced relaxation of noradrenaline precontracted rat aortic strips, suggesting the involvement of KATP channels.
  6. In summary, BTS 67 582 produces a blood glucose-lowering effect in normal and streptozotocin-induced diabetic rats associated with increased insulin concentrations. This effect appears to be due to a blockade of ATP-sensitive potassium channel activity via a different binding site to that of glibenclamide.
  相似文献   

12.
  1. A selection of novel compounds were shown to exhibit dopaminergic activity in vitro.
  2. 111Indium-labelled platelets were continuously monitored in the cerebral and pulmonary vasculature of anaesthetized rabbits. The effects of dopamine and selective dopamine receptor agonists on ADP and thrombin induced platelet accumulation were recorded.
  3. Pretreatment with dopamine (2 mg kg−1 min−1, i.v.) significantly reduced ADP (20 μg kg−1, i.v.) induced platelet accumulation in the pulmonary vasculature whereas lower doses had no effect.
  4. Dopamine (100 μg kg−1 min−1 intra-carotid, i.c.) potentiated thrombin (90 u kg−1, i.c.) induced platelet accumulation in the cerebral vasculature whereas higher doses (1–2 mg kg−1 min−1) inhibited accumulation.
  5. The selective dopamine receptor agonists tested did not significantly inhibit platelet accumulation induced by ADP or thrombin. Two of these selective agonists, at doses higher than the intended therapeutic doses, induced thrombocytopaenia and an associated increase in platelet accumulation in the lung in response to thrombin.
  6. These results extend previous in vitro studies regarding the dual actions of dopamine upon platelets and show for the first time the effects of selective dopamine receptor agonists upon platelet aggregation in vivo.
  相似文献   

13.
  1. Excitotoxic and apoptotic mechanisms have been implicated in the pathophysiology of cerebral ischaemia. Both MK-801, an NMDA receptor antagonist, or peptide inhibitors of the caspase family (z-VAD.FMK and z-DEVD.FMK), protect mouse brain from ischaemic cell damage. In this study, we examined whether these drugs which act via distinct mechanisms, afford even greater neuroprotection when given in combination following 2 h MCA occlusion (filament model) and 18 h reperfusion.
  2. Given alone as pretreatment, MK-801 (1, 3 and 5 mg kg−1, but not 0.3 mg kg−1, i.p.) decreased infarct size by 34–75%. When injected 1 h after occlusion and before reperfusion, 3 mg kg−1 reduced injury but not when administered 1 h after reperfusion.
  3. Pretreatment with a subthreshold dose of MK-801 (0.3 mg kg−1) plus a subthreshold dose of z-VAD.FMK (27 ng) or z-DEVD (80 ng) significantly decreased infarct size by 29 and 30%, respectively, and enhanced neurological function.
  4. Administering a subthreshold dose of z-VAD.FMK (27 ng) or z-DEVD.FMK (80 ng) as pretreatment extended the time window for MK-801 (3 mg kg−1) by 2 h from 1 h before reperfusion to at least 1 h after reperfusion.
  5. Pretreating with a subthreshold dose of MK-801 (0.3 mg kg−1) extended the time window for z-DEVD.FMK (480 ng) from 1 h after reperfusion to at least 3 h after reperfusion.
  6. We conclude that caspase inhibitors which putatively block apoptotic cell death and inhibit cytokine production and the NMDA antagonist MK-801 act synergistically and prolong their respective therapeutic windows in cerebral ischaemia.
  相似文献   

14.
  1. The aim of the present study was to investigate the putative modulation of locus coeruleus (LC) noradrenergic (NA) neurones by the 5-hydroxytryptaminergic (5-HT) system by use of in vivo extracellular unitary recordings and microiontophoresis in anaesthetized rats. To this end, the potent and selective 5-HT1A receptor antagonist WAY 100635 (N-{2-[4(2-methoxyphenyl)-1-piperazinyl]ethyl}-N-(2-pyridinyl)cyclohexanecarboxamide trihydroxychloride) was used.
  2. In the dorsal hippocampus, both local (by microiontophoresis, 20 nA) and systemic (100 μg kg−1, i.v.) administration of WAY 100635 antagonized the suppressant effect of microiontophorectically-applied 5-HT on the firing activity of CA3 pyramidal neurones, indicating its antagonistic effect on postsynaptic 5-HT1A receptors.
  3. WAY 100635 and 5-HT failed to modify the spontaneous firing activity of LC NA neurones when applied by microiontophoresis. However, the intravenous injection of WAY 100635 (100 μg kg−1) readily suppressed the spontaneous firing activity of LC NA neurones.
  4. The lesion of 5-HT neurones with the neurotoxin 5,7-dihydroxytryptamine increased the spontaneous firing activity of LC NA neurones and abolished the suppressant effect of WAY 100635 on the firing activity of LC NA neurones.
  5. In order to determine the nature of the 5-HT receptor subtypes mediating the suppressant effect of WAY 100635 on NA neurone firing activity, several 5-HT receptor antagonists were used. The selective 5-HT3 receptor antagonist BRL 46470A (10 and 100 μg kg−1, i.v.), the 5-HT1D receptor antagonist GR 127935 (100 μg kg−1, i.v.) and the 5-HT1A/1B receptor antagonist (−)-pindolol (15 mg kg−1, i.p.) did not prevent the suppressant effect of WAY 100635 on the firing activity of LC NA neurones. However, the suppressant effect of WAY 100635 was prevented by the non-selective 5-HT receptor antagonists spiperone (1 mg kg−1, i.v.) and metergoline (1 mg kg−1, i.v.), by the 5-HT2 receptor antagonist ritanserin (500 μg kg−1, i.v.). It was also prevented by the 5-HT1A receptor/α1D-adrenoceptor antagonist BMY 7378 (1 mg kg−1, i.v.) and by the α1-adrenoceptor antagonist prazosin (100 μg kg−1, i.v.).
  6. These data support the notion that the 5-HT system tonically modulates NA neurotransmission since the lesion of 5-HT neurones enhanced the LC NA neurones firing activity and the suppressant effect of WAY 100635 on the firing activity of NA neurones was abolished by this lesion. However, the location of the 5-HT1A receptors involved in this complex circuitry remains to be elucidated. It is concluded that the suppressant effect of WAY 100635 on the firing activity of LC NA neurones is due to an enhancement of the function of 5-HT neurones via a presynaptic 5-HT1A receptor. In contrast, the postsynaptic 5-HT receptor mediating this effect of WAY 100635 on NA neurones appears to be of the 5-HT2A subtype.
  相似文献   

15.
  1. We have developed and characterized a model of immediate hypersensitivity/inflammation of the urinary bladder in vivo induced by local application of ovalbumin (OA) in OA- sensitive female rats. Two parameters of the inflammatory response were assessed following OA challenge: plasma protein extravasation (PPE) and changes in smooth muscle reactivity. The former was estimated by measurement of Evans blue extravasation at 0.5, 2, 4, 8 and 24 h time point following in vivo challenge. Changes in reactivity were determined by measurement of isotonic tension responses of urinary bladder strips following OA challenge in vitro.
  2. Acute in vivo intravesical OA challenge (10 mg in 0.3 ml saline) in actively sensitized female Wistar rats caused a time-dependent PPE in the urinary bladder which was biphasic with peak responses at 2–4 and 24 h.
  3. The PPE response to acute OA challenge, above base-line, at 2 h was abolished by systemic capsaicin pretreatment (50 mg kg−1, s.c., 4 days before use) (P<0.05) whilst the response at 24 h was unaffected. The 2 h time point was then used for further studies.
  4. Degranulation of mast cells, achieved by pretreatment with compound 48/80 (5 mg kg−1, s.c. for 3 consecutive days), completely abolished the PPE response to OA challenge at the 2 h time point.
  5. The tachykinin NK1 receptor antagonist, SR 140333 (0.1 μmol kg−1, i.v.), abolished the 2 h PPE response whilst the tachykinin NK2 receptor antagonist MEN 11420 (0.1 μmol kg−1, i.v.) appeared to reduce the response by approximately 50% but this did not reach significance. The bradykinin B2 receptor antagonist, Hoe 140 (0.1 μmol kg−1, i.v.), similarly to SR 140333, blocked the 2 h PPE response to OA, whereas the selective B1 receptor antagonist B 9858 (0.1 μmol kg−1, i.v.) had no significant effect. Inhibition of cyclo-oxygenase (COX) achieved by pretreatment with the COX inhibitor dexketoprofen (5.3 μmol kg−1, i.v.) also blocked the PPE response, whilst the leukotriene receptor antagonist ONO 1078 (1 μmol kg−1, i.v.) significantly reduced PPE by about 80%.
  6. In the rat isolated urinary bladder OA (1 mg ml−1) challenge produced a biphasic response with a rapidly achieved maximal contraction followed by a sustained contraction for approximately 25 min. In vitro capsaicin pretreatment (10 μM for 15 min) significantly attenuated the duration of the sustained contraction whilst having no effect on the maximum contractile response achieved. In vivo pretreatment of animals with compound 48/80 significantly attenuated (42%) the maximum contractile response. Combination of both treatments almost completely abolished the response. In vitro treatment with Hoe 140 (1 μM) had no significant effect on the response to OA and neither did ONO 1078 (1 μM).
  7. These results show that both the early inflammatory response and alterations in smooth muscle reactivity to OA challenge in actively sensitized animals are dependent on mast cell degranulation and the activation of sensory C-fibres. Furthermore this model of allergic cystitis may be useful for investigating both the processes involved and potential novel therapies in the treatment of interstitial cystitis.
  相似文献   

16.
  1. The selective 5-hydroxytryptamine reuptake inhibitor citalopram (10 and 20 mg kg−1, i.p.) significantly reduced food intake in male rats (CD-COBS) habituated to eat their daily food during a 4-h period.
  2. The 5-HT1A receptor antagonist WAY100635 (0.3 mg kg−1) administered systemically did not modify feeding but significantly potentiated the reduction in food intake caused by 10 mg kg−1 i.p. citalopram. The dose of 5 mg kg−1 i.p. citalopram was not active in animals pretreated with vehicle but significantly reduced feeding in animals pretreated with WAY100635.
  3. WAY100635 (0.1 μg 0.5 μl−1) injected into the dorsal raphe significantly potentiated the hypophagic effect of 10 mg kg−1 citalopram.
  4. WAY100635 (1.0 μg 0.5 μl−1) injected into the median raphe did not modify feeding or the hypophagic effect of 10 mg kg−1 citalopram.
  5. The 5-HT2B/2C receptor antagonist SB206553 (10 mg kg−1, p.o.) slightly reduced feeding by itself but partially antagonized the effect of WAY100635 administered systemically (0.3 mg kg−1, s.c.) or into the dorsal raphe (0.1 μg 0.5 μl−1) in combination with 10 mg kg−1 i.p. citalopram. The hypophagic effect of 10 mg kg−1 i.p. citalopram alone was not significantly modified by SB206553.
  6. Brain concentrations of citalopram and its metabolite desmethylcitalopram in rats pretreated with SB206553, WAY100635 and their combination were comparable to those of vehicle-pretreated rats, 90 min after citalopram injection.
  7. The hypophagic effect of citalopram was potentiated by blocking 5-HT1A receptors. Only the effect of the WAY100635/citalopram combination seemed to be partially mediated by central 5-HT2C receptors.
  相似文献   

17.
  1. Intraplantar injection of carrageenan (150 μl, 1–3% w/v) in the rat resulted in a dose-related increase in hindpaw weight (oedema) characterized by a rapid ‘early'' phase (up to 2.5 h) response followed by a more sustained ‘late'' phase (2–6 h) response. No change in weight of either the contralateral (i.e. noninjected) hindpaw or hindpaws injected with saline was observed.
  2. Six hours after intraplantar injection of carrageenan (1–3% w/v) hindpaw constitutive (i.e. calcium-dependent) nitric oxide synthase (cNOS) activity (determined ex vivo as the conversion of radiolabelled L-arginine to radiolabelled citrulline) was increased (e.g. 2% w/v; 0.64±0.08 pmol citrulline mg−1 protein 15 min−1 c.f. 0.08±0.04 pmol citrulline mg−1 protein 15 min−1 in saline-injected, control animals, n=4, P<0.05). Carrageenan injection also resulted in the appearance in hindpaw homogenates of inducible (i.e. calcium-independent) nitric oxide synthase (iNOS, e.g. 2% w/v; 0.67±0.14 pmol citrulline mg−1 protein 15 min−1, n=4). Hindpaw cyclic GMP concentration was also significantly increased 6 h after intraplantar injection of carrageenan (e.g. 2% w/v; 379.6±26.8 fmol mg−1 protein c.f. 261.8±42.2 fmol mg−1 protein, in saline-injected, control animals, n=4, P<0.05).
  3. Pretreatment (5–25 mg kg−1, i.p., 30 min before carrageenan, 2% w/v) of animals with L-NG nitro arginine methyl ester (L-NAME; isoform nonselective inhibitor of NOS) or 7-nitro indazole (7-NI; inhibitor of neuronal NOS, nNOS) caused dose-related inhibition of both the early (2 h) and late (6 h) phase hindpaw oedema, associated with reduced hindpaw iNOS and cNOS activity and cyclic GMP concentration in animals killed at 6 h. Administration of 7-NI (5–25 mg kg−1, i.p.) to animals 2.5 h after intraplantar carrageenan (2% w/v) injection (i.e. at the end of the early phase oedema response) produced dose-related inhibition of the late phase response.
  4. Pretreatment (5–25 mg kg−1, i.p., 30 min before carrageenan, 2% w/v) of animals with L-N6-iminoethyllysine (L-NIL, selective inhibitor of iNOS) (5–25 mg kg−1) failed to affect the early phase hindpaw oedema response but did produce a dose-related inhibition of the late phase oedema. L-NIL pretreatment also inhibited the carrageenan-induced increase in both hindpaw iNOS and cNOS activity as well as the rise in hindpaw cyclic GMP concentration.
  5. The present experiments demonstrate an anti-inflammatory effect of 7-NI as evidenced by inhibition of carrageenan-induced hindpaw oedema in the rat. Inhibition of nNOS (early phase) and iNOS (late phase) at the site of inflammation most probably accounts for the anti-inflammatory activity observed. These data suggest a role for nitric oxide synthesized by the nNOS isoform (most probably within sensory nerves) in this model of inflammation.
  相似文献   

18.
  1. Sabcomeline (SB-202026, 0.03 mg kg−1, p.o.), a potent and functionally selective M1 receptor partial agonist, caused a statistically significant improvement in the performance of a visual object discrimination task by marmosets. No such improvement was seen after RS86 (0.1 mg kg−1, p.o.).
  2. Initial learning, which only required an association of object with reward and an appropriate response to be made, was not significantly affected. Reversal learning, which required both the extinction of the previously learned response and the acquisition of a new response strategy, was significantly improved after administration of sabcomeline (0.03 mg kg−1, p.o.).
  3. Sabcomeline (0.03 and 0.1 mg kg−1, p.o.) had no significant effect on mean blood pressure measured for 2 h after administration in the conscious marmoset.
  4. Sabcomeline (0.03 mg kg−1, p.o.) caused none of the overt effects such as emesis or behaviours often seen after the administration of muscarinic agonists, e.g. face rubbing and licking.
  5. This is the first study to demonstrate cognitive enhancement by a functionally selective M1 receptor partial agonist in a normal (i.e. non-cognitively impaired) non-human primate and this effect was seen at a dose which did not cause side effects.
  6. Perseverative behaviour and deficient acquisition of new information are seen in patients with Alzheimer''s disease (AD). Therefore the data suggest that sabcomeline might be of therapeutic benefit in the treatment of AD.
  相似文献   

19.
  1. Extracellular single-unit recording and iontophoresis were used to examine the effects of different cholinoceptor agonists and antagonists on the firing rate and firing pattern of A9 and A10 presumed dopaminergic neurones in the anaesthetized rat.
  2. Administration of low currents (1–5 nA) of the selective muscarinic agonists oxotremorine M (Oxo M) and muscarine and of the non-selective muscarinic/nicotinic agonist carbamylcholine (CCh) produced a dose-dependent increase in firing rate in most of the A9 and A10 presumed dopaminergic neurones tested. Oxo M-induced activation could be completely blocked by iontophoretic application of the muscarinic antagonist butyl-scopolamine or systemic administration of the muscarinic antagonist scopolamine (300 μg kg−1, i.v.).
  3. Iontophoretic application of the selective nicotinic agonist methylcarbamylcholine (MCCh), but not nicotine, induced a consistent increase in firing rate. Surprisingly, the excitatory effect of MCCh was significantly reduced by the selective muscarinic antagonist scopolamine (300 μg kg−1, i.v.), but not by the selective nicotinic antagonist mecamylamine (2.2 mg kg−1, i.v.). Mecamylamine (3 mg kg−1, i.v.) was also ineffective in reducing the CCh-induced activation of presumed dopamine neurones, suggesting that both CCh and MCCh increased the activity of dopamine neurones via an interaction with muscarinic receptors.
  4. Iontophoretic application of the endogenous agonist acetylcholine (ACh) had no or little effect on the firing activity of A10 presumed dopaminergic neurones. However, concomitant application of neostigmine, a potent cholinesterase inhibitor, with acetylcholine induced a substantial activation of these neurones. This activation consisted of two components; one, which was prevalent, was scopolamine (300 μg kg−1, i.v.)-sensitive, and the other was mecamylamine (2 mg kg−1, i.v.)-sensitive.
  5. In addition to their effect on firing activity, Oxo M, muscarine and concomitant neostigmine/ACh caused a significant increase in burst firing of A10 neurones, but not of A9 neurones.
  6. These data suggest that dopamine cells, both in the A9 and A10 regions, possess functional muscarinic receptors, the activation of which can increase their firing rate and, for A10 neurones, their amount of burst activity. These cholinoceptors would be able to influence the activity of the midbrain dopamine system greatly and may play a role in, and/or be a therapeutic target for, brain disorders in which dopamine is involved (e.g., Parkinson''s disease, drug addiction and schizophrenia).
  相似文献   

20.
  1. This study investigated the effects of low dose endotoxin (lipopolysaccharide, LPS) on (i) systemic haemodynamics, (ii) renal blood flow (RBF), (iii) renal cortical and medullary perfusion and (iv) renal function in the anaesthetized rat. We have also investigated the effects of nitric oxide (NO) synthase (NOS) inhibition with NG-methyl-L-arginine (L-NMMA) on the alterations in systemic and renal haemodynamics and renal function caused by endotoxin.
  2. Infusion of low dose LPS (1 mg kg−1 over 30 min, n=6) caused a late fall in mean arterial blood pressure (MAP, at 5 and 6 h after LPS), but did not cause an early (at 1–4 h after LPS) hypotension. The pressor effect of noradrenaline (NA, 1 μg kg−1, i.v.) was significantly reduced at 1 to 6 h after LPS (vascular hyporeactivity). Infusion of L-NMMA (50 μg kg−1 min−1 commencing 60 min before LPS and continued throughout the experiment, n=7) abolished the delayed hypotension and significantly attenuated the vascular hyporeactivity to NA (at 2–6 h).
  3. Infusion of LPS (1 mg kg−1 over 30 min, n=6) caused a rapid (within 2 h) decline in renal function (measured by inulin clearance) in the absence of a significant fall in MAP or renal blood flow (RBF). L-NMMA (n=7) attenuated the impairment in renal function caused by LPS so that the inulin clearance in LPS-rats treated with L-NMMA was significantly greater than in LPS-rats treated with vehicle (control) at 3–6 h after infusion of LPS.
  4. Endotoxaemia also caused a significant reduction in renal cortical, but not medullary perfusion (measured as Laser Doppler flux). Infusion of L-NMMA caused a significant further fall in cortical perfusion and a significant fall in medullary perfusion in the absence of changes in RBF.
  5. Infusion of LPS resulted in a progressive increase in the plasma levels of nitrite/nitrate (an indicator of the formation of NO), so that the plasma concentration of nitrite/nitrate was significantly higher than baseline at 150 to 330 min after LPS. Infusion of L-NMMA attenuated the rise in the plasma concentration of nitrite/nitrate (at 270 and 330 min, P<0.05) caused by LPS.
  6. Thus, the renal dysfunction caused by injection of low dose of endotoxin in the rat occurs in the absence of significant falls in blood pressure or total renal blood flow. Inhibition of NOS activity with L-NMMA attenuates the renal dysfunction caused by endotoxin (without improving intrarenal haemodynamics), suggesting that an overproduction of NO may contribute to the development of renal injury and dysfunction by causing direct cytotoxic effects.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号