首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neuropeptide cholecystokinin (CCK) has been shown to interact with dopamine in various ways, including attenuation of dopamine D1 receptor-mediated vacuous chewing and grooming. While we have demonstrated a clear role for the CCKA receptor in the attenuation of dopamine D1 agonist-induced vacuous chewing, studies of grooming yielded anomolous results. We examined the effects of selective CCK receptor antagonists on the attenuation of SKF 38393-induced grooming by the CCKB agonist CCK-4. Administration of SKF 38393 (5 mg/kg s.c.) to male Sprague-Dawley rats resulted in a significant increase in grooming which was reduced to control levels by CCK-4 (20 mg/kg i.p.). Pretreatment with either the CCKA receptor antagonist devazepide or the CCKB receptor antagonist L-365,260 significantly attenuated this effect over a range of doses (20, 100, 500 μg/kg i.p.). The suppression of dopamine D1 agonist-induced grooming by CCK-4 does not appear to reflect a non-specific effect of anxiogenesis, as it was unaffected by the anxiolytic diazepam. The CCK receptor antagonists alone were without behavioural effect. Taken together with previous studies in models of anxiety and analgesia, our findings lend further support to the hypothesis that CCK-4 may act at a novel receptor subtype.  相似文献   

2.
Pharmacological studies were undertaken with a new series of cholecystokinin2 CCK2 agonists in order to assign to them a CCK2A or CCK2B pharmacological profile. The open-field test was chosen as the discrimination test of CCK2B agonists. The most interesting agonist, BBL454 (0.03–300 g/kg) induced hyperactivity which was blocked by a CCK2 antagonist, the D1 antagonist SCH23390, the -opioid antagonist naltrindole, but not a CCK1 antagonist. All compounds active in the open-field test are characterised by a common structural feature, –COCH2CO–Trp-NMeNle-Asp-Phe-NH2, whereas inactive compounds do not possess such a motive. Therefore, this feature can be considered crucial for CCK2B activity. BBL454 (0.03–3 g/kg) improved memory in a two-trial memory test while it was very weakly active on the peripheral CCK2 receptor, and did not evoke anxiogenic effects in the plus-maze test. The synthesis of BBL454 is simple, its minimal active dose is 30 ng/kg and no bell-shaped responses were observed. These results suggest that BBL454 could be considered to be the new CCK2B reference agonist.  相似文献   

3.
Rationale: The implication of CCKB receptors in cognitive processes is far from fully understood. Objective: The present study investigated the effect of propionyl-BC264, a selective agonist of CCKB receptors, in young and old rats. Methods: Cognitive functions were studied in a two-trial recognition memory task developed in our laboratory. Results: It was shown that propionyl-BC264 enhanced information processing in young as well as in old rats when injected (10 μg/kg; IP) immediately after the acquisition phase and before the retrieval trial but not before the acquisition trial. This cognitive enhancing effect was blocked by prior administration of L 365,260, a selective CCKB receptor antagonist. Conclusions: In view of the fact that BC264 is devoid of anxiogenic effects, it could be of value in the treatment of cognitive impairments associated with both normal and pathological ageing. Received: 4 July 1998/Final version: 19 October 1998  相似文献   

4.
The interaction between cholecystokinin and endogenous opioid systems on rewarding responses was examined. Motivational effects induced by peripheral administration of a complete inhibitor of enkephalin catabolism, RB 101 or the CCKB antagonist PD-134,308, and by both compounds in combination were evaluated in the conditioned place preference test in rats. RB 101 (5, 10, 20, 40 and 80 mg/kg, IP, and 20 mg/kg, IV) given alone produced a bell-shaped dose-effect function. A significant increase of the preference for the drug-associated compartment was only observed at doses of 10 and 20 mg/kg (IP). The effect observed with morphine was stronger, and all the doses used of this compound (1.25, 2.5 and 5 mg/kg, SC) were found to be active. These results suggest that the inhibitor of enkephalin catabolism has weak rewarding properties. Pretreatment with the CCKB antagonist PD-134,308 (0.1, 0.3, 1 and 3 mg/kg, IP) alone failed to produce a reliable aversion or preference on the paradigm studied. When PD-134,308 (0.3 mg/kg, IP) was coadministered with a subthreshold dose of morphine (0.6 mg/kg, SC) or RB 101 (5 mg/kg, IP), a conditioned place preference was observed, indicating that the CCKB antagonist facilitated the motivational responses induced by endogenous enkephalins as compared to morphine. This suggests that endogenous cholecystokinin, acting through CCKB receptors, modulates the rewarding effects of endogenous enkephalins.  相似文献   

5.
The effect of the selective CCKB antagonist L-365, 260 on chlordiazepoxide (CDP) withdrawal-induced hypophagia was assessed in two related studies in rats pretreated for 21 days with CDP at doses escalated from 10 to 30 mg/kg per day (b.i.d.). L-365, 260 was studied at doses from 0.001 to 10 mg/kg (b.i.d.). There was no evidence that L-365, 260 at any dose alleviated CDP withdrawal-induced hypophagia. These data contrast with reports that CCKB antagonists alleviate behavioural benzodiazepine (BZ) withdrawal symptoms considered to be indicative of anxiogenesis. Presumably, such positive effects of CCKB antagonists are due to functional antagonism, with enhanced anxiety during BZ withdrawal being attenuated by anxiolytic actions of CCKB antagonists. Collectively, studies with CCKB antagonists and other agents involving a number of different BZ withdrawal signs suggest that BZ withdrawal is a heterogeneous syndrome, with various different underlying mechanisms. CCKB antagonists appear to alleviate only a subset of possible BZ withdrawal signs.  相似文献   

6.
The phenotype of spontaneous behaviour in mice with targeted gene deletion of the D1A dopamine receptor was investigated topographically. Via direct visual observation, individual elements of behaviour were resolved and quantified using an ethologically-based, rapid time-sampling behavioural check-list procedure. Relative to wildtypes (D1A +/+), D1A-null (−/−) mice evidenced over initial exploration significant reductions in rearing free, sifting and chewing, but significant increases in locomotion, grooming and intense grooming. Sniffing and rearing to a wall habituated less readily in D1A-null mice such that these behaviours occurred subsequently to significant excess: increases in locomotion were persistent. The ethogram of spontaneous behaviour in D1A-null mice was characterised by neither ‘hypoactivity’ or ‘hyperactivity’ but, rather, by prominent topographical shifts between individual elements of behaviour that could not be encapsulated by either term. Given the substantial body of evidence that grooming and particularly intense grooming constitute the most widely accepted behavioural index of D1-like receptor function, the elevation of such behaviour in D1A-null mice was paradoxical; it may reflect (over)compensatory processes subsequent to developmental absence of D1A receptors and/or the involvement of a D1-like receptor other than/additional to the D1A subtype.  相似文献   

7.
8.
  1. Nerve growth factor (NGF), a powerful agent for the growth, differentiation and regeneration of lesioned cells of the central and peripheral nervous systems, has in recent years been indicated as a potential therapeutic agent capable of reversing the processes of cell damage in neurodegenerative events in man. Since NGF does not cross the blood-brain barrier and central NGF administration requires invasive surgical procedures, the discovery of substances modulating in vivo NGF synthesis in the brain will be extremely useful for a possible clinical use of NGF.
  2. The aim of the present study to analyse if the content of NGF in the brain of adult mice can be affected by peripheral administration of cholecystokinin-8 (CCK-8), a well known neuropeptide which has stimulant actions on neurons in the brain and promotes a variety of neurobehavioural effects both in man and rodents.
  3. The dose-response and time course effects of an i.p. injection of CCK-8 on the NGF concentrations in the hippocampus, cortex, hypothalamus and pituitary of adult male mice were analysed by use of a sensitive immunoenzymatic assay for NGF. The effects of pretreatment with selective CCKA and CCKB receptor antagonists and atropine on the NGF response to CCK injection were also studied.
  4. The effects of CCK-8 were dose- and time-dependent and the injection of 8 nmol kg?1 resulted in a 3 fold increase of NGF levels in the hypothalamus and pituitary, and about a 60% increase in the hippocampus. No effects were observed in the cortex. Pretreatment with a selective CCKA receptor antagonist blocked the CCK-induced NGF increase in the hypothalamus and pituitary. In the hippocampus the same effect was obtained with a CCKB receptor antagonist. Pretreatment with atropine suppressed the CCK-induced effects on NGF levels in all the brain regions examined.
  5. Our results showing that i.p. injection with CCK-8 can modulate NGF levels in the brain through a mechanism which seems, in part, to be mediated via the vagal afferents, indicate that this neuropeptide may represent a useful pharmacological approach to enhance endogenous NGF levels in neuropathologies associated with a neurotrophin deficit.
  相似文献   

9.
  1. The rat CCKA and CCKB receptors were stably expressed in Chinese hamster ovary (CHO-09) cells in order to compare modes of signal transduction and effects of protein kinase C (PKC) thereupon.
  2. Spectrofluorophotometry of Fura-2-loaded cells revealed that both receptors retained their pharmacological characteristics following expression in CHO cells. Sulphated cholecystokinin-(26-33)-peptide amide (CCK-8-S) increased the cytosolic Ca2+ concentration ([Ca2+]i) in CCKA cells, measured as an increase in Fura-2 fluorescence emission ratio, 1000 fold more potently than its non-sulphated form (CCK-8-NS) (EC50 values of 0.19 nM and 0.18 μM, respectively). By contrast, CCK-8-S and CCK-8-NS were equally potent in CCKB cells (EC50 values of 0.86 nM and 1.18 nM, respectively). The CCKA receptor agonist JMV-180 increased [Ca2+]i only in CCKA cells. Likewise, pentagastrin increased [Ca2+]i only in CCKB cells. Finally, CCK-8-S-induced Ca2+ signalling through the CCKA receptor was most potently inhibited by the CCKA receptor antagonist L364,718, whereas the CCKB receptor antagonist L365,260 was more potent in CCKB cells.
  3. Receptor-mediated activation of adenylyl cyclase was measured in the presence of the inhibitor of cyclic nucleotide phosphodiesterase activity, 3-isobutyl-1-methylxanthine. CCK-8-S and, to a lesser extent, CCK-8-NS, but not JMV-180 or pentagastrin, stimulated the accumulation of cyclicAMP in CCKA cells. By contrast, none of these agonists increased cyclicAMP in CCKB cells.
  4. Short-term (3 min) pretreatment with the PKC activator 12-O-tetradecanoylphorbol 13-acetate (TPA) evoked a rightward shift of the dose-response curve for the Ca2+ mobilizing effect of CCK-8-S in both cell lines. In addition, short-term TPA pretreatment markedly reduced CCK-8-S-induced cyclicAMP accumulation in CCKA cells. In both cases, the inhibitory effect of TPA was abolished by the PKC inhibitors, GF-109203X and staurosporine, whereas no inhibition was observed with the inactive phorbol ester, 4-α-phorbol 12-myristate 13-acetate.
  5. During prolonged TPA treatment, the cells gradually recovered from phorbol ester inhibition and in the case of CCK-8-S-induced Ca2+ mobilization complete recovery was achieved after 24 h of TPA treatment. Western blot analysis revealed that this recovery was paralleled by down-regulation of PKC-α, suggesting the involvement of this PKC isotype in the inhibitory action of TPA.
  6. This study demonstrates that following expression in CHO cells (i) both CCKA and CCKB receptors are coupled to Ca2+ mobilization, (ii) only CCKA receptors are coupled to cyclicAMP formation and (iii) with both receptors signalling is inhibited by PKC.
  相似文献   

10.
The effects of the GABA(B) receptor agonists baclofen (1.4 and 7 micromol/kg i.v.) and CGP 44532 ([(2S)-3-amino-2-hydroxypropyl]methyl phosphinic acid], 0.2 and 0.7 micromol/kg i.v.) on transient lower esophageal sphincter relaxations and spontaneous and pharyngeally stimulated swallowing were investigated in conscious dogs. Both compounds inhibited transient lower esophageal sphincter relaxations dose-dependently, CGP 44532 being approximately fivefold more potent. In experiments designed to measure transient lower esophageal sphincter relaxations, spontaneous swallowing was suppressed by both compounds. When swallowing was evoked by intrapharyngeal water injection, both baclofen and CGP 44532 reduced the occurrence of primary peristalsis. It is concluded that centrally acting GABA(B) receptor agonists inhibit spontaneous and stimulated swallowing probably through an action in the central pattern generator for swallowing.  相似文献   

11.

Background and purpose:

Activation of the proteinase-activated receptor-2 (PAR-2) induces scratching behaviour in mice. Here, we have investigated the role of kinin B1 and B2 receptors in the pruritogenic response elicited by activators of PAR-2.

Experimental approach:

Scratching was induced by an intradermal (i.d.) injection of trypsin or the selective PAR-2 activating peptide SLIGRL-NH2 at the back of the mouse neck. The animals were observed for 40 min and their scratching response was quantified.

Key results:

I.d. injection of trypsin or SLIGRL-NH2 evoked a scratching behaviour, dependent on PAR-2 activation. Mice genetically deficient in kinin B1 or B2 receptors exhibited reduced scratching behaviour after i.d. injection of trypsin or SLIGRL-NH2. Treatment (i.p.) with the non-peptide B1 or B2receptor antagonists SSR240612 and FR173657, respectively, prevented the scratching behaviour caused by trypsin or SLIGRL-NH2. Nonetheless, only treatment i.p. with the peptide B2receptor antagonist, Hoe 140, but not the B1receptor antagonist (DALBK), inhibited the pruritogenic response to trypsin. Hoe 140 was also effective against SLIGRL-NH2-induced scratching behaviour when injected by i.d. or intrathecal (i.t.) routes. Also, the response to SLIGRL-NH2 was inhibited by i.t. (but not by i.d.) treatment with DALBK. Conversely, neither Hoe 140 nor DALBK were able to inhibit SLIGRL-NH2-induced scratching behaviour when given intracerebroventricularly (i.c.v.).

Conclusions and implications:

The present results demonstrated that kinins acting on both B1 and B2 receptors played a crucial role in controlling the pruriceptive signalling triggered by PAR-2 activation in mice.  相似文献   

12.
Systemic administration of RB 101, a complete inhibitor of the enkephalin degrading enzymes, has been reported to induce naltrindole-reversed anti-depressant-like effects in the conditioned suppression of motility (CSM) test in mice. The selective CCKB antagonist L-365,260 also elicits the same naltrindole-blocked responses on CSM. The aim of this study was therefore to investigate the possible modulation of RB 101 induced behavioral responses by activation or blockade of CCK receptors. Thus, the effects induced by RB 101 administered alone or associated with an ineffective dose of a selective CCKB agonist (BC 264), a CCKB antagonist (L-365,260) or a CCKA antagonist (L-364,718), were evaluated on the CSM in mice. RB 101 alone decreased the stress-induced loss of motility, as previously reported. The antidepressant-like effect of RB 101 was potentiated by L-365,260, and suppressed by BC 264 and to a lesser extent by L-364,718. The facilitatory effect induced by L-365,260 on RB 101 responses was blocked by the delta selective antagonist naltrindole. All these effects occurred only in shocked animals. The present results suggest that the activation of CCKA and CCKB receptors by endogenous CCK, could play an opposite role in the control of behavioral responses induced by endogenous enkephalins. Delta opioid receptors seem to be selectively involved in this interaction.  相似文献   

13.
BACKGROUND AND PURPOSE: Acute intraperitoneal (i.p.) administration of cholecystokinin (CCK) is known to induce a significant, but short-lasting, reduction in food intake, followed by recovery within hours. Therefore, we had covalently coupled CCK to a 10 kDa polyethylene glycol and showed that this conjugate, PEG-CCK(9), produced a significantly longer anorectic effect than unmodified CCK(9). The present study assessed the dose-dependency of this response and the effect of two selective CCK(1) receptor antagonists, with different abilities to cross the blood-brain barrier (BBB), on PEG-CCK(9)-induced anorexia. EXPERIMENTAL APPROACH: Food intake was measured, for up to 23 h, after i.p. administration of different doses (2, 4, 8, 16 and 32 microg kg(-1)) of CCK(9) or PEG-CCK(9) in male Wistar rats. Devazepide (100 microg kg(-1)), which penetrates the BBB or 2-NAP (3 mg kg(-1)), which does not cross the BBB, were coadministered i.p. with PEG-CCK(9) (6 microg kg(-1)) and food intake was monitored. KEY RESULTS: In PEG-CCK(9)-treated rats, a clear dose-dependency was seen for both the duration and initial intensity of the anorexia whereas, for CCK(9), only the initial intensity was dose-dependent. Intraperitoneal administration of devazepide or 2-NAP, injected immediately prior to PEG-CCK(9), completely abolished the anorectic effect of PEG-CCK(9). CONCLUSIONS AND IMPLICATIONS: The duration of the anorexia for PEG-CCK(9) was dose-dependent, suggesting that PEGylation of CCK(9) increases its circulation time. Both devazepide and 2-NAP completely abolished the anorectic effect of i.p. PEG-CCK(9) indicating that its anorectic effect was solely due to stimulation of peripheral CCK(1) receptors.  相似文献   

14.
  1. The pyridopyrimidine derivative IQM-95,333 ((4aS,5R)-2-benzyl-5-[Nα-tert-butoxicarbonyl)L-tryptophyl]amino-1,3dioxoperhydropyrido[1,2-c]pyrimidine), a new non-peptide antagonist of cholecystokinin type A (CCKA) receptors, has been evaluated in vitro and in vivo in comparison with typical CCKA and CCKB receptor antagonists, such as devazepide, lorglumide, L-365,260 and PD-135,158.
  2. IQM-95,333 displaced [3H]-CCK-8S binding to CCKA receptors from rat pancreas with a high potency in the nanomolar range. Conversely, the affinity of this new compound at brain CCKB receptors was negligible (IC50>10 μM). IQM-95,333 was a more selective CCKA receptor ligand than devazepide and other CCKA receptor antagonists.
  3. Like devazepide, IQM-95,333 was a more potent antagonist of CCK-8S- than of CCK-4-induced contraction of the longitudinal muscle from guinea-pig ileum, suggesting selective antagonism at CCKA receptors.
  4. IQM-95,333 and devazepide were also potent inhibitors of CCK-8S-stimulated amylase release from isolated pancreatic acini, a CCKA receptor-mediated effect. The drug concentrations required (IC50s around 20 nM) were higher than in binding studies to pancreas homogenates.
  5. Low doses (50–100 μg kg−1, i.p.) of IQM-95,333 and devazepide, without any intrinsic effect on food intake or locomotion, blocked the hypophagia and the hypolocomotion induced by systemic administration of CCK-8S, two effects associated with stimulation of peripheral CCKA receptors.
  6. IQM-95,333 showed an anxiolytic-like profile in the light/dark exploration test in mice over a wide dose range (10–5,000 μg kg−1). Typical CCKA and CCKB antagonists, devazepide and L-365,260 respectively, were only effective within a more limited dose range.
  7. In a classical conflict paradigm for the study of anxiolytic drugs, the punished-drinking test, IQM-95,333, devazepide and L-365,260 were effective within a narrow dose range. The dose-response curve for the three drugs was biphasic, suggesting that other mechanisms are operative at higher doses.
  8. In conclusion, IQM-95,333 is a potent and selective CCKA receptor antagonist both in vitro and in vivo with an anxiolytic-like activity in two different animal models, which can only be attributed to blockade of this CCK receptor subtype.
  相似文献   

15.
The effects of 2-(4-(4-(2-pyrimidinyl)-1-piperazinyl)-butyl)-1,2-benzoisothiazol-3(2H)one-1,1-dioxide hydrochloride (isapirone, TVX Q 7821), a putative 5-HT1 receptor antagonist, has been studied on various models of 5-HT receptor sub-type function. In mice TVX Q 7821 produced a dose-dependent inhibition of the hypothermia induced by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) with an ED50 of 5.3 mg/kg suggesting that TVX Q 7821 was an antagonist of the presynaptic (possibly somato-dendritic) 5-HT1A receptor. TVX Q 7821 did not alter the locomotor response to the suggested 5-HT1B agonist RU 24969. The rate of mouse brain 5-HT synthesis was accelerated by TVX Q 7821 (10 mg/kg). 5-HT2 receptor-mediated head twitch behaviour induced by precursor loading with 5-HTP was unaffected by TVX Q 7821 (10 mg/kg) pretreatment 75 min earlier, but the head-twitch induced by the agonist 5-methoxy-N,N-dimethyltryptamine was enhanced by prior treatment with TVX Q 7821.In rats the hypothermia induced by 8-OH-DPAT was partially antagonised by TVX Q 7821 while the behavioural serotonin syndrome induced by 8-OH-DPAT (a possible post-synaptic 5-HT1B-mediated effect) was unaffected by TVX Q 7821 as was the locomotion induced by RU 24969.The data suggest that TVX Q 7821 is a good presynaptic 5-HT1A antagonist in mice, as indicated by the 8-OH-DPAT-induced hypothermia and 5-HT synthesis rate studies. It did not antagonise 5-HT1B-mediated behaviour in mice or rats and appeared to have an antagonist action at pre- but not post-synaptic 5-HT1A receptors in rats. Offprint requests to: G.M. Goodwin  相似文献   

16.

BACKGROUND AND PURPOSE

Dopamine released from the endings of descending dopaminergic nerve fibres in the spinal cord may be involved in modulating functions such as locomotion and nociception. Here, we examined the effects of dopamine on spinal synaptic transmissions in rats.

EXPERIMENTAL APPROACH

Spinal reflex potentials, monosynaptic reflex potential (MSR) and slow ventral root potential (sVRP), were measured in the isolated spinal cord of the neonatal rat. Dopamine release was measured by HPLC.

KEY RESULTS

Dopamine at lower concentrations (<1 µM) depressed sVRP, which is a C fibre-evoked polysynaptic response and believed to reflect nociceptive transmission. At higher concentrations (>1 µM), in addition to a potent sVRP depression, dopamine depolarized baseline potential and slightly depressed MSR. Depression of sVRP by dopamine was partially reversed by dopamine D1-like but not by D2-like receptor antagonists. SKF83959 and SKF81297, D1-like receptor agonists, and methamphetamine, an endogenous dopamine releaser, also caused the inhibition of sVRP. Methamphetamine also depressed MSR, which was inhibited by ketanserin, a 5-HT2A/2C receptor antagonist. Methamphetamine induced the release of dopamine and 5-HT from spinal cords, indicating that the release of endogenous dopamine and 5-HT depresses sVRP and MSR respectively.

CONCLUSION AND IMPLICATIONS

These results suggested that dopamine at lower concentrations preferentially inhibited sVRP, which is mediated via dopamine D1-like and other unidentified receptors. The dopamine-evoked depression is involved in modulating the spinal functions by the descending dopaminergic pathways.  相似文献   

17.
  1. Both the plasma endothelin-1 (ET-1) levels and the plasma glucose levels were markedly elevated in streptozotocin (STZ)-induced diabetic rats.
  2. The maximum contractile response of the mesenteric arterial bed to ET-1 was significantly reduced, and the vasodilatation induced by the ETB-receptor agonist IRL-1620 in the mesenteric arterial bed was significantly reduced in STZ-induced diabetic rats.
  3. ET-1 (10−8M) caused a transient vasodilatation followed by a marked vasoconstriction in methoxamine-preconstricted mesenteric arterial beds. The ET-1-induced vasodilatation was significantly larger in beds from diabetic rats than in those from age-matched controls. By contrast, the ET-1-induced vasoconstriction was significantly smaller in STZ-induced diabetic rats than in the controls.
  4. Both removal of the endothelium with Triton X-100 and preincubation with BQ-788 (10−6M) (ETB-receptor antagonist) abolished the ET-1-induced vasodilatation. Preincubation with BQ-485 (10−6M) or BQ-123 (3×10−6) (ETA-receptor antagonist) significantly augmented the ET-1-induced vasodilatation in control mesenteric arterial beds, but not that in beds from diabetic rats.
  5. These results demonstrate that marked increases not only in plasma glucose, but also in plasma ET-1 occur in STZ-induced diabetic rats. We suggest that the decreased contractile response and the increased vasodilator response of the mesenteric arterial bed to ET-1 may both be due to desensitization of ETA receptors, though ETB receptors may also be desensitized. This desensitization may result from the elevation of the plasma ET-1 levels seen in STZ-induced diabetic rats.
  相似文献   

18.
In order to investigate the relationship between GABAA and GABAB receptors in the induction of lordosis behavior, agonists of these receptor subtypes were injected simultaneously to estrogen-treated ovariectomized rats and lordosis behavior was observed before and after the injections. The GABAA receptor agonist, muscimol (MUS), at a dose in the range from 1.0 to 1.4 mg/kg body weight (bw) or the GABAB receptor agonist, baclofen (BAC) at a dose in the range from 1 to 10 mg/kg bw, was injected intraperitoneally. The lordosis quotient (LQ) decreased after treatments with MUS or BAC and a dose-dependent decrease of LQ was observed in MUS or BAC-treated rats. When 1.2 mg/kg bw MUS and 5 mg/kg bw BAC were injected simultaneously, the mean LQ decreased strongly and was significantly lower than the values obtained after single injections of the agonists at these doses (P < 0.05). In addition, to ascertain the time-course of changes, a behavioral test was carried out 7 times from 15 to 180 min after the injection of agonists. The low LQ in the rats injected with both MUS and BAC continued longer than in rats given single injections. These results indicate that both GABAA and GABAB receptors are involved in lordosis-inhibiting mechanisms by the GABA neuron and operate independently.  相似文献   

19.
Rationale In rodents, serotonin 1B (5-HT1B) agonists specifically reduce aggressive behaviors, including several forms of escalated aggression. One form of escalated aggression is seen in mice that seek the opportunity to attack another mouse by accelerating their responding during a fixed interval (FI) schedule. Responses preceding the opportunity to attack may reflect aggressive motivation. Objective This study investigated the effects of two 5-HT1B receptor agonists on the motivation to fight and the performance of heightened aggression. Materials and methods Male mice were housed as “residents” and performed nose-poke responses on an FI 10-min schedule with the opportunity to briefly attack an “intruder” serving as the reinforcer. In the first experiment, the 5-HT1B receptor agonist, CP-94,253 (0–10 mg/kg, IP), was given 30 min before the FI 10 schedule. To confirm that CP-94,253 achieved its effects via 5-HT1B receptors, the 5HT1B/1D receptor antagonist, GR 127935 (10 mg/kg, IP) was administrated before the agonist injection. In the second experiment, the 5-HT1B agonist CP-93,129 (0–1.0 μg) was microinjected into the dorsal raphe 10 min before the FI 10 schedule. Results The agonists had similar effects on all behaviors. CP-94,253 and CP-93,129 significantly reduced the escalated aggression towards the intruder at doses lower than those required to affect operant responding. The highest doses of CP-94,253 (10 mg/kg) and CP-93,129 (1.0 μg) decreased the rate and accelerating pattern of responding during the FI 10 schedule; lower doses were less effective. GR 127935 antagonized CP-94,253’s effects on all other behaviors, except response rate. Conclusions These data extend the anti-aggressive effects of 5-HT1B agonists to a type of escalated aggression that is rewarding and further suggest that these effects are associated with actions at 5-HT1B receptors in the dorsal raphe.  相似文献   

20.
Intra-accumbens stimulation of GABA receptors results in a robust increase in food intake. However the differential consequences of stimulating GABAA and GABAB receptors in the nucleus accumbens have not been extensively explored with respect to feeding behaviour. Here we compare the effects of the GABAB receptor agonist baclofen and GABAA receptor agonist muscimol, infused into the nucleus accumbens shell, on food intake and related behavior patterns. Baclofen (110-440 ρmol) dose dependently enhanced intake and delayed the onset of satiety within the test period as did the effects of 4-8 h food withdrawal. Muscimol (220-660 ρmol) enhanced intake but also disrupted the sequence of associated behaviours at every dose tested. We conclude that GABAB receptors in the nucleus accumbens shell may play a role in relation to feeding motivation whereas GABAA receptors may, as previously suggested, have a more restricted role in relation to the motor components of approach to food and ingestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号