首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  1. The site(s) at which P2-receptor agonists act to evoke contractions of the rat isolated tail artery was studied by use of P2-receptor antagonists and the extracellular ATPase inhibitor 6-N,N-diethyl-D-β,γ-dibromomethyleneATP (ARL 67156).
  2. Suramin (1 μM–1 mM) and pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS) (0.3–300 μM) inhibited contractions evoked by equi-effective concentrations of α,β-methyleneATP (α,β-meATP) (5 μM), 2-methylthioATP (2-meSATP) (100 μM) and adenosine 5′-triphosphate (ATP) (1 mM) in a concentration-dependent manner. Responses to α,β-meATP and 2-meSATP were abolished, but approximately one third of the peak response to ATP was resistant to suramin and PPADS.
  3. Contractions evoked by uridine 5′-triphosphate (UTP) (1 mM) were slightly inhibited by suramin (100 and 300 μM) and potentiated by PPADS (300 μM).
  4. Desensitization of the P2X1-receptor by α,β-meATP abolished contractions evoked by 2-meSATP (100 μM) and reduced those to ATP (1 mM) and UTP (1 mM) to 15±3% and 68±4% of control.
  5. Responses to α,β-meATP (5 μM) and 2-meSATP (100 μM) were abolished when tissues were bathed in nominally calcium-free solution, while the peak contractions to ATP (1 mM) and UTP (1 mM) were reduced to 24±6% and 61±13%, respectively, of their control response.
  6. ARL 67156 (3–100 μM) potentiated contractions elicited by UTP (1 mM), but inhibited responses to α,β-meATP (5 μM), 2-meSATP (100 μM) and ATP (1 mM) in a concentration-dependent manner.
  7. These results suggest that two populations of P2-receptors are present in the rat tail artery; ligand-gated P2X1-receptors and G-protein-coupled P2Y-receptors.
  相似文献   

2.
  1. We have used whole-cell patch clamping methods to study and characterize the cytolytic P2X7 (P2Z) receptor in the NTW8 mouse microglial cell line.
  2. At room temperature, in an extracellular solution containing 2 mM Ca2+ and 1 mM Mg2+, 2′- and 3′-O-(4-benzoylbenzoyl)-adenosine-5′-triphosphate (Bz-ATP; 300 μM), or ATP (3 mM), evoked peak whole cell inward currents, at a holding potential of −90 mV, of 549±191 and 644±198 pA, respectively. Current-voltage relationships generated with 3 mM ATP reversed at 4.6 mV and did not display strong rectification.
  3. In an extracellular solution containing zero Mg2+ and 500 μM Ca2+ (low divalent solution), brief (0.5 s) application of these agonists elicited larger maximal currents (909±138 and 1818±218 pA, Bz-ATP and ATP, respectively). Longer application of ATP (1 mM for 30 s) produced larger, slowly developing, currents which reached a plateau after approximately 15–20 s and were reversible on washing. Under these conditions, in the presence of ATP, ethidium bromide uptake could be demonstrated. Further applictions of 1 mM ATP produced rapid currents of the same magnitude as those observed during the 30 s application. Subsequent determination of concentration-effect curves to Bz-ATP, ATP and 2-methylthio-ATP yielded EC50 values of 58.3, 298 and 505 μM, respectively. These affects of ATP were antagonized by pyridoxal-phosphate-6-azophenyl- 2′, 4′-disulphonic acid (PPADS; 30 μM) but not suramin (100 μM).
  4. In low divalent solution, repeated application of 1 mM ATP for 1 s produced successively larger currents which reached a plateau, after 8 applications, of 466% of the first application current. PPADS (30 μM) prevented this augmentation, while 5-(N,N-hexamethylene)-amiloride (HMA) (100 μM) accelerated it such that maximal augmentation was observed after only one application of ATP in the presence of HMA. At a bath temperature of 32°C, current augmentation also occurred in normal divalent cation containing solution.
  5. These data demonstrate that mouse microglial NTW8 cells possess a purinoceptor with pharmacological characteristics resembling the P2X7 receptor. We suggest that the current augmentation phenomenon observed reflects formation of the large cytolytic pore characteristic of this receptor. We have demonstrated that pore formation can occur under normal physiological conditions and can be modulated pharmacologically, both positively and negatively.
  相似文献   

3.
  1. Previous studies have shown that ciprofloxacin and biphenylacetic acid (BPAA) synergistically inhibit γ-aminobutyric acid (GABA)A receptors. In the present study, we have investigated the actions of these two drugs on other neuronal ligand-gated ion channels.
  2. Agonist-evoked depolarizations were recorded from rat vagus and optic nerves in vitro by use of an extracellular recording technique.
  3. GABA (50 μM)-evoked responses, in the vagus nerve in vitro, were inhibited by bicuculline (0.3–10 μM) and picrotoxin (0.3–10 μM), with IC50 values and 95% confidence intervals (CI) of 1.2 μM (1.1–1.4) and 3.6 μM (3.0–4.3), respectively, and were potentiated by sodium pentobarbitone (30 μM) and diazepam (1 μM) to (mean±s.e.mean) 168±18% and 117±4% of control, respectively. 5-Hydroxytryptamine (5-HT; 0.5 μM)-evoked responses were inhibited by MDL 72222 (1 μM) to 10±4% of control; DMPP (10 μM)-evoked responses were inhibited by hexamethonium (100 μM) to 12±5% of control, and αbMeATP (30 μM)-evoked responses were inhibited by PPADS (10 μM) to 21±5% of control. Together, these data are consistent with activation of GABAA, 5-HT3, nicotinic ACh and P2X receptors, respectively.
  4. Ciprofloxacin (10–3000 μM) inhibited GABAA-mediated responses in the vagus nerve with an IC50 (and 95% CI) of 202 μM (148–275). BPAA (1–1000 μM) had little or no effect on the GABAA-mediated response but concentration-dependently potentiated the effects of ciprofloxacin by up to 33,000 times.
  5. Responses mediated by 5-HT3, nicotinic ACh and P2X receptors in the vagus nerve and strychnine-sensitive glycine receptors in the optic nerve were little or unaffected by ciprofloxacin (100 μM), BPAA (100 μM) or the combination of these drugs (both at 100 μM).
  6. GABA (1 mM)-evoked responses in the optic nerve were inhibited by bicuculline with an IC50 of 3.6 μM (2.8–4.5), a value not significantly different from that determined in the vagus nerve. Ciprofloxacin also inhibited the GABA-evoked response with an IC50 of 334 μM (256–437) and BPAA (100 μM) potentiated these antagonist effects. However, the magnitude of the synergy was 48 times less than that seen in the vagus nerve.
  7. These data indicate that ciprofloxacin and BPAA are selective antagonists of GABAA receptors, an action that may contribute to their excitatory effects in vivo. Additionally, our data suggest that the molecular properties of GABAA receptors in different regions of the CNS influence the extent to which these drugs synergistically inhibit the GABAA receptor.
  相似文献   

4.
  1. The site(s) at which diadenosine 5′,5′′′-P1,P4-tetraphosphate (AP4A) and diadenosine 5′, 5′′′-P1,P5-pentaphosphate (AP5A) act to evoke contraction of the guinea-pig isolated vas deferens was studied by use of a series of P2-receptor antagonists and the ecto-ATPase inhibitor 6-N,N-diethyl-D-β,γ-dibromomethyleneATP (ARL 67156).
  2. Pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS) (300 nM–30 μM), suramin (3–100 μM) and pyridoxal-5′-phosphate (P-5-P) (3–1000 μM) inhibited contractions evoked by equi-effective concentrations of AP5A (3 μM), AP4A (30 μM) and α,β-methyleneATP (α,β-meATP) (1 μM), in a concentration-dependent manner and abolished them at the highest concentrations used.
  3. PPADS was more potent than suramin, which in turn was more potent than P-5-P. PPADS inhibited AP5A, AP4A and α,β-meATP with similar IC50 values. No significant difference was found between IC50 values for suramin against α,β-meATP and AP5A or α,β-meATP and AP4A, but suramin was more than 2.5 times more potent against AP4A than AP5A. P-5-P showed the same pattern of antagonism.
  4. Desensitization of the P2X1-receptor by α,β-meATP abolished contractions evoked by AP5A (3 μM) and AP4A (30 μM), but had no effect on those elicited by noradrenaline (100 μM).
  5. ARL 67156 (100 μM) reversibly potentiated contractions evoked by AP4A (30 μM) by 61%, but caused a small, significant decrease in the mean response to AP5A (3 μM).
  6. It is concluded that AP4A and AP5A act at the P2X1-receptor, or a site similar to the P2X1-receptor, to evoke contraction of the guinea-pig isolated vas deferens. Furthermore, the potency of AP4A, but not AP5A, appears to be inhibited by an ecto-enzyme which is sensitive to ARL 67156.
  相似文献   

5.
  1. The electrophysiological actions of several agonists which may differentiate between P2X1- and P2X3-receptors were studied under concentration and voltage-clamp conditions in dissociated neurones of 1–4 day old rat dorsal root ganglia.
  2. β,γ-Methylene-D-ATP (β,γ-me-D-ATP) (1–300 μM), diadenosine 5′,5′′′-P1,P5-pentaphosphate (AP5A) (100 nM–300 μM), diadenosine 5′,5′′′-P1,P4-tetraphosphate (AP4A) (300 nM–300 μM) and uridine 5′-triphosphate (UTP) (1 μM–1 mM) all activated concentration-dependent inward currents with a latency to onset of a few ms.
  3. The concentration-response curves for β,γ-me-D-ATP and AP5A and ATP had similar maximum values, while that for AP4A had a lower maximum. The concentration-response curve to UTP was shallow and did not reach a maximum. β,γ-Methylene-L-ATP was virtually inactive. The rank order of agonist potency was ATP>AP5A≈amp;AP4A>β,γ-me-D-ATP>UTP>>β,γ-methylene-L-ATP.
  4. The inward currents were inhibited by the P2-receptor antagonists suramin (100 μM) and pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS) (10 μM). PPADS also inhibited responses to ATP (800 nM) and α,β-methylene ATP (2 μM) in a concentration-dependent manner.
  5. This study shows that β,γ-me-D-ATP, AP5A, AP4A and UTP all act via a suramin- and PPADS-sensitive P2X-receptor to evoke rapid, transient inward currents in dissociated neurones of rat dorsal root ganglia. The very low activity of β,γ-methylene-L-ATP suggests that the agonists were acting at the P2X3-subtype to produce these effects.
  相似文献   

6.
7.
  1. In vitro studies were performed to examine the mechanisms underlying substance P-induced enhancement of constriction rate in guinea-pig mesenteric lymphatic vessels.
  2. Substance P caused an endothelium-dependent increase in lymphatic constriction frequency which was first significant at a concentration of 1 nM (115±3% of control, n=11) with 1 μM, the highest concentration tested, increasing the rate to 153±4% of control (n=9).
  3. Repetitive 5 min applications of substance P (1 μM) caused tachyphylaxis with tissue responsiveness tending to decrease (by an average of 23%) and significantly decreasing (by 72%) for application at intervals of 30 and 10 min, respectively.
  4. The competitive antagonist of tachykinin receptors, spantide (5 μM) and the specific NK1 receptor antagonist, WIN51708 (10 μM) both prevented the enhancement of constriction rate induced by 1 μM substance P.
  5. Endothelial cells loaded with the Ca2+ sensing fluophore, fluo 3/AM did not display a detectable change in [Ca2+]i upon application of 1 μM substance P.
  6. Inhibition of nitric oxide synthase by NG nitro-L-arginine (L-NOARG; 100 μM) had no significant effect on the response induced by 1 μM substance P.
  7. The enhancement of constriction rate induced by 1 μM substance P was prevented by the cyclo-oxygenase inhibitor, indomethacin (3 μM), the thromboxane A2 synthase inhibitor, imidazole (50 μM), and the thromboxane A2 receptor antagonist, SQ29548 (0.3 μM).
  8. The stable analogue of thromboxane A2, U46619 (0.1 μM) significantly increased the constriction rate of lymphangions with or without endothelium, an effect which was prevented by SQ29548 (0.3 μM).
  9. Treatment with pertussis toxin (PTx; 100 ng ml−1) completely abolished the response to 1 μM substance P without inhibiting either the perfusion-induced constriction or the U46619-induced enhancement of constriction rate.
  10. Application of the phospholipase A2 inhibitor, antiflammin-1 (1 nM) prevented the enhancement of lymphatic pumping induced by substance P (1 μM), without inhibiting the response to either U46619 (0.1 μM) or acetylcholine (10 μM).
  11. The data support the hypothesis that the substance P-induced increase in pumping rate is mediated via the endothelium through NK1 receptors coupled by a PTx sensitive G-protein to phospholipase A2 and resulting in generation of the arachidonic acid metabolite, thromboxane A2, this serving as the diffusible activator.
  相似文献   

8.
  1. The effect of protein tyrosine kinase inhibitors on human adenosine A1 receptor-mediated [3H]-inositol phosphate ([3H]-IP) accumulation has been studied in transfected Chinese hamster ovary cells (CHO-A1) cells.
  2. In agreement with our previous studies the selective adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) stimulated the accumulation of [3H]-IPs in CHO-A1 cells. Pre-treatment with the broad spectrum tyrosine kinase inhibitor genistein (100 μM; 30 min) potentiated the responses elicited by 1 μM (199±17% of control CPA response) and 10 μM CPA (234±15%). Similarly, tyrphostin A47 (100 μM) potentiated the accumulation of [3H]-IPs elicited by 1 μM CPA (280±32%).
  3. Genistein (EC50=13.7±1.2 μM) and tyrphostin A47 (EC50=10.4±3.9 μM) potentiated the [3H]-IP response to 1 μM CPA in a concentration-dependent manner.
  4. Pre-incubation with the inactive analogues of genistein and tyrphostin A47, daidzein (100 μM; 30 min) and tyrphostin A1 (100 μM; 30 min), respectively, had no significant effect on the accumulation of [3H]-IPs elicited by 1 μM CPA.
  5. Genistein (100 μM) had no significant effect on the accumulation of [3H]-IPs produced by the endogenous thrombin receptor (1 u ml−1; 100±10% of control response). In contrast, tyrphostin A47 produced a small augmentation of the thrombin [3H]-IP response (148±13%).
  6. Genistein (100 μM) had no effect on the [3H]-IP response produced by activation of the endogenous Gq-protein coupled CCKA receptor with the sulphated C-terminal octapeptide of cholecystokinin (1 μM CCK-8; 96±6% of control). In contrast, tyrphostin A47 (100 μM) caused a small but significant increase in the response to 1 μM CCK-8 (113±3% of control).
  7. The phosphatidylinositol 3-kinase inhibitor LY 294002 (30 μM) and the MAP kinase kinase inhibitor PD 98059 (50 μM) had no significant effect on the [3H]-IP responses produced by 1 μM CPA and 1 μM CCK-8.
  8. These observations suggest that a tyrosine kinase-dependent pathway may be involved in the regulation of human adenosine A1 receptor mediated [3H]-IP responses in CHO-A1 cells.
  相似文献   

9.
  1. Radioligand binding and patch-clamp techniques were used to study the actions of γ-aminobutyric acid (GABA) and the general anaesthetics propofol (2,6-diisopropylphenol), pentobarbitone and 5α-pregnan-3α-ol-20-one on rat α1 and β3 GABAA receptor subunits, expressed either alone or in combination.
  2. Membranes from HEK293 cells after transfection with α1 cDNA did not bind significant levels of [35S]-tert-butyl bicyclophosphorothionate ([35S]-TBPS) (<0.03 pmol mg−1 protein). GABA (100 μM) applied to whole-cells transfected with α1 cDNA and clamped at −60 mV, also failed to activate discernible currents.
  3. The membranes of cells expressing β3 cDNAs bound [35S]-TBPS (∼1 pmol mg−1 protein). However, the binding was not influenced by GABA (10 nM–100 μM). Neither GABA (100 μM) nor picrotoxin (10 μM) affected currents recorded from cells expressing β3 cDNA, suggesting that β3 subunits do not form functional GABAA receptors or spontaneously active ion channels.
  4. GABA (10 nM–100 μM) modulated [35S]-TBPS binding to the membranes of cells transfected with both α1 and β3 cDNAs. GABA (0.1 μM–1 mM) also dose-dependently activated inward currents with an EC50 of 9 μM recorded from cells transfected with α1 and β3 cDNAs, clamped at −60 mV.
  5. Propofol (10 nM–100 μM), pentobarbitone (10 nM–100 μM) and 5α-pregnan-3α-ol-20-one (1 nM–30 μM) modulated [35S]-TBPS binding to the membranes of cells expressing either α1β3 or β3 receptors. Propofol (100 μM), pentobarbitone (1 mM) and 5α-pregnan-3α-ol-20-one (10 μM) also activated currents recorded from cells expressing α1β3 receptors.
  6. Propofol (1 μM–1 mM) and pentobarbitone (1 mM) both activated currents recorded from cells expressing β3 homomers. In contrast, application of 5α-pregnan-3α-ol-20-one (10 μM) failed to activate detectable currents.
  7. Propofol (100 μM)-activated currents recorded from cells expressing either α1β3 or β3 receptors reversed at the C1 equilibrium potential and were inhibited to 34±13% and 39±10% of control, respectively, by picrotoxin (10 μM). 5α-Pregnan-3α-ol-20-one (100 nM) enhanced propofol (100 μM)-evoked currents mediated by α1β3 receptors to 1101±299% of control. In contrast, even at high concentration 5α-pregnan-3α-ol-20-one (10 μM) caused only a modest facilitation (to 128±12% of control) of propofol (100 μM)-evoked currents mediated by β3 homomers.
  8. Propofol (3–100 μM) activated α1β3 and β3 receptors in a concentration-dependent manner. For both receptor combinations, higher concentrations of propofol (300 μM and 1 mM) caused a decline in current amplitude. This inhibition of receptor function reversed rapidly during washout resulting in a ‘surge'' current on cessation of propofol (300 μM and 1 mM) application. Surge currents were also evident following pentobarbitone (1 mM) application to cells expressing either receptor combination. By contrast, this phenomenon was not apparent following applications of 5α-pregnan-3α-ol-20-one (10 μM) to cells expressing α1β3 receptors.
  9. These observations demonstrate that rat β3 subunits form homomeric receptors that are not spontaneously active, are insensitive to GABA and can be activated by some general anaesthetics. Taken together, these data also suggest similar sites on GABAA receptors for propofol and barbiturates, and a separate site for the anaesthetic steroids.
  相似文献   

10.
  1. The pharmacological features of the pre- and postsynaptic metabotropic glutamate receptors (mGluRs) present in the guinea-pig olfactory cortex, were examined in brain slices in vitro by use of a conventional intracellular current clamp/voltage clamp recording technique.
  2. Bath-application of trans-aminocyclopentane-1,3-dicarboxylic acid (trans-ACPD) (50 μM) produced a sustained membrane depolarization, increase in cell excitability and induction of a post-stimulus inward (afterdepolarizing) tail current (IADP) (measured under ‘hybrid'' voltage clamp) similar to those evoked by the muscarinic receptor agonist oxotremorine-M (OXO-M, 2 μM).
  3. L-Glutamate (0.25–1 mM, in the presence of 20 μM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 100 μM DL-amino-5-phosphono valeric acid (DL-APV)) or the broad spectrum mGluR agonists 1S,3R-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD, 10 μM), 1S,3S-ACPD (50 μM), ibotenate (Ibo; 25 μM, in the presence of 100 μM DL-APV), the selective mGluR I agonists (S)-3,5-dihydroxyphenylglycine ((S)-3,5-DHPG, 10 μM), (S)-3-hydroxyphenylglycine ((S)-3HPG, 50 μM), or quisqualate (10 μM, in the presence of 20 μM CNQX), but not the mGluR II agonist 2S,1′S,2′S-2-(2′-carboxycyclopropyl)-glycine (L-CCGI, 1 μM) or mGluR III agonist L(+)-2-amino-4-phosphonobutyric acid (L-AP4, 1 mM), were all effective in producing membrane depolarization and inducing a post-stimulus IADP. Unexpectedly, the proposed mGluR II-selective agonist (2S,1′R,2′R,3′R)-2-(2′,3′-dicarboxycyclopropyl)-glycine (DCG-IV, 10 μM, in the presence of 100 μM DL-APV) was also active.
  4. The excitatory effects induced by 10 μM 1S,3R-ACPD were reversibly antagonized by the mGluR I/II antagonist (+)-α-methyl-4-carboxyphenylglycine ((+)-MCPG, 0.5–1 mM), as well as the selective mGluR I antagonists (S)-4-carboxyphenylglycine ((S)-4CPG) and (S)-4-carboxy-3-hydroxyphenyl glycine ((S)-4C3HPG) (both at 1 mM), but not the nonselective mGluR antagonist L(+)-2-amino-3-phosphonopropionic acid (L-AP3, 1 mM) or the selective mGluR III antagonist (S)-α-methyl-L-AP4 (MAP4, 1 mM).
  5. The excitatory postsynaptic potentials (e.p.s.ps), induced by single focal stimulation of cortical excitatory fibre tracts, were markedly reduced by 1S,3R-ACPD or L-AP4 (both at 10 μM), and by the selective mGluR II agonists (mGluR I antagonists) (S)-4CPG or (S)-4C3HPG (both at 1 mM) but not (S)-3,5-DHPG or (S)-3HPG (both at 100 μM).
  6. The inhibitory effects of 1S-3R-ACPD, but not L-AP4, were reversibly blocked by (+)-MCPG (1 mM), whereas those produced by L-AP4, but not 1S,3R-ACPD, were blocked by the selective mGluR III antagonist MAP4 (1 mM).
  7. It is concluded that a group I mGluR is most likely involved in mediating excitatory postsynaptic effects, whereas two distinct mGluRs (e.g. group II and III) might serve as presynaptic inhibitory autoreceptors in the guinea-pig olfactory cortex.
  相似文献   

11.
  1. The aim of this study was to determine the conditions under which the α2-adrenoceptor agonist UK14304 produces vasoconstriction in the porcine isolated ear artery.
  2. UK14304 (0.3 μM) produced a small contraction of porcine isolated ear arteries which was 7.8±3.3% of the response to 60 mM KC1. Similar sized contractions were obtained after precontraction with either 30 nM angiotensin II, or 0.1 μM U46619 (8.2±1.8% and 10.2±2.6% of 60 mM KC1 response, respectively). However, an enhanced α2-adrenoceptor response was uncovered if the tissue was precontracted with U46619, and relaxed back to baseline with 1–2 μM forskolin before the addition of UK14304 (46.9±9.6% of 60 mM KC1 response).
  3. The enhanced responses to UK14304 in the presence of U46619 and forskolin were not inhibited by the α1-adrenoceptor antagonist prazosin (0.1 μM), but were inhibited by the α2-adrenoceptor antagonist rauwolscine (1 μM), indicating that the enhanced responses were mediated via postjunctional α2-adrenoceptors.
  4. In the presence of 0.1 μM U46619 and 1 mM isobutylmethylxanthine (IBMX), 1 μM forskolin produced an increase in [3H]-cyclic AMP levels in porcine isolated ear arteries. Addition of 0.3 μM UK14304 prevented this increase.
  5. The enhanced UK14304 response was dependent upon the agent used to relax the tissue. After relaxation of ear arteries precontracted with 10 nM U46619 and relaxed with forskolin the UK14304 response was 46.9±9.6% of the 60 mM KC1 response, and after relaxation with sodium nitroprusside (SNP) the response was 24.8±3.3%. However, after relaxation of the tissue with levcromakalim the UK14304 response was only 8.2±1.7%, which was not different from the control response in the same tissues (12.2±5.6%). An enhanced contraction was also obtained after relaxation of the tissue with the cyclic AMP analogue dibutyryl cyclic AMP (23.2±1.3%) indicating that at least part of the enhanced response to UK14304 is independent of the ability of the agonist to inhibit cyclic AMP production.
  6. Relaxation of U46619 contracted ear arteries with SNP could be inhibited by the NO-sensitive guanylyl-cyclase inhibitor 1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) indicating that production of cyclic GMP is necessary for the relaxant effect of SNP. However, ODQ had no effect on the relaxation of tissue by forskolin, suggesting that this compound does not act via production of cyclic GMP. Biochemical studies showed that while forskolin increases the levels of cyclic AMP in the tissues, SNP had no effect on the levels of this cyclic nucleotide.
  7. In conclusion, enhanced contractions to the α2-adrenoceptor agonist UK14304 can be uncovered in porcine isolated ear arteries by precontracting the tissue with U46619, followed by relaxation back to baseline with forskolin, SNP or dibutyryl cyclic AMP before addition of UK14304. There was a greater contractile response to UK14304 after relaxation with forskolin than with SNP or dibutyryl cyclic AMP, suggesting that cyclic AMP-dependent and- independent mechanisms are involved in the enhancement of the UK14304 response.
  相似文献   

12.
  1. The influence of L-NG-nitro-arginine (L-NOARG, 30 μM) on contractile responses to exogenous noradrenaline was studied in the rat anococcygeus muscle.
  2. Noradrenaline (0.1–100 μM) contracted the muscle in a concentration-dependent manner. L-NOARG (30 μM) had no effect on noradrenaline responses.
  3. Phenoxybenzamine (Pbz 0.1 μM) depressed by 46% (P<0.001) the maximum response and shifted to the right (P<0.001) the E/[A] curve to noradrenaline (pEC50 control: 6.92±0.09; pEC50 Pbz: 5.30±0.10; n=20).
  4. The nested hyperbolic null method of analysing noradrenaline responses after phenoxybenzamine showed that only 0.61% of the receptors need to be occupied to elicit 50% of the maximum response, indicating a very high functional receptor reserve.
  5. Contractile responses to noradrenaline after partial α1-adrenoceptor alkylation with phenoxybenzamine (0.1 μM) were clearly enhanced by L-NOARG.
  6. The potentiating effect of L-NOARG on noradrenaline responses after phenoxybenzamine was reversed by (100 μM) L-arginine but not by (100 μM) D-arginine.
  7. These results indicate that spontaneous release of NO by nitrergic nerves can influence the α1-adrenoceptor-mediated response to exogenous noradrenaline.
  相似文献   

13.
  1. The effects of the antidiabetic agent englitazone and the anorectic drug ciclazindol on ATP-sensitive K+ (KATP) channels activated by diazoxide and leptin were examined in the CRI-G1 insulin-secreting cell line using whole cell and single channel recording techniques.
  2. In whole cell current clamp mode, the hyperglycaemic agent diazoxide (200 μM) and the ob gene product leptin (10 nM) hyperpolarised CRI-G1 cells by activation of KATP currents. KATP currents activated by either agent were inhibited by tolbutamide, with an IC50 for leptin-activated currents of 9.0 μM.
  3. Application of englitazone produced a concentration-dependent inhibition of KATP currents activated by diazoxide (200 μM) with an IC50 value of 7.7 μM and a Hill coefficient of 0.87. In inside-out patches englitazone (30 μM) also inhibited KATP channel currents activated by diazoxide by 90.8±4.1%.
  4. In contrast, englitazone (1–30 μM) failed to inhibit KATP channels activated by leptin, although higher concentrations (>30 μM) did inhibit leptin actions. The englitazone concentration inhibition curve in the presence of leptin resulted in an IC50 value and Hill coefficient of 52 μM and 3.2, respectively. Similarly, in inside-out patches englitazone (30 μM) failed to inhibit the activity of KATP channels in the presence of leptin.
  5. Ciclazindol also inhibited KATP currents activated by diazoxide (200 μM) in a concentration-dependent manner, with an IC50 and Hill coefficient of 127 nM and 0.33, respectively. Furthermore, application of ciclazindol (1 μM) to the intracellular surface of inside-out patches inhibited KATP channel currents activated by diazoxide (200 μM) by 86.6±8.1%.
  6. However, ciclazindol was much less effective at inhibiting KATP currents activated by leptin (10 nM). Ciclazindol (0.1–10 μM) had no effect on KATP currents activated by leptin, whereas higher concentrations (>10 μM) did cause inhibition with an IC50 value of 40 μM and an associated Hill coefficient of 2.7. Similarly, ciclazindol (1 μM) had no significant effect on KATP channel activity following leptin addition in excised inside-out patches.
  7. In conclusion, KATP currents activated by diazoxide and leptin show different sensitivity to englitazone and ciclazindol. This may be due to differences in the mechanism of activation of KATP channels by diazoxide and leptin.
  相似文献   

14.
  1. ATP (10–100 μM), but not glutamate (100  μM), stimulated the release of plasminogen from microglia in a concentration-dependent manner during a 10 min stimulation. However, neither ATP (100 μM) nor glutamate (100 μM) stimulated the release of NO. A one hour pretreatment with BAPTA-AM (200 μM), which is metabolized in the cytosol to BAPTA (an intracellular Ca2+ chelator), completely inhibited the plasminogen release evoked by ATP (100 μM). The Ca2+ ionophore A23187 induced plasminogen release in a concentration-dependent manner (0.3 μM to 10 μM).
  2. ATP induced a transient increase in the intracellular calcium concentration ([Ca2+]i) in a concentration-dependent manner which was very similar to the ATP-evoked plasminogen release, whereas glutamate (100 μM) had no effect on [Ca2+]i (70 out of 70 cells) in microglial cells. A second application of ATP (100 μM) stimulated an increase in [Ca2+]i similar to that of the first application (21 out of 21 cells).
  3. The ATP-evoked increase in [Ca2+]i was totally dependent on extracellular Ca2+, 2-Methylthio ATP was active (7 out of 7 cells), but α,β-methylene ATP was inactive (7 out of 7 cells) at inducing an increase in [Ca2+]i. Suramin (100 μM) was shown not to inhibit the ATP-evoked increase in [Ca2+]i (20 out of 20 cells). 2′- and 3′-O-(4-Benzoylbenzoyl)-adenosine 5′-triphosphate (BzATP), a selective agonist of P2X7 receptors, evoked a long-lasting increase in [Ca2+]i even at 1 μM, a concentration at which ATP did not evoke the increase. One hour pretreatment with adenosine 5′-triphosphate-2′, 3′-dialdehyde (oxidized ATP, 100 μM), a selective antagonist of P2X7 receptors, blocked the increase in [Ca2+]i induced by ATP (10 and 100 μM).
  4. These data suggest that ATP may transit information from neurones to microglia, resulting in an increase in [Ca2+]i via the ionotropic P2X7 receptor which stimulates the release of plasminogen from the microglia.
  相似文献   

15.
  1. It is unclear whether GABAA receptor-mediated hyperpolarizing and depolarizing synaptic potentials (IPSPAs and DPSPAs, respectively) are evoked by (a) the same populations of GABAergic interneurones and (b) exhibit similar regulation by allosteric modulators of GABAA receptor function. We have attempted to address these questions by investigating the effects of (a) known agonists for presynaptic receptors on GABAergic terminals, and (b) a range of GABAA receptor ligands, on each response.
  2. The GABA uptake inhibitor NNC 05-711 (10 μM) enhanced whereas bicuculline (10 μM) inhibited both IPSPAs and DPSPAs.
  3. (−)-Baclofen (5 μM), [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAGO; 0.5 μM), and carbachol (10 μM) caused substantial depressions (up to 99%) of DPSPAs that were reversed by CGP 55845A (1 μM), naloxone (10 μM) and atropine (5 μM), respectively. In contrast, 2-chloroadenosine (CADO; 10 μM) only slightly depressed DPSPAs. Quantitatively, the effect of each agonist was similar to that reported for IPSPAs.
  4. The neurosteroid ORG 21465 (1–10 μM), the anaesthetic propofol (50–500 μM), the barbiturate pentobarbitone (100–300 μM) and zinc (50 μM) all enhanced DPSPAs and IPSPAs.
  5. The benzodiazepine (BZ) agonist flunitrazepam (10–50 μM) and inverse agonist DMCM (1 μM) caused a respective enhancement and inhibition of both IPSPAs and DPSPAs. The BZω1 site agonist zolpidem (10–30 μM) produced similar effects to flunitrazepam.
  6. The anticonvulsant loreclezole (1–100 μM) did not affect either response.
  7. These data demonstrate that similar populations of inhibitory interneurones can generate both IPSPAs and DPSPAs by activating GABAA receptors that are subject to similar allosteric modulation.
  相似文献   

16.
  1. The mitogen-activated protein (MAP) kinase signalling pathway can be activated by a variety of heterotrimeric Gi/Go protein-coupled and Gq/G11 protein-coupled receptors. The aims of the current study were: (i) to investigate whether the Gi/Go protein-coupled adenosine A1 receptor activates the MAP kinase pathway in transfected Chinese hamster ovary cells (CHO-A1) and (ii) to determine whether adenosine A1 receptor activation would modulate the MAP kinase response elicited by the endogenous P2Y2 purinoceptor.
  2. The selective adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) stimulated time and concentration-dependent increases in MAP kinase activity in CHO-A1 cells (EC50 7.1±0.4 nM). CPA-mediated increases in MAP kinase activity were blocked by PD 98059 (50 μM; 89±4% inhibition), an inhibitor of MAP kinase kinase 1 (MEKI) activation, and by pre-treating cells with pertussis toxin (to block Gi/Go-dependent pathways).
  3. Adenosine A1 receptor-mediated activation of MAP kinase was abolished by pre-treatment with the protein tyrosine inhibitor, genistein (100 μM; 6±10% of control). In contrast, daidzein (100 μM), the inactive analogue of genistein had no significant effect (96±12 of control). MAP kinase responses to CPA (1 μM) were also sensitive to the phosphatidylinositol 3-kinase inhibitors wortmannin (100 nM; 55±8% inhibition) and LY 294002 (30 μM; 40±5% inhibition) but not to the protein kinase C (PKC) inhibitor Ro 31-8220 (10 μM).
  4. Activation of the endogenous P2Y2 purinoceptor with UTP also stimulated time and concentration-dependent increases in MAP kinase activity in CHO-A1 cells (EC50=1.6±0.3 μM). The MAP kinase response to UTP was partially blocked by pertussis toxin (67±3% inhibition) and by the PKC inhibitor Ro 31-8220 (10 μM; 45±5% inhibition), indicating the possible involvement of both Gi/Go protein and Gq protein-dependent pathways in the overall response to UTP.
  5. CPA and UTP stimulated concentration-dependent increases in the phosphorylation state of the 42 kDa and 44 kDa forms of MAP kinase as demonstrated by Western blotting.
  6. Co-activation of CHO-A1 cells with CPA (10 nM) and UTP (1 μM) produced synergistic increases in MAP kinase activity which were not blocked by the PKC inhibitor Ro 31-8220 (10 μM).
  7. Adenosine A1 and P2Y2 purinoceptor activation increased the expression of luciferase in CHO cells transfected with a luciferase reporter gene containing the c-fos promoter. However, co-activating these two receptors produced only additive increases in luciferase expression.
  8. In conclusion, our studies have shown that the transfected adenosine A1 receptor and the endogenous P2Y2 purinoceptor couple to the MAP kinase signalling pathway in CHO-A1 cells. Furthermore, co-stimulation of the adenosine A1 receptor and the P2Y2 purinoceptor produced synergistic increases in MAP kinase activity but not c-fos mediated luciferase expression.
  相似文献   

17.
  1. The mechanism of action of P2 nucleotide receptor agonists that produce endothelium-independent relaxation and the influence of ecto-ATPase activity on this relaxing effect have been investigated in rat portal vein smooth muscle.
  2. At 25°C, ATP, 2-methylthioATP (2-MeSATP) and 2-chloroATP (2-ClATP), dose-dependently inhibited spontaneous contractile activity of endothelium-denuded muscular strips from rat portal vein. The rank order of agonist potency defined from the half-inhibitory concentrations was 2-ClATP (2.7±0.5 μM, n=7)>ATP (12.9±1.1 μM, n=9)⩾2-MeSATP (21.9±4.8 μM, n=4). In the presence of αβ-methylene ATP (αβ-MeATP, 200 μM) which itself produced a transient contractile effect, the relaxing action of ATP and 2-MeSATP was completely abolished and that of 2-ClATP strongly inhibited.
  3. The non-selective P2-receptor antagonist pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS, 100 μM) did not affect the relaxation induced by ATP, 2-MeSATP, and 2-ClATP.
  4. The A2A-adenosine receptor antagonist ZM 241385 inhibited the ATP-induced relaxation in a concentration-dependent manner (1–100 nM). In the presence of 100 nM ZM 241385, the relaxing effects of 2-MeSATP and 2-ClATP were also inhibited.
  5. ADP, AMP and adenosine also produced concentration-dependent inhibition of spontaneous contractions. The relaxing effects of AMP and adenosine were insensitive to αβ-MeATP (200 μM) but were inhibited by ZM 241385 (100 nM).
  6. Simultaneous measurements of contraction and ecto-ATPase activity estimated by the degradation of [γ-32P]-ATP showed that muscular strips rapidly (10–60 s) hydrolyzed ATP. This ecto-ATPase activity was abolished in the presence of EDTA and was inhibited by 57±11% (n=3) by 200 μM αβ-MeATP.
  7. These results suggest that ATP and other P2-receptor agonists are relaxant in rat portal vein smooth muscle, because ectonucleotidase activity leads to the formation of adenosine which activates A2A-receptors.
  相似文献   

18.
  1. The signalling pathway which causes contractions to adenosine 5′-O-2-thiodiphosphate (ADPβS) and α,β-methylene adenosine 5′-diphosphate (α,β-Me ADP) was investigated in rat urinary bladder smooth muscle by measuring isotonic tension.
  2. The responses to 10 μM α,β-methylene adenosine 5′-triphosphate (α,β-Me ATP) in 0 and 3.6 mM Ca2+ were 5.9±1.3 (n=10) and 122.2±6.4 (n=8) % respectively of those obtained in 1.8 mM Ca2+, whereas those to 100 μM ADPβS were 34.6±3.3 (n=8) and 96.8±7.2 (n=8) %, in 0 and 3.6 mM Ca2+, respectively. In both experimental conditions, the responses to the two agonists expressed as % of the control responses were significantly different (P<0.01).
  3. Indomethacin at high concentrations (>1 μM) decreased the responses to α,β-Me ATP (10 μM), ADPβS (100 μM) and α,β-Me ADP (100 μM). However, no significant difference was obtained between the responses to all the agonists at 30 μM indomethacin.
  4. 2-Nitro-4-carboxphenyl n,n-diphenylcarbamate (NCDC) at concentrations between 1 μM and 100 μM concentration-dependently decreased the responses to ADPβS (100 μM) and α,β-Me ADP (100 μM) and almost completely inhibited them at 100 μM. Although the responses to α,β-Me ATP (10 μM) were also inhibited by the drug, at 50 and 100 μM NCDC the responses to α,β-Me ATP were significantly larger than those to ADPβS and α,β-Me ADP (P<0.01).
  5. NCDC 100 μM significantly inhibited the KCl-induced contraction to 65.9±4.9% (n=6) of the control (P<0.01).
  6. It is suggested that the contraction via ADPβS-sensitive receptors in the rat urinary bladder smooth muscle mainly depends on Ca2+ ions liberated from intracellular Ca2+ stores, though the contribution of Ca2+ ions from the extracellular space cannot be neglected. The release of Ca2+ ions from stores is mainly mediated by the production of inositol trisphosphate (IP3) via the activation of phospholipase C.
  相似文献   

19.
  1. The rat μ-opioid receptor has recently been cloned, yet its second messenger coupling remains unclear. The endogenous μ-opioid receptor in SH-SY5Y cells couples to phospholipase C (PLC), increases [Ca2+]i and inhibits adenylyl cyclase (AC). We have examined the effects of μ-opioid agonists on inositol(1,4,5)trisphosphate (Ins(1,4,5)P3), [Ca2+]i and adenosine 3′ : 5′-cyclic monophosphate (cyclic AMP) formation in Chinese hamster ovarian (CHO) cells transfected with the cloned μ-opioid receptor.
  2. Opioid receptor binding was assessed with [3H]-diprenorphine ([3H]-DPN) as a radiolabel. Ins(1,4,5)P3 and cyclic AMP were measured by specific radioreceptor assays. [Ca2+]i was measured fluorimetrically with Fura-2.
  3. Scatchard analysis of [3H]-DPN binding revealed that the Bmax varied between passages. Fentanyl (10 pM–1 μM) dose-dependently displaced [3H]-DPN, yielding a curve which had a Hill slope of less than unity (0.6±0.1), and was best fit to a two site model, with pKi values (% of sites) of 9.97±0.4 (27±4.8%) and 7.68±0.07 (73±4.8%). In the presence of GppNHp (100 μM) and Na+ (100 mM), the curve was shifted to the right and became steeper (Hill slope=0.9±0.1) with a pKi value of 6.76±0.04.
  4. Fentanyl (0.1 nM–1 μM) had no effect on basal, but dose-dependently inhibited forskolin (1 μM)-stimulated, cyclic AMP formation (pIC50=7.42±0.23), in a pertussis toxin (PTX; 100 ng ml−1 for 24 h)-sensitive and naloxone-reversible manner (Ki=1.7 nM). Morphine (1 μM) and [D-Ala2, MePhe4, gly(ol)5]-enkephalin (DAMGO, 1 μM) also inhibited forskolin (1 μM)-stimulated cyclic AMP formation, whilst [D-Pen2, D-Pen5], enkephalin (DPDPE, 1 μM) did not.
  5. Fentanyl (0.1 nM–10 μM) caused a naloxone (1 μM)-reversible, dose-dependent stimulation of Ins(1,4,5)P3 formation, with a pEC50 of 7.95±0.15 (n=5). PTX (100 ng ml−1 for 24 h) abolished, whilst Ni2+ (2.5 mM) inhibited (by 52%), the fentanyl-induced Ins(1,4,5)P3 response. Morphine (1 μM) and DAMGO (1 μM), but not DPDPE (1 μM), also stimulated Ins(1,4,5)P3 formation. Fentanyl (1 μM) also caused an increase in [Ca2+]i (80±16.4 nM, n=6), reaching a maximum at 26.8±2.5 s. The increase in [Ca2+]i remained elevated until sampling ended (200 s) and was essentially abolished by the addition of naloxone (1 μM). Pre-incubation with naloxone (1 μM, 3 min) completely abolished fentanyl-induced increases in [Ca2+]i.
  6. In conclusion, the cloned μ-opioid receptor when expressed in CHO cells stimulates PLC and inhibits AC, both effects being mediated by a PTX-sensitive G-protein. In addition, the receptor couples to an increase in [Ca2+]i. These findings are consistent with the previously described effector-second messenger coupling of the endogenous μ-opioid receptor.
  相似文献   

20.
  1. The effect of the NSAIDs indomethacin, indoprofen, diclofenac and acetylsalicylic acid on the increase in guanosine 3′:5′-cyclic monophosphate (cyclic GMP) induced by nitric oxide-donor agents was tested in human whole platelets and in platelet crude homogenate.
  2. In whole platelets, indomethacin reduced the increase in cyclic GMP induced by the nitric oxide-donors (NO-donors) sodium nitroprusside (NaNP) and S-nitroso-N-acetylpenicillamine (SNAP) in a dose-dependent way, its IC50 being 13.7 μM and 15.8 μM, respectively.
  3. Of the other cyclooxygenase inhibitors tested, only indoprofen reduced the increase in cyclic GMP induced by both NO-donors in a dose-dependent way (IC50=32.7 μM, NaNP and 25.0 μM, SNAP), while acetylsalicylic acid (up to 1000 μM) and diclofenac (up to 100 μM) were ineffective.
  4. However, in platelet crude homogenate neither indomethacin nor indoprofen reduced the cyclic GMP production.
  5. Indomethacin (10 μM), indoprofen (30 μM), diclofenac (100 μM) and acetylsalicylic acid (1000 μM) showed a comparable efficacy in inhibiting platelet thromboxane B2 (TXB2) production, suggesting that the inhibitory effect of indomethacin and indoprofen on the increase in cyclic GMP induced by both NO-donors was not mediated by inhibition of cyclooxygenase.
  6. In vitro, the NSAIDs analysed did not interfere with nitrite production of SNAP.
  7. The unhomogeneous behaviour of NSAIDs on the increase in cyclic GMP induced by NO-donors in whole platelets may contribute to the different pharmacological and toxicological characteristics of the drugs, providing new knowledge on the effect of indomethacin and indoprofen.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号