首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
  1. The aim of the study was to determine whether a nerve-derived hyperpolarizing factor (NDHF) might contribute to non-adrenergic, non-cholinergic (NANC) relaxations of the mouse anococcygeus when low concentrations of contractile agent are used to raise tone and low frequencies of field stimulation applied; such a non-nitrergic NDHF has been proposed to contribute to NANC relaxations of the rat anococcygeus and guinea-pig taenia coli.
  2. Phenylephrine (0.1–100 μM) produced concentration-related contractions of the mouse isolated anococcygeus muscle; 0.2 μM phenylephrine (EC26) was used to raise tone in subsequent experiments.
  3. Field stimulation (0.5, 1.0 and 5.0 Hz) produced frequency-dependent relaxations of phenylephrine-induced tone. In the presence of the nitric oxide synthase inhibitor L-NG-nitro-arginine (L-NOARG; 100 μM), the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxodiazolo[4,3-a]quinoxalin-1-one (ODQ; 5 μM), or a combination of these two drugs, relaxations to field stimulation were abolished at all frequencies studied. Relaxations to sodium nitroprusside (0.01–5 μM) were unaffected by L-NOARG but strongly inhibited by ODQ; neither enzyme inhibitor affected relaxations to 8-Br-cyclic GMP (10 μM).
  4. Nifedipine (1 μM) reduced the contractile response to 0.2 μM phenylephrine by 38%; however, it had no effect on NANC relaxations.
  5. It is concluded that NANC relaxations of the mouse anococcygeus are purely nitrergic and that there is no significant contribution from a putative NDHF.
  相似文献   

3.
  1. The rat μ-opioid receptor has recently been cloned, yet its second messenger coupling remains unclear. The endogenous μ-opioid receptor in SH-SY5Y cells couples to phospholipase C (PLC), increases [Ca2+]i and inhibits adenylyl cyclase (AC). We have examined the effects of μ-opioid agonists on inositol(1,4,5)trisphosphate (Ins(1,4,5)P3), [Ca2+]i and adenosine 3′ : 5′-cyclic monophosphate (cyclic AMP) formation in Chinese hamster ovarian (CHO) cells transfected with the cloned μ-opioid receptor.
  2. Opioid receptor binding was assessed with [3H]-diprenorphine ([3H]-DPN) as a radiolabel. Ins(1,4,5)P3 and cyclic AMP were measured by specific radioreceptor assays. [Ca2+]i was measured fluorimetrically with Fura-2.
  3. Scatchard analysis of [3H]-DPN binding revealed that the Bmax varied between passages. Fentanyl (10 pM–1 μM) dose-dependently displaced [3H]-DPN, yielding a curve which had a Hill slope of less than unity (0.6±0.1), and was best fit to a two site model, with pKi values (% of sites) of 9.97±0.4 (27±4.8%) and 7.68±0.07 (73±4.8%). In the presence of GppNHp (100 μM) and Na+ (100 mM), the curve was shifted to the right and became steeper (Hill slope=0.9±0.1) with a pKi value of 6.76±0.04.
  4. Fentanyl (0.1 nM–1 μM) had no effect on basal, but dose-dependently inhibited forskolin (1 μM)-stimulated, cyclic AMP formation (pIC50=7.42±0.23), in a pertussis toxin (PTX; 100 ng ml−1 for 24 h)-sensitive and naloxone-reversible manner (Ki=1.7 nM). Morphine (1 μM) and [D-Ala2, MePhe4, gly(ol)5]-enkephalin (DAMGO, 1 μM) also inhibited forskolin (1 μM)-stimulated cyclic AMP formation, whilst [D-Pen2, D-Pen5], enkephalin (DPDPE, 1 μM) did not.
  5. Fentanyl (0.1 nM–10 μM) caused a naloxone (1 μM)-reversible, dose-dependent stimulation of Ins(1,4,5)P3 formation, with a pEC50 of 7.95±0.15 (n=5). PTX (100 ng ml−1 for 24 h) abolished, whilst Ni2+ (2.5 mM) inhibited (by 52%), the fentanyl-induced Ins(1,4,5)P3 response. Morphine (1 μM) and DAMGO (1 μM), but not DPDPE (1 μM), also stimulated Ins(1,4,5)P3 formation. Fentanyl (1 μM) also caused an increase in [Ca2+]i (80±16.4 nM, n=6), reaching a maximum at 26.8±2.5 s. The increase in [Ca2+]i remained elevated until sampling ended (200 s) and was essentially abolished by the addition of naloxone (1 μM). Pre-incubation with naloxone (1 μM, 3 min) completely abolished fentanyl-induced increases in [Ca2+]i.
  6. In conclusion, the cloned μ-opioid receptor when expressed in CHO cells stimulates PLC and inhibits AC, both effects being mediated by a PTX-sensitive G-protein. In addition, the receptor couples to an increase in [Ca2+]i. These findings are consistent with the previously described effector-second messenger coupling of the endogenous μ-opioid receptor.
  相似文献   

4.
  1. The binding of modulators of the ATP-sensitive K+ channel (KATP channel) to the murine sulphonylurea receptor, SUR2B, was investigated. SUR2B, a proposed subunit of the vascular KATP channel, was expressed in HEK 293 cells and binding assays were performed in membranes at 37°C using the tritiated KATP channel opener, [3H]-P1075.
  2. Binding of [3H]-P1075 required the presence of Mg2+ and ATP. MgATP activated binding with EC50 values of 10 and 3 μM at free Mg2+ concentrations of 3 μM and 1 mM, respectively. At 1 mM Mg2+, binding was lower than at 3 μM Mg2+.
  3. [3H]-P1075 saturation binding experiments, performed at 3 mM ATP and free Mg2+ concentrations of 3 μM and 1 mM, gave KD values of 1.8 and 3.4 nM and BMAX values of 876 and 698 fmol mg−1, respectively.
  4. In competition experiments, openers inhibited [3H]-P1075 binding with potencies similar to those determined in rings of rat aorta.
  5. Glibenclamide inhibited [3H]-P1075 binding with Ki values of 0.35 and 2.4 μM at 3 μM and 1 mM free Mg2+, respectively. Glibenclamide enhanced the dissociation of the [3H]-P1075-SUR2B complex suggesting a negative allosteric coupling between the binding sites for P1075 and the sulphonylureas.
  6. It is concluded that an MgATP site on SUR2B with μM affinity must be occupied to allow opener binding whereas Mg2+ concentrations ⩾10 μM decrease the affinities for openers and glibenclamide. The properties of the [3H]-P1075 site strongly suggest that SUR2B represents the drug receptor of the openers in vascular smooth muscle.
  相似文献   

5.
  1. Clozapine has recently been claimed to behave as a selective and full agonist at the cloned m4 muscarinic receptor artificially expressed in Chinese hamster ovary (CHO) cells. In the present study we have investigated whether clozapine could activate the rat striatal muscarinic receptors coupled to the inhibition of adenylyl cyclase activity, considered as pharmacologically equivalent to the m4 gene product. In addition, we have examined the effect of the drug on various functional responses following the activation of the cloned m4 receptor expressed in CHO cells.
  2. In rat striatum, clozapine (1 nM–10 μM) caused a slight inhibition of forskolin-stimulated adenylyl cyclase activity, which was not counteracted by 10 μM atropine. On the other hand, clozapine antagonized the inhibitory effect of acetylcholine with a pA2 value of 7.51. Moreover, clozapine (1 μM) failed to inhibit dopamine D1 receptor stimulation of adenylyl cyclase activity, but counteracted the inhibitory effect of carbachol (CCh). Clozapine displaced [3H]-N-methylscopolamine ([3H]-NMS) bound to striatal M4 receptors with a monophasic inhibitory curve and a pKi value of 7.69. The clozapine inhibition was not affected by the addition of guanosine-5′-O-(thio)triphosphate (GTPγS).
  3. In intact CHO cells, clozapine inhibited forskolin-stimulated cyclic AMP accumulation with an EC50 of 31 nM. This effect was antagonized by atropine. CCh produced a biphasic effect on cyclic AMP levels, inhibiting at concentrations up to 1 μM (EC50=50 nM) and stimulating at higher concentrations (EC50=7 μM). Clozapine (0.3–5 μM) antagonized the CCh stimulation of cyclic AMP with a pKi value of 7.47. Similar results were obtained when the adenylyl cyclase activity was assayed in CHO cell membranes.
  4. In CHO cells pretreated with the receptor alkylating agent 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (10 μM), the maximal inhibitory effect of clozapine on cyclic AMP formation was markedly reduced, whereas the CCh inhibitory curve was shifted to the right with no change in the maximum.
  5. As in rat striatum, in CHO cell membranes the displacement of [3H]-NMS binding by clozapine yielded a monophasic curve which was not affected by GTPγS.
  6. Clozapine (10 nM–10 μM) had a small stimulant effect (∼20%) on the binding of [35S]-GTPγS to CHO cell membranes, whereas CCh caused a 250% increase of radioligand binding. Moreover, clozapine (50 nM–5 μM) antagonized the CCh-stimulated [35S]-GTPγS binding with a pA2 value of 7.48.
  7. These results show that at the striatal M4 receptors clozapine is a potent and competitive antagonist, whereas at the cloned m4 receptor it elicits both agonist and antagonist effects. Thus, clozapine behaves as a partial agonist, rather than as a full agonist, at the m4 receptor subtype, with intrinsic activity changing as a function of the coupling efficiency of the receptor to effector molecules.
  相似文献   

6.
  1. Interations were investigated between loreclezole, chlormethiazole and pentobarbitone as potentiators of depolarization responses mediated by γ-aminobutyric acidA (GABAA) receptors on afferent nerve terminals in the rat cuneate nucleus in vitro. These drugs were also compared as modulators of [3H]-flunitrazepam (FNZ) binding to synaptic membranes prepared from rat whole brain homogenate.
  2. In rat cuneate nucleus slices, the drugs shifted muscimol log dose–response lines to the left in an approximately parallel fashion with the result that 200 μM chlormethiazole potentiated muscimol responses by 0.567±0.037 log unit (mean±s.e.mean, n=4) while loreclezole gave a maximal potentiation at 10 μM of only 0.121±0.037 (n=6) log unit and 0.071±0.039 (n=22) at 50 μM.
  3. While 50 μM chlormethiazole and 30 μM pentobarbitone showed no significant interactions between each other when potentiating muscimol responses in combination, 50 μM loreclezole in combination with either chlormethiazole or pentobarbitone attenuated their potentiating effects, possibly by inducing desensitization of GABAA receptors.
  4. In the [3H]-FNZ binding studies on well-washed membranes, loreclezole enhanced binding to a maximum of 47.3±2.83% of control (mean±s.e.mean, n=3) at 300 μM. Scatchard analysis revealed no change in Bmax but a decrease in KD for [3H]-FNZ from 3.9±0.29 nM to 2.7±0.10 nM (mean±s.e.mean, n=4) in the presence of 100 μM loreclezole. In contrast, 100 μM chlormethiazole caused no potentiation. A small component of the enhancement by loreclezole could be blocked by 100 μM bicuculline and could also be blocked by 100 μM chlormethiazole. It seems likely that the effects on [3H]-FNZ binding are due predominantly to direct actions of the drugs on the GABAA receptor and are separate from the GABA-potentiating effects.
  5. The results indicate distinctly different profiles of action for loreclezole, chlormethiazole and pentobarbitone on GABAA receptors.
  相似文献   

7.
8.
  1. Levcromakalim caused concentration-dependent relaxations of methoxamine-induced tone in both endothelium-denuded and intact vessels. Its potency was reduced by the nitric oxide donor, S-nitroso-N-acetylpenicillamine (SNAP; 0.1 μM or 1 μM) in both denuded and intact vessels. The maximal relaxation (Rmax) was reduced only in denuded vessels.
  2. SNAP was more potent in endothelium-denuded than intact vessels but there were no differences in Rmax. Glibenclamide (10 μM) did not affect relaxation to SNAP in endothelium-denuded or intact vessels.
  3. The soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 μM) increased the potency and Rmax of levcromakalim in endothelium-intact vessels. ODQ had no effect in denuded vessels.
  4. ODQ (10 μM) reduced the vasorelaxant potency of SNAP in both intact and endothelium-denuded vessels by 190-fold and 620-fold, respectively.
  5. 8-bromo cyclic GMP (10 or 30 μM) reduced both the potency and Rmax of levcromakalim in de-endothelialized vessels, but had no effect in intact vessels although it reduced both the potency and Rmax of levcromakalim in intact vessels incubated with ODQ (10 μM).
  6. In the presence of ODQ (10 μM), SNAP (0.1 μM or 1 μM) reduced the potency of levcromakalim in intact vessels, without altering Rmax, but had no effect in denuded vessels. SNAP (50 μM) reduced both the potency and Rmax of levcromakalim in intact and endothelium-denuded vessels.
  7. Therefore, although SNAP causes relaxation principally through generation of cyclic GMP, it can modulate the actions of levcromakalim through mechanisms both dependent on, and independent of, cyclic GMP; the former predominate in endothelium-denuded vessels and the latter in intact vessels.
  相似文献   

9.
  1. The tachykinin receptors mediating contraction of isolated longitudinal strips of the guinea-pig oesophageal body were characterized with substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) as well as the analogues, [Sar9,Met(O2)11]SP, [Nle10]NKA(4–10) and [MePhe7]NKB, selective for NK1, NK2 and NK3, receptors, respectively. Experiments were performed both in the absence and presence of a cocktail of peptidase inhibitors, captopril (1 μM), thiorphan (1 μM) and amastatin (20 μM), in order to determine whether membrane bound proteases are important in the metabolism of tachykinins in this preparation.
  2. All agonists produced concentration-dependent contractile effects. The presence of the peptidase inhibitors shifted the concentration-response curves of SP, [Nle10]NKA(4–10) and [MePhe7]NKB significantly leftwards and the concentration-response curve of NKB was shifted significantly rightwards. However, the EC50 values were significantly different only for [Nle10]NKA(4–10) and NKB.
  3. In the presence of the peptidase inhibitors, the EC50 values of the selective agonists, [MePhe7]NKB (0.6 nM) and [Nle10]NKA(4–10) (66 nM) indicated the presence of both tachykinin NK3 and NK2 receptors. [MePhe7]NKB produced less than 50% of the maximal response obtained with the other agonists. Since [Sar9,Met(O2)11]SP produced a small response in the nanomolar concentration range in about 30% of the preparations tested, it is possible that some NK1 receptors were also present.
  4. Assuming competitive antagonism, the NK2-selective antagonist SR 48,968 (30 nM) gave apparent pKB values of 8.13 and 8.65 for [Nle10]NKA(4–10) in the absence and presence of peptidase inhibitors, respectively, supporting the presence of NK2 receptors.
  5. The NK3-selective antagonist SR 142,801 (0.1 μM), suppressed responses to low (0.1–10 nM) concentrations of [MePhe7]NKB. These contractile responses to [MePhe7]NKB were also abolished by atropine (0.6 μM) suggesting that this response was mediated via cholinergic nerves.
  6. It is concluded that the guinea-pig oesophagus is a complex system which has both NK2 and NK3 receptors and possibly some NK1 receptors as well.
  相似文献   

10.
  1. In the present study the effect of N-methyl-D-aspartate (NMDA) on thromboxane B2 synthesis and on [Ca2+]i was studied in human platelets.
  2. NMDA (10−7M) completely inhibited the synthesis of thromboxane B2 from exogenous arachidonic acid (AA), while it did not interfere with the aggregating effect of the thromboxane A2 receptor agonist U-46619.
  3. NMDA (0.1 μM–10 μM) dose-dependently increased intracellular calcium in washed platelets pre-loaded with fura 2 AM, and this effect was not additive with that of AA.
  4. NMDA shifted the dose-response curve of AA to the right. At the highest AA concentrations platelet aggregation was not inhibited.
  5. The antiaggregating effect of NMDA was not antagonized by NG-monomethyl-L-arginine (L-NMMA), a nitric oxide synthase (NOS) inhibitor.
  6. Finally, NMDA (0.01 nM–100 nM) associated with either aspirin or indomethacin significantly potentiated the antiaggregating activity of both cyclo-oxygenase inhibitors.
  7. It was concluded that NMDA is a potent inhibitor of platelet aggregation and thromboxane B2 synthesis in human platelet rich plasma (PRP).
  相似文献   

11.
  1. The mechanisms underlying the midazolam-induced relaxation of the noradrenaline (NA)-contraction were studied by measuring membrane potential, isometric force and intracellular concentration of Ca2+([Ca2+]i) in endothelium-denuded muscle strips from the rabbit mesenteric resistance artery. The actions of midazolam were compared with those of nicardipine, an L-type Ca2+-channel blocker.
  2. Midazolam (30 and 100 μM) did not modify either the resting membrane potential or the membrane depolarization induced by 10 μM NA.
  3. NA (10 μM) produced a phasic, followed by a tonic increase in both [Ca2+]i and force. Midazolam (10–100 μM) did not modify the resting [Ca2+]i, but attenuated the NA-induced phasic and tonic increases in [Ca2+]i and force, in a concentration-dependent manner. In contrast, nicardipine (0.3 μM) attenuated the NA-induced tonic, but not phasic, increases in [Ca2+]i and force.
  4. In Ca2+-free solution containing 2 mM EGTA, NA (10 μM) transiently increased [Ca2+]i and force. Midazolam (10–100 μM), but not nicardipine (0.3 μM), attenuated this NA-induced increase in [Ca2+]i and force, in a concentration-dependent manner. However, midazolam (10 and 30 μM), had no effect on the increases in [Ca2+]i and force induced by 10 mM caffeine.
  5. In ryanodine-treated strips, which have functionally lost the NA-sensitive Ca2+- storage sites, NA slowly increased [Ca2+]i and force. Nicardipine (0.3 μM) did not modify the resting [Ca2+]i but partly attenuated the NA-induced increases in [Ca2+]i and force. In the presence of nicardipine, midazolam (100 μM) lowered the resting [Ca2+]i and further attenuated the remaining NA-induced increases in [Ca2+]i and force.
  6. The [Ca2+]i-force relationship was obtained in ryanodine-treated strips by the application of ascending concentrations of Ca2+ (0.16–2.6 mM) in Ca2+-free solution containing 100 mM K+. NA (10 μM) shifted the [Ca2+]i-force relationship to the left and enhanced the maximum Ca2+-induced force. Under these conditions, whether in the presence or absence of 10 μM NA, midazolam (10 and 30 μM) attenuated the increases in [Ca2+]i and force induced by Ca2+ without changing the [Ca2+]i-force relationship.
  7. It was concluded that, in smooth muscle of the rabbit mesenteric resistance artery, midazolam inhibits the NA-induced contraction through its inhibitory action on NA-induced Ca2+ mobilization. Midazolam attenuates NA-induced Ca2+ influx via its inhibition of both nicardipine-sensitive and -insensitive pathways. Furthermore, midazolam attenuates the NA-induced release of Ca2+ from the storage sites. This effect contributes to the midazolam-induced inhibition of the NA-induced phasic contraction.
  相似文献   

12.
  1. Although stimulation of mouse RAW 264.7 macrophages by UTP elicits a rapid increase in intracellular free Ca2+ ([Ca2+]i), phosphoinositide (PI) turnover, and arachidonic acid (AA) release, the causal relationship between these signalling pathways is still unclear. In the present study, we investigated the involvement of phosphoinositide-dependent phospholipase C (PI-PLC) activation, Ca2+ increase and protein kinase activation in UTP-induced AA release. The effects of stimulating RAW 264.7 cells with thapsigargin, which cannot activate the inositol phosphate (IP) cascade, but results in the release of sequestered Ca2+ and an influx of extracellular Ca2+, was compared with the effects of UTP stimulation to elucidate the multiple regulatory pathways for cPLA2 activation.
  2. In RAW 264.7 cells UTP (100 μM) and thapsigargin (1  μM) caused 2 and 1.2 fold increases, respectively, in [3H]-AA release. The release of [3H]-AA following treatment with UTP and thapsigargin were non-additive, totally abolished in the Ca2+-free buffer, BAPTA (30 μM)-containing buffer or in the presence of the cPLA2 inhibitor MAFP (50 μM), and inhibited by pretreatment of cells with pertussis toxin (100 ng ml−1) or 4-bromophenacyl bromide (100 μM). By contrast, aristolochic acid (an inhibitor of sPLA2) had no effect on UTP and thapsigargin responses.
  3. U73122 (10 μM) and neomycin (3 mM), inhibitors of PI-PLC, inhibited UTP-induced IP formation (88% and 83% inhibition, respectively) and AA release (76% and 58%, respectively), accompanied by a decrease in the [Ca2+]i rise.
  4. Wortmannin attenuated the IP response of UTP in a concentration-dependent manner (over the range 10 nM–3 μM), and reduced the UTP-induced AA release in parallel. RHC 80267 (30 μM), a specific diacylglycerol lipase inhibitor, had no effect on UTP-induced AA release.
  5. Short-term treatment with PMA (1 μM) inhibited the UTP-stimulated accumulation of IP and increase in [Ca2+]i, but had no effect on the release of AA. In contrast, the AA release caused by thapsigargin was increased by PMA.
  6. The role of PKC in UTP- and thapsigargin-mediated AA release was shown by the blockade of these effects by staurosporine (1 μM), Ro 31-8220 (10 μM), Go 6976 (1 μM) and the down-regulation of PKC.
  7. Following treatment of cells with SK&F 96365 (30 μM), thapsigargin-, but not UTP-, induced Ca2+ influx, and the accompanying AA release, were down-regulated.
  8. Neither PD 98059 (100 μM), MEK a inhibitor, nor genistein (100 μM), a tyrosine kinase inhibitor, had any effect on the AA responses induced by UTP and thapsigargin.
  9. We conclude that UTP-induced cPLA2 activity depends on the activation of PI-PLC and the sustained elevation of intracellular Ca2+, which is essential for the activation of cPLA2 by UTP and thapsigargin. The [Ca2+]i-dependent AA release that follows treatment with both stimuli was potentiated by the activity of protein kinase C (PKC). A pertussis toxin-sensitive pathway downstream of the increase in [Ca2+]i was also shown to be involved in AA release.
  相似文献   

13.
  1. The activation of G proteins by type 1α metabotropic glutamate receptors (mGluRs) in membranes from recombinant baby hamster kidney cells expressing the cloned rat mGluR1α receptor has been studied by use of a [35S]-guanosine 5′-[γ-thio]triphosphate ([35S]-GTPγS) binding assay.
  2. L-Glutamate increased the rate of [35S]-GTPγS binding in a concentration-dependent manner (−logEC50 (M) 5.25±0.07), with an optimal (62.4±1.6%) increase over basal binding being observed following 60 min incubation at 30°C with 70 pM [35S]-GTPγS, 1 μM GDP, 10 mM MgCl2, 100 mM NaCl and 100 μg membrane protein ml−1. The L-glutamate (100 μM)-stimulated increase in [35S]-GTPγS binding was totally prevented in the presence of the group I mGluR antagonist (S)-4-carboxy-3-hydroxyphenylglycine (300 μM).
  3. Quantitative analysis of the affinity and number of G proteins activated by a maximally effective concentration of L-glutamate revealed an equilibrium dissociation constant (KD) for [35S]-GTPγS binding of 0.76±0.20 nM and a maximal number of GTPγS-liganded G proteins (Bmax) of 361±30 fmol mg−1 protein.
  4. Metabotropic glutamate receptor agonists, quisqualate (−logEC50 (M) 6.74±0.06), 1S,3R-ACPD (4.64±0.08) and (S)-3,5-dihydroxyphenylglycine (5.16±0.23) also increased [35S]-GTPγS binding in a concentration-dependent manner, with the latter two agents behaving as partial agonists.
  5. (+)-α-Methylcarboxyphenylglycine (300 μM) caused a parallel rightward shift of the L-glutamate concentration-effect curve for [35S]-GTPγS binding, allowing an antagonist equilibrium dissociation constant (KD) of 34.0±7.8 μM to be calculated for this mGluR antagonist.
  6. Pretreatment of BHK-mGluR1α cells with a concentration of pertussis toxin (PTX) shown to be maximally effective (100 ng ml−1, 24 h) before membrane preparation resulted in a marked decrease in agonist-stimulated [35S]-GTPγS binding (by 66.0±0.9%), and an altered concentration-effect relationship for agonist-stimulated [35S]-GTPγS binding by the residual PTX-insensitive G-protein population.
  7. The modulation of [35S]-GTPγS binding by agonists and antagonists in membranes from recombinant cells provides an excellent system in which to study mGluR interactions with PTX-sensitive and -insensitive G proteins.
  相似文献   

14.
  1. The release of neuronal [3H]acetylcholine (ACh) from isolated human bronchi after labelling with [3H]choline was measured to investigate the effects of prostanoids.
  2. A first period of electrical field stimulation (S1) caused a [3H]ACh release of 320±70 and 200±40 Becquerel (Bq) g−1 in epithelium-denuded and epithelium-containing bronchi respectively (P>0.05). Subsequent periods of electrical stimulation (Sn, n=2, 3, and 4) released less [3H]ACh, i.e. decreasing Sn/S1 values were obtained (0.76±0.09, 0.68±0.07 and 0.40±0.04, respectively).
  3. Cumulative concentrations (1–1000 nM) of EP-receptor agonists like prostaglandin E2, nocloprost, and sulprostone (EP1 and EP3 selective) inhibited evoked [3H]ACh release in a concentration dependent manner with IC50 values between 4–14 nM and maximal inhibition of about 70%.
  4. The inhibition of evoked [3H]ACh release by prostaglandin E2, nocloprost and sulprostone was not affected by the DP-, EP1- and EP2-receptor antagonist AH6809 at a concentration of 3 μM, i.e. a 3–30 times greater concentration than its affinity (pA2 values) at the respective receptors.
  5. Circaprost (IP-receptor agonist; 1–100 nM), iloprost (IP- and EP1-receptor agonist; 10-1000 nM) and U-46619 (TP-receptor agonist; 100–1000 nM) did not significantly affect [3H]ACh release.
  6. Blockade of cyclooxygenase by 3 μM indomethacin did not significantly modulate evoked [3H]ACh release in epithelium-containing and epithelium-denuded bronchi. Likewise, the combined cyclo- and lipoxygenase inhibitor BW-755C (20 μM) did not affect evoked [3H]ACh release.
  7. In conclusion, applied prostanoids appear to inhibit [3H]ACh release in epithelium-denuded human bronchi under the present in vitro conditions, most likely via prejunctional prostanoid receptors of the EP3 subtype.
  相似文献   

15.
  1. We have recently demonstrated the formation of protein-bound dinitrosyl-iron complexes (DNIC) in rat aortic rings exposed to lipopolysaccharide (LPS) and shown that N-acetylcysteine (NAC) can promote vasorelaxation in these arteries, possibly via the release of nitric oxide (NO) as low molecular weight DNIC from these storage sites. The aim of the present study was to investigate further the mechanism of the relaxation induced by NAC in LPS-treated vessels.
  2. In rings incubated with LPS (10 μg ml−1 for 18 h) and precontracted with noradrenaline (NA, 3 μM) plus Nω-nitro-L-arginine methylester (L-NAME, 3 mM), the relaxation evoked by NAC (0.1 to 10 mM) was abolished by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 1 μM, a selective inhibitor of soluble guanylyl cyclase) but not affected by Rp-8-bromoguanosine 3′5′-cyclic monophosphorothioate (Rp-8BrcGMPS, 60 μM a selective inhibitor of cyclic GMP-dependent protein kinase). Tetrabutylammonium (TBA, 3 mM, as a non selective K+ channels blocker) or elevated concentration of external KCl (25 or 50 mM) significantly attenuated the NAC-induced relaxation. Selective K+ channels blockers (10 μM glibenclamide, 0.1 μM charybdotoxin, 0.5 μM apamin or 3 mM 4-aminopyridine) did not affect the NAC-induced relaxation. The relaxing effect of NAC (10 mM) was not associated with an elevation of guanosine 3′ : 5′ cyclic monophosphate (cyclic GMP) in LPS-treated rings.
  3. In aortic rings precontracted with NA (0.1 μM), low molecular weight DNIC (with thiosulphate as ligand, 1 nM to 10 μM) evoked a concentration-dependent relaxation which was antagonized by ODQ (1 μM) and Rp-8BrcGMPS (150 μM) but not significantly affected by TBA (3 mM) or by the use of KCl (50 mM) as preconstricting agent. The relaxation produced by DNIC (0.1 μM) was associated with an 11 fold increase in aortic cyclic GMP content, which was completely abolished by ODQ (1 μM).
  4. Taken together with our previous data, the main finding of the present study is that the vascular relaxation induced by NAC in LPS-treated aorta, although probably related to NO through an interaction via preformed NO stores, was not mediated by activation of the cyclic GMP pathway. It may involve the activation of TBA-sensitive K+ channels. The differences in the mechanism of relaxation induced by NAC and by exogenous DNIC suggest that the generation of low molecular weight DNIC from protein-bound species does not play a major role in the NAC-induced relaxation observed in LPS-treated rat aorta. In addition, it is suggested that ODQ may display other properties than the inhibition of soluble guanylyl cyclase.
  相似文献   

16.
  1. Inhalation of vanadium compounds, particularly vanadate, is a cause of occupational bronchial asthma. We have now studied the action of vanadate on human isolated bronchus. Vanadate (0.1 μM–3 mM) produced concentration-dependent, well-sustained contraction. Its −logEC50 was 3.74±0.05 (mean±s.e.mean) and its maximal effect was equivalent to 97.5±4.2% of the response to acetylcholine (ACh, 1 mM).
  2. Vanadate (200 μM)-induced contraction of human bronchus was epithelium-independent and was not inhibited by indomethacin (2.8 μM), zileuton (10 μM), a mixture of atropine, mepyramine and phentolamine (each at 1 μM), or by mast cell degranulation with compound 48/80.
  3. Vanadate (200 μM)-induced contraction was unaltered by tissue exposure to verapamil or nifedipine (each 1 μM) or to a Ca2+-free, EGTA (0.1 mM)-containing physiological salt solution (PSS). However, tissue incubation with ryanodine (10 μM) in Ca2+-free, EGTA (0.1 mM)-containing PSS reduced vanadate-induced contraction. A series of vanadate challenges was made in tissues exposed to Ca2+-free EGTA (0.1 mM)-containing PSS with the object of depleting intracellular Ca2+ stores. In such tissues cyclopiazonic acid (CPA; 10 μM) prevented Ca2+-induced recovery of vanadate-induced contraction.
  4. Tissue incubation in K+-rich (80 mM) PSS, K+-free PSS, or PSS containing ouabain (10 μM) did not alter vanadate (200 μM)-induced contraction. Ouabain (10 μM) abolished the K+-induced relaxation of human bronchus bathed in K+-free PSS. This action was not shared by vanadate (200 μM). The tissue content of Na+ was increased and the tissue content of K+ was decreased by ouabain (10 μM). In contrast, vanadate (200 μM) did not alter the tissue content of these ions. Tissue incubation in a Na+-deficient (25 mM) PSS or in PSS containing amiloride (0.1 mM) markedly inhibited the spasmogenic effect of vanadate (200 μM).
  5. Vanadate (200 μM)-induced contractions were markedly reduced by tissue treatment with each of the protein kinase C (PKC) inhibitors H-7 (10 μM), staurosporine (1 μM) and calphostin C (1 μM). Genistein (100 μM), an inhibitor of protein tyrosine kinase, also reduced the response to vanadate.
  6. Vanadate (0.1–3 mM) and ACh (1 μM–3 mM) each increased inositol phosphate accumulation in bronchus. Such responses were unaffected by a Ca2+-free medium either alone or in combination with ryanodine (10 μM).
  7. In human cultured tracheal smooth muscle cells, histamine (100 μM) and vanadate (200 μM) each produced a transient increase in intracellular Ca2+ concentration ([Ca2+]i).
  8. Intracellular microelectrode recording showed that the contractile effect of vanadate (200 μM) in human bronchus was associated with cellular depolarization.
  9. It is concluded that vanadate acts directly on human bronchial smooth muscle, promoting the release of Ca2+ from an intracellular store. The Ca2+ release mechanism involves both the production of inositol phosphate second messengers and inhibition of Ca-ATPase. The activation of PKC plays an important role in mediating vanadate-induced contraction at values of [Ca2+]i that are close to basal.
  相似文献   

17.
  1. Human in vitro preparations of transverse or distal colonic circular smooth muscle were potently and dose-dependently contracted by neurokinin A (EC50, 4.9 nM), the tachykinin NK2-receptor selective agonist [β-Ala8]neurokinin A (4–10) ([β-Ala8]NKA (4–10)) (EC50, 5.0 nM), neurokinin B (EC50, 5.3 nM) and substance P (EC50, 160 nM), but not by the tachykinin NK1-receptor selective agonist [Sar9Met(O2)11] substance P, or the NK3-receptor selective agonists, senktide and [MePhe7] neurokinin B. No regional differences between transverse and distal colon were observed in response to [β-Ala8]NKA (4–10).
  2. Atropine (1 μM) and tetrodotoxin (1 μM) did not significantly inhibit responses to [β-Ala8]NKA (4–10), neurokinin A, substance P or neurokinin B.
  3. The newly developed non-peptide antagonists for tachykinin NK2-receptors SR 48968, SR 144190 and its N-demethyl (SR 144743) and N,N-demethyl (SR 144782) metabolites, were used to challenge agonist responses, as appropriate. SR 144190 and the metabolites all potently and competitively antagonized the response to [β-Ala8]NKA (4–10), with similar potency (Schild plot pA2 values 9.4, 9.4 and 9.3, slope=1). SR 48968 antagonism was not competitive: the Schild plot slope was biphasic with a high (X intercept∼9.3) and a low (X intercept 8.4, slope 1.6) affinity site. Co-incubation of SR 48968 (10, 100 nM) and SR 144782 (10 nM) produced additive effects; in this experimental condition, SR 48968 apparent affinity (pKB) was 8.2. In addition, SR 144782 (0.1 μM) antagonized responses to neurokinin A, substance P and neurokinin B, with pKB consistent with its affinity for tachykinin NK2-receptors. The potent and selective NK1 and NK3-receptor antagonists, SR 140333 and SR 142801 (both 0.1 μM), failed to inhibit contractions induced by SP or NKB.
  4. In conclusion, the in vitro mechanical responses of circular smooth muscle preparations from human colon are strongly consistent with the presence of non-neuronal tachykinin NK2-receptors, but not tachykinin NK1- or NK3-receptors. Our findings with SR 48968 suggest the existence of two tachykinin NK2-receptor subtypes, that it seems to distinguish, unlike SR 144190 and its metabolites. However, the precise nature of SR 48968 allotopic antagonism remains to be elucidated, since allosteric effects at the tachykinin NK2-receptor might well account for the complexity of the observed interaction.
  相似文献   

18.
  1. Nitric oxide (NO) synthase activity was studied in slices of human temporal cortex samples obtained in neurosurgery by measuring the conversion of L-[3H]-arginine to L-[3H]-citrulline.
  2. Elevation of extracellular K+ to 20, 35 or 60 mM concentration-dependently augmented L-[3H]-citrulline production. The response to 35 mM KCl was abolished by NG-nitro-L-arginine (100 μM) demonstrating NO synthase specific conversion of L-arginine to L-citrulline. Increasing extracellular MgCl2 concentration up to 10 mM also prevented the K+ (35 mM)-induced NO synthase activation, suggesting the absolute requirement of external calcium ions for enzyme activity.
  3. However, the effect of high K+ (35 mM) on citrulline synthesis was insensitive to the antagonists of ionotropic and metabotropic glutamate receptors dizocilpine (MK-801), 6-nitro-7-sulphamoylbenzo(f)quinoxaline-2-3-dione (NBQX) or L-2-amino-3-phosphonopropionic acid (L-AP3) as well as to the nicotinic receptor antagonist, mecamylamine.
  4. The 35 mM K+ response was insensitive to ω-conotoxin GVIA (1 μM) and nifedipine (100 μM), but could be prevented in part by ω-agatoxin IVA (0.1 and 1 μM). The inhibition caused by 0.1 μM ω-agatoxin IVA (∼30%) was enhanced by adding ω-conotoxin GVIA (1 μM) or nifedipine (100 μM). Further inhibition (up to above 70%) could be observed when the three Ca2+ channel blockers were added together. Similarly, synthetic FTX 3.3 arginine polyamine (sFTX) prevented (50% at 100 μM) the K+-evoked NO synthase activation. This effect of sFTX was further enhanced (up to 70%) by adding 1 μM ω-conotoxin GVIA plus 100 μM nifedipine. No further inhibition could be observed upon addition of MK-801 or/and NBQX.
  5. It was concluded that elevation of extracellular [K+] causes NO synthase activation by external Ca+ entering cells mainly through channels of the P/Q-type. Other Ca2+ channels (L- and N-type) appear to contribute when P/Q-channels are blocked.
  相似文献   

19.
  1. ATP (10–100 μM), but not glutamate (100  μM), stimulated the release of plasminogen from microglia in a concentration-dependent manner during a 10 min stimulation. However, neither ATP (100 μM) nor glutamate (100 μM) stimulated the release of NO. A one hour pretreatment with BAPTA-AM (200 μM), which is metabolized in the cytosol to BAPTA (an intracellular Ca2+ chelator), completely inhibited the plasminogen release evoked by ATP (100 μM). The Ca2+ ionophore A23187 induced plasminogen release in a concentration-dependent manner (0.3 μM to 10 μM).
  2. ATP induced a transient increase in the intracellular calcium concentration ([Ca2+]i) in a concentration-dependent manner which was very similar to the ATP-evoked plasminogen release, whereas glutamate (100 μM) had no effect on [Ca2+]i (70 out of 70 cells) in microglial cells. A second application of ATP (100 μM) stimulated an increase in [Ca2+]i similar to that of the first application (21 out of 21 cells).
  3. The ATP-evoked increase in [Ca2+]i was totally dependent on extracellular Ca2+, 2-Methylthio ATP was active (7 out of 7 cells), but α,β-methylene ATP was inactive (7 out of 7 cells) at inducing an increase in [Ca2+]i. Suramin (100 μM) was shown not to inhibit the ATP-evoked increase in [Ca2+]i (20 out of 20 cells). 2′- and 3′-O-(4-Benzoylbenzoyl)-adenosine 5′-triphosphate (BzATP), a selective agonist of P2X7 receptors, evoked a long-lasting increase in [Ca2+]i even at 1 μM, a concentration at which ATP did not evoke the increase. One hour pretreatment with adenosine 5′-triphosphate-2′, 3′-dialdehyde (oxidized ATP, 100 μM), a selective antagonist of P2X7 receptors, blocked the increase in [Ca2+]i induced by ATP (10 and 100 μM).
  4. These data suggest that ATP may transit information from neurones to microglia, resulting in an increase in [Ca2+]i via the ionotropic P2X7 receptor which stimulates the release of plasminogen from the microglia.
  相似文献   

20.
  1. In segments of human right atrial appendages and pulmonary arteries preincubated with [3H]-noradrenaline and superfused with physiological salt solution containing desipramine and corticosterone, the involvement of imidazoline receptors in the modulation of [3H]-noradrenaline release was investigated.
  2. In human atrial appendages, the guanidines aganodine and DTG (1,3-di(2-tolyl)guanidine) which activate presynaptic imidazoline receptors, inhibited electrically-evoked [3H]-noradrenaline release. The inhibition was not affected by blockade of α2-adrenoceptors with 1 μM rauwolscine, but antagonized by extremely high concentrations of this drug (10 and/or 30 μM; apparent pA2 against aganodine and DTG: 5.55 and 5.21, respectively).
  3. In the presence of 1 μM rauwolscine, [3H]-noradrenaline release in human atrial appendages was also inhibited by the imidazolines idazoxan and cirazoline, but not by agmatine and noradrenaline. The inhibitory effects of 100 μM idazoxan and 30 μM cirazoline were abolished by 30 μM rauwolscine.
  4. In the atrial appendages, the rank order of potency of all guanidines and imidazolines for their inhibitory effect on electrically-evoked [3H]-noradrenaline release in the presence of 1 μM rauwolscine was: aganodine⩾BDF 6143 [4-chloro-2-(2-imidazolin-2-yl-amino)-isoindoline]>DTG⩾clonidine>cirazoline>idazoxan (BDF 6143 and clonidine were previously studied under identical conditions). This potency order corresponded to that previously determined at the presynaptic imidazoline receptors in the rabbit aorta.
  5. When, in the experiments in the human pulmonary artery, rauwolscine was absent from the superfusion fluid, the concentration-response curve for BDF 6143 (a mixed α2-adrenoceptor antagonist/imidazoline receptor agonist) for its facilitatory effect on electrically-evoked [3H]-noradrenaline release was bell-shaped. In the presence of 1 μM rauwolscine, BDF 6143 and cirazoline concentration-dependently inhibited the evoked [3H]-noradrenaline release.
  6. In human atrial appendages, non-adrenoceptor [3H]-idazoxan binding sites were identified and characterized. The binding of [3H]-idazoxan was specific, reversible, saturable and of high affinity (KD: 25.5 nM). The specific binding of [3H]-idazoxan (defined by cirazoline 0.1 mM) to membranes of human atrial appendages was concentration-dependently inhibited by several imidazolines and guanidines, but not by rauwolscine and agmatine. In most cases, the competition curves were best fitted to a two-site model.
  7. The rank order of affinity for the high affinity site (in a few cases for the only detectable site; cirazoline=idazoxan>BDF 6143>DTG⩾clonidine) is compatible with the pharmacological properties of I2-imidazoline binding sites, but is clearly different from the rank order of potency for inhibiting evoked noradrenaline release from sympathetic nerves in the same tissue.
  8. It is concluded that noradrenaline release in the human atrium and, less well established, in the pulmonary artery is inhibited via presynaptic imidazoline receptors. These presynaptic imidazoline receptors appear to be related to those previously characterized in rabbit aorta and pulmonary artery, but differ clearly from I1 and I2 imidazoline binding sites.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号