首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

The aim of this work is to investigate the feasibility of non-autologous transplantation of human mesenchymal stem cells (hMSCs) with or without differentiation for the regeneration of osteochondral defects in rabbits using a biphasic composite construct composed of platelet-rich fibrin glue (PR-FG) and hydroxyapatite.

Methods

After isolation and culture, hMSCs were seeded on biphasic composite constructs (hydroxyapatite + PR-FG) and transplanted into osteochondral defects of adult New Zealand white rabbits. Treatment of individual defects was applied by random assignment to one of five groups: (1) control, defects untreated; (2) hydroxyapatite, defects filled with hydroxyapatite only; (3) hydroxyapatite + PR-FG, defects filled with a composite of hydroxyapatite and PR-FG; (4) hydroxyapatite + PR-FG + undifferentiated hMSCs; and (5) hydroxyapatite + PR-FG + differentiated hMSCs. Rabbits were killed at 4 or 8 weeks post-surgery, at which time osteochondral repair was macroscopically and histologically evaluated and scored using the modified International Cartilage Repair Society scoring system.

Results

The group in which defects were seeded with differentiated hMSCs (group 5) showed superior healing of osteochondral defects based on macroscopic and histological observations compared to other groups. Specifically, 8 weeks after implantation, defects were filled with more hyaline-like cartilage and were better integrated with the surrounding native cartilage. The histological scores were significantly better than those of other groups (16.3 at 8 weeks, p < 0.01).

Conclusion

Xenogeneic transplantation of differentiated hMSCs using a biphasic composite construct effectively repaired osteochondral defect in a rabbit model. Differentiated hMSCs showed superior healing of chondral lesion to undifferentiated hMSCs.  相似文献   

2.

Purpose

The objective of this study was to examine whether different mechanical modifications and/or impregnation of hyaluronic acid (HA) might enhance aragonite-based scaffold properties for the regeneration of cartilage and bone in an animal model.

Methods

Bi-phasic osteochondral scaffolds were prepared using coralline aragonite with different modifications, including 1- to 2-mm-deep drilled channels in the cartilage phase (Group 1, n = 7) or in the bone phase (Group 2, n = 8), and compared with unmodified coral cylinders (Group 3, n = 8) as well as empty control defects (Group 4, n = 4). In each group, four of the implants were impregnated with HA to the cartilage phase. Osteochondral defects (6 mm diameter, 8 mm depth) were made in medial and lateral femoral condyles of 14 goats, and the scaffolds were implanted according to a randomization chart. After 6 months, cartilage and bone regeneration were evaluated macroscopically and histologically by an external laboratory.

Results

Group 1 implants were replaced by newly formed hyaline cartilage and subchondral bone (combined histological evaluation according to the ICRS II-2010 and O’Driscoll et al. 34 ± 4 n = 7). In this group, the cartilaginous repair tissue showed a smooth contour and was well integrated into the adjacent native cartilage, with morphological evidence of hyaline cartilage as confirmed by the marked presence of proteoglycans, a marked grade of collagen type II and the absence of collagen type I. The average scores in other groups were significantly lower (Group 2 (n = 8) 28.8 ± 11, Group 3 (n = 8) 23 ± 9 and Group 4 (empty control, n = 4) 19.7 ± 15).

Conclusions

The implants with the mechanical modification and HA impregnation in the cartilage phase outperformed all other types of implant. Although native coral is an excellent material for bone repair, as a stand-alone material implant, it does not regenerate hyaline cartilage. Mechanical modification with drilled channels and impregnation of HA within the coral pores enhanced the scaffold’s cartilage regenerative potential. The modified implant shows young hyaline cartilage regeneration. This implant might be useful for the treatment of both chondral and osteochondral defects in humans.  相似文献   

3.

Purpose

The purpose of this study was to evaluate trends in surgical treatment of articular cartilage defects of the knee in the United States.

Methods

The current procedural terminology (CPT) billing codes of patients undergoing articular cartilage procedures of the knee were searched using the PearlDiver Patient Record Database, a national database of insurance billing records. The CPT codes for chondroplasty, microfracture, osteochondral autograft, osteochondral allograft, and autologous chondrocyte implantation (ACI) were searched.

Results

A total of 163,448 articular cartilage procedures of the knee were identified over a 6-year period. Microfracture and chondroplasty accounted for over 98 % of cases. There was no significant change in the incidence of cartilage procedures noted from 2004 (1.27 cases per 10,000 patients) to 2009 (1.53 cases per 10,000 patients) (p = 0.06). All procedures were performed more commonly in males (p < 0.001). This gender difference was smallest in patients undergoing chondroplasty (51 % males and 49 % females) and greatest for open osteochondral allograft (61 % males and 39 % females). Chondroplasty and microfracture were most commonly performed in patients aged 40–59, while all other procedures were performed most frequently in patients <40 years old (p < 0.001).

Conclusions

Articular cartilage lesions of the knee are most commonly treated with microfracture or chondroplasty in the United States. Chondroplasty and microfracture were most often performed in middle-aged patients, whereas osteochondral autograft, allograft, and ACI were performed in younger patients, and more frequently in males.

Level of evidence

Cross-sectional study, Level IV.  相似文献   

4.

Purpose

A new cell delivery system using magnetic force, termed magnetic targeting, was developed for the accumulation of locally injected cells in a lesion. The aim of this study was to assess the safety and efficacy of mesenchymal stem cell (MSC) magnetic targeting in patients with a focal articular cartilage defect in the knee.

Methods

MSC magnetic targeting for five patients was approved by the Ministry of Health Labour and Welfare of Japan. Autologous bone marrow MSCs were cultured and subsequently magnetized with ferucarbotran. The 1.0-T compact magnet was attached to a suitable position around the knee joint to allow the magnetic force to be as perpendicular to the surface of the lesion as possible. Then 1?×?107 MSCs were injected into the knee joint. The magnet was maintained in the same position for 10 min after the MSC injection. The primary endpoint was the occurrence of any adverse events. The secondary endpoints were efficacy assessed by magnetic resonance imaging (MRI) T2 mapping and clinical outcomes using the International Knee Documentation Committee (IKDC) Subjective Knee Evaluation and the Knee Injury and Osteoarthritis Outcome Score (KOOS).

Results

No serious adverse events were observed during the treatment or in the follow-up period. Swelling of the treated knee joint was observed from the day after surgery in three of the five patients. The swelling resolved within 2 weeks in two patients. MRI showed that the cartilage defect areas were almost completely filled with cartilage-like tissue. MOCART scores were significantly higher 48 weeks postoperatively than preoperatively (74.8?±?10.8 vs 27.0?±?16.8, p?=?0.042). Arthroscopy in three patients showed complete coverage of their cartilage defects. Clinical outcome scores were significantly better 48 weeks postoperatively than preoperatively for the IKDC Subjective Knee Evaluation (74.8?±?17.7 vs 46.9?±?17.7, p?=?0.014) and knee-related quality-of-life (QOL) in the KOOS (53.8?±?26.4 vs 22.5?±?30.8, p?=?0.012).

Conclusion

Magnetic targeting of MSCs was safely performed and showed complete coverage of the defects with cartilage-like tissues and significant improvement in clinical outcomes 48 weeks after treatment. The magnetic targeting of MSCs is useful as a minimally invasive treatment for cartilage repair.

Level of evidence

IV.
  相似文献   

5.

Purpose

This study reports first evidence of a modified procedure for osteochondral autologous transplantation where bony periosteum-covered plugs are harvested at the iliac crest and transplanted into the talar osteochondral lesion.

Methods

Thirteen out of 14 patients, average age 39.6 (SD 14.4) years, were followed clinically and radiographically for a median of 25 (24–28) months (minimal follow-up, 24 months).

Results

For these 13 patients, the American Orthopaedic Foot and Ankle Society hindfoot score increased from 47 (SD 11) points pre-operatively, to 81 (SD 14) points postoperatively (p < 0.0001). The average pain score decreased from 6.6 (SD 1.3) points pre-operatively, to 1.4 (SD 1.9) points postoperatively (p < 0.0001). Seven patients returned to sports activity. Radiographically good plug osteointegration was observed in nine out of 11 ankles. Follow-up arthroscopy showed fibrous cartilage in four ankles, periosteum hypertrophy in five ankles, and partial or total missing of coverage of the bone in three ankles. Three revision surgeries had to be performed.

Conclusions

This modified mosaicplasty might be recommended for severe and recurrent osteochondral lesions of the talus and may lead to restoration of the subchondral bone stock, formation of fibro-cartilage, and stable joint function.

Level of evidence

IV.  相似文献   

6.

Purpose

The aim of this study was to evaluate whether the microfracture combined with osteochondral paste implantation could promote the quality of the regenerated tissue in the knee joints of rabbits.

Methods

Sixty-six New Zealand white rabbits were used. Bilateral knee joints from the same rabbit were randomly divided into experimental group and microfracture group. An articular cartilage defect was established in the femoral trochlear groove. In the experimental group, the defect was microfractured and covered with osteochondral paste harvested from the intercondylar notch. The regenerated tissues were harvested for gross morphology, histology, biochemistry and gene expression analysis at 4, 8 and 12 weeks postoperatively.

Results

The regenerated tissue had a slowly mature process in both groups. At 12 weeks, the regenerated tissue in the experimental group appeared much more thicker and white with higher percentages of defect filling macroscopically. In histology, the experimental group found a majority of hyaline-like regenerate tissue with intense Safranin-O and collagen type II staining, while fibrocartilage-like tissue was mostly seen in the microfracture group with poor Safranin-O and collagen type II staining. The experimental group had higher Wakitani scores and narrower acellular zones than those in the microfracture group (P < 0.05). For biochemical analysis, both the GAG content and the DNA-normalized GAG content saw a time-dependent increase with a much higher value found in the experimental group at 8 and 12 weeks (P < 0.05). On the contrary, the total DNA content decreased with time in both groups, and the difference between the two groups was only found at 4 and 8 weeks (P < 0.05). For gene expression analysis, the experimental group had much higher expression levels than the microfracture group as for collagen type II and aggrecan, but not for collagen type I.

Conclusion

Microfracture combined with paste implantation can result in improved quality of the reparative tissue and may have a positive effect on the integration to the surrounding cartilage in the rabbit model. The technique offers a promising treatment option for cartilage defects and improves the regeneration of articular cartilage for patients with painful chondral lesions.  相似文献   

7.

Purpose

Treatment of large cartilage lesions of the knee in weight-bearing areas is still a controversy and challenging topic. Autologous osteochondral mosaicplasty has proven to be a valid option for treatment but donor site morbidity with most frequently used autografts remains a source of concern. This study aims to assess clinical results and safety profile of autologous osteochondral graft from the upper tibio-fibular joint applied to reconstruct symptomatic osteochondral lesions of the knee.

Methods

Thirty-one patients (22 men and 9 women) with grade 4 cartilage lesions in the knee were operated by mosaicplasty technique using autologous osteochondral graft from the upper tibio-fibular joint, between 1998 and 2006. Clinical assessment included visual analog scale (VAS) for pain and Lysholm score. All patients were evaluated by MRI pre- and post-operatively regarding joint congruency as good, fair (inferior to 1 mm incongruence), and poor (incongruence higher than 1 mm registered in any frame). Donor zone status was evaluated according to specific protocol considering upper tibio-fibular joint instability, pain, neurological complications, lateral collateral ligament insufficiency, or ankle complaints.

Results

Mean age at surgery was 30.1 years (SD 12.2). In respect to lesion sites, 22 were located in weight-bearing area of medial femoral condyle, 7 in lateral femoral condyle, 1 in trochlea, and 1 in patella. Mean follow-up was 110.1 months (SD 23.2). Mean area of lesion was 3.3 cm2 (SD 1.7), and a variable number of cylinders were used, mean 2.5 (SD 1.3). Mean VAS score improved from 47.1 (SD 10.1) to 20.0 (SD 11.5); p = 0.00. Similarly, mean Lysholm score increased from 45.7 (SD 4.5) to 85.3 (SD 7.0); p = 0.00. The level of patient satisfaction was evaluated, and 28 patients declared to be satisfied/very satisfied and would do surgery again, while 3 declared as unsatisfied with the procedure and would not submit to surgery again. These three patients had lower clinical scores and kept complaints related to the original problem but unrelated to donor zone. MRI score significantly improved at 18–24 months comparing with pre-operative (p = 0.004). No radiographic or clinical complications related to donor zone with implication in activity were registered.

Conclusions

This work corroborates that mosaicplasty technique using autologous osteochondral graft from the upper tibio-fibular joint is effective to treat osteochondral defects in the knee joint. No relevant complications related to donor zone were registered.

Level of evidence

Case series, Level IV.  相似文献   

8.

Purpose

The influence of basal graft support combined to early loading following an osteochondral autograft procedure is unclear. It was hypothesized that bottomed grafts may allow for early mobilization by preventing graft subsidence and leading to better healing.

Methods

Osteochondral autografts were press fitted in the femoral condyles of 24 sheep (one graft per animal). In the unbottomed group (n = 12), a gap of 2 mm was created between graft and recipient bone base. In the bottomed group (n = 12), the graft firmly rested on recipient bone. Animals were allowed immediate postoperative weightbearing. Healing times were 3 and 6 months per group (n = 6 per subgroup). After killing, histological and histomorphometric analyses were performed.

Results

Unbottomed grafts at 3 months showed significantly more graft subsidence (P = 0.024), significantly less mineralized bone (P = 0.028) and significantly worse cartilage and subchondral bone plate healing (P = 0.034) when compared to bottomed grafts. At 6 months, no differences were seen. Compared to the native situation, unbottomed grafts showed significantly more graft subsidence (P = 0.024), whereas bottomed grafts did not. Cystic lesions were seen in both groups. Osteoclasts were closely related to the degree of bone remodelling.

Conclusion

In the animal model, in the case of early loading, bottomed osteochondral autografts have less chance of graft subsidence. Evident subsidence negatively influences the histological healing process. In the osteochondral autograft procedure, full graft support should be aimed for. This may allow for early mobilization, diminish graft subsidence and improve long-term integration.  相似文献   

9.

Purpose

The objective of this study was to evaluate the effects of synovium on the proliferation of the cartilage tissue and chondrocytes using a rabbit knee model as an in vivo synovial culture medium.

Methods

Twelve New Zealand rabbits were used as the animal model in this investigation. Standard size chondral and osteochondral cartilage grafts were taken from, respectively, the left and right knees of all the animals. Two groups of 6 animals were formed: in Group I (synovium group), grafts were placed into the synovial tissue and in group II (patellar tendon group) behind the patellar tendon of the corresponding knees. After 4 months, samples were collected and evaluated macroscopically by measuring their dimensions (vertical = D1, horizontal = D2, and depth = D3) and volumes, and histologically by counting the chondrocyte number using camera lucida method.

Results

Macroscopically, the increase in average D1, D2, and D3 measurements and volume in the osteochondral specimens were significantly higher compared to the chondral specimens in both groups (P < 0.05). However, no significant difference was observed between the two groups in terms of macroscopic values. Histologically, the mean chondrocyte counts in osteochondral and chondral specimens for Group I (synovium) were 20.2 and 18.1, and for Group II (patellar tendon) were 18.7 and 15.6, respectively. The mean number of chondrocytes was found to be significantly higher in osteochondral specimens than that of chondral specimens in either group (P < 0.05). Overall average chondrocyte count was significantly higher for Group I compared to Group II (P < 0.05).

Conclusion

Transplantation of the cartilage grafts into the synovial tissue in rabbit knees significantly enhanced the chondrocyte production compared with the group where the grafts were transplanted into intra-articular patellar tendon. The results of this study indicate that native synovial tissue may have the potential to be used as an in vivo culture medium for osteochondral tissue growth.  相似文献   

10.

Purpose

This study assessed the clinical results and second-look arthroscopy after fibrin matrix-mixed gel-type autologous chondrocyte implantation to treat osteochondral lesions of the talus.

Methods

Chondrocytes were harvested from the cuboid surface of the calcaneus in 38 patients and cultured, and gel-type autologous chondrocyte implantation was performed with or without medial malleolar osteotomy. Preoperative American orthopedic foot and ankle society ankle-hind foot scores, visual analogue score, Hannover scoring system and subjective satisfaction were investigated, and the comparison of arthroscopic results (36/38, 94.7 %) and MRI investigation of chondral recovery was performed. Direct tenderness and relationship to the active daily life of the donor site was evaluated.

Results

The preoperative mean ankle–hind foot scores (71 ± 14) and Hannover scoring system (65 ± 10) had increased to 91 ± 12 and 93 ± 14, respectively, at 24-month follow-up (p < 0.0001), and the preoperative visual analogue score of 58 mm had decreased to 21 mm (p < 0.0001). Regarding subjective satisfaction, 34 cases (89.5 %) reported excellent, good or fair. Chondral regeneration was analysed by second-look arthroscopy and MRI. Complications included one non-union and two delayed-unions of the osteotomy sites, and 9 ankles (9/31, 29.0 %) sustained damaged medial malleolar cartilage due to osteotomy. Marked symptoms at the biopsy site did not adversely affect the patient’s active daily life.

Conclusions

Fibrin matrix-mixed gel-type autologous chondrocyte implantation using the cuboid surface of the calcaneus as a donor can be used for treating osteochondral lesions of the talus.

Level of evidence

Therapeutic study, prospective case series, Level IV.  相似文献   

11.

Purpose

The purpose of this study is to evaluate clinical and radiological outcomes of patients treated with autologous matrix-induced chondrogenesis (AMIC) for full-thickness chondral and osteochondral defects of the femoral condyles and patella.

Method

A retrospective evaluation of clinical and radiographic outcomes of patients treated with AMIC for chondral and osteochondral full-thickness cartilage defects of the knee was performed with a mean follow-up of 28.8 ± 1.5 months (range, 13–51 months).

Results

Significant improvements in clinical outcome scores (IKDC, Lysholm, Tegner, and VAS pain score) were noted. The largest improvements were seen in the osteochondral subgroup (mean age 25.9 years), whereas patients treated for chondral defects in the patellofemoral joint and on the femoral condyles improved less. Patients in all groups were generally satisfied with their results. MRI evaluation showed that tissue filling was present but generally not complete or homogenous.

Conclusions

AMIC is a safe procedure and leads to clinical improvement of symptomatic full-thickness chondral and osteochondral defects and to regenerative defect filling. The value of AMIC relative to other cartilage repair procedures and to the natural course remains undefined.

Level of evidence

Case series, Level IV.  相似文献   

12.

Purpose

The objective of this study was to determine whether using mesenchymal stem cells (MSC) seeded in a collagen type I scaffold would be sufficient to regenerate the torn anterior cruciate ligament (ACL).

Methods

Anterior cruciate ligament transection was performed on both knees in 10 New Zealand rabbits and then repaired with as follows: suture alone (suture-treated group, n = 6), suture associated with collagen type I scaffold (collagen type I scaffold-treated group, n = 8) or suture associated with autologous MSC seeded on collagen type I scaffold (MSC/collagen type I scaffold-treated group, n = 6). At 12-week post-intervention, the animals were killed and the ACLs were characterised macroscopically and histologically. Data of the 3 groups were against normal ACL (normal group, n = 10).

Results

Macroscopic observation found that in MSC/collagen type I scaffold group, 33 % of specimens showed a complete ACL regeneration, with a tissue similar to the normal ACL. Regeneration was not observed in the group treated with suture alone or associated with collagen type I scaffold without cells. In the latter, only a reparative attempt at the ends was observed. Histological analysis of the regenerated ACL showed a tissue with organised collagen and peripheric vessels.

Conclusions

These results provide evidence that the use of MSC seeded in a collagen type I scaffold in the treatment of ACL injuries is associated with an enhancement of ligament regeneration. This MSC-based technique is a potentially attractive tool for improving the treatment of ACL ruptures.  相似文献   

13.

Purpose

This study proposes a single-step therapeutic approach for osteochondral defects using autologous cartilage fragments loaded onto a scaffold composed of a hyaluronic acid (HA) derivative, human fibrin glue (FG) and autologous platelet-rich-plasma (PRP), in a rabbit model. The aim is to demonstrate the in vitro outgrowth of chondrocytes from cartilage fragments and the in vivo formation of a functional repair tissue.

Methods

In vitro: minced articular cartilage was loaded onto two different types of scaffold (paste or membrane) according to two different HA preparations (injectable HA-derivative or HA-derivative felt). In vivo: trochlear osteochondral defects were created in 50 adult rabbits, which were then assigned to 5 different treatment groups: cartilage fragments loaded onto membrane scaffolds with FG (Group 1) or without FG (Group 2); membrane scaffolds alone with FG (Group 3) or without FG (Group 4); empty defects (Group 5). Membrane scaffolds were used “in vivo” for simpler preparation and better adhesive properties. Repair processes were evaluated histologically and by immunohistochemistry at 1, 3, and 6 months.

Results

An in vitro time-dependent cell outgrowth from cartilage fragments was observed with both types of scaffolds. At 6 months, in vivo, cartilage fragment-loaded scaffolds induced significantly better repair tissue than the scaffold alone using histological scoring. Repair in Group 2 was superior to that in any of the control groups (p < 0.05).

Conclusion

Autologous cartilage fragments loaded onto an HA felt/FG/PRP-scaffold provided an efficient cell source, and allowed for an improvement of the repair process of ostechondral defects in a rabbit model. Human FG, however, hampered the rabbit healing process. These results may have clinical relevance as they show the potential of a novel one-stage repair technique for osteochondral defects.  相似文献   

14.

Purpose

This study investigates the effect of cell seeding density on cartilage repair in matrix-assisted chondrocyte implantation in vitro and in vivo.

Methods

In vitro: Four different cell seeding densities of human chondrocytes were seeded onto a porous methoxy-polyethylene glycol-polylactic-co-glycolic acid scaffold (MPEG-PLGA) polymer scaffold ASEED? (1.2 × 106, 4.0 × 106, 1.2 × 107 and 2.0 × 107 cells/cm3). The cartilage repair response was evaluated by relative gene expression of the chondrogenic markers sox9, collagen types I, II and X, and aggrecan, total DNA content and sulphated glycosaminoglycan synthesis. In vivo: Using a New Zealand white rabbit intercondylar osteochondral defect model, three different cell seeding densities (1.2 × 106, 4.0 × 106 and 1.2 × 107 cells/cm3) were tested with an empty scaffold as control. The cartilage repair response was evaluated using O’Driscoll score.

Results

In vitro: A significant difference (p < 0.05) in total DNA content was found at day 2 but not at day 7. The low cell seeding densities yielded the highest GAG content (p < 0.001) at day 7. Collagen type I was highest (p < 0.01) at the lowest density at day 7. In vivo: No significant difference was found between the 4 groups.

Conclusions

No positive effect on cartilage repair was found using increased cell seeding density.

Level of evidence

Controlled experimental study, Level II.  相似文献   

15.

Purpose

Large osteochondral defects involve two different tissues characterized by different intrinsic healing capacity. Different techniques have been proposed to treat these lesions with results still under discussion. The aim of the study is to evaluate the clinical outcome of 19 patients treated with a type I collagen–hydroxyapatite nanostructural biomimetic osteochondral scaffold at minimum follow-up of 2 years.

Methods

Twenty lesions, 19 patients were treated with this scaffold implantation. The lesions size went from 4 to 8 cm2 (mean size 5.2 ± 1.6 cm2). All patients were clinically evaluated using the International Repair Cartilage Society score, the Tegner Score and EQ-VAS. MRI was performed at 12 and 24 months after surgery and then every 12 months and evaluated with magnetic resonance observation of cartilage repair tissue scoring scale.

Results

The IKDC subjective score improved from a mean score of 35.7 ± 6.3 at the baseline evaluation to 67.7 ± 13.4 at 12-month follow-up (p < 0.0005). A further improvement was documented from 12 to 24 months (mean score of 72.9 ± 12.4 at 24 months) (p < 0.0005). The IKDC objective score confirmed the results. The Tegner activity score improvement was statistically significant (p < 0.0005). The EQ-VAS showed a significant improvement from 3.15 ± 1.09 to 7.35 ± 1.14 (p < 0.0005) at 2-year follow-up. The lesion’ site seems to influence the results showing a better outcome in the patients affected in the medial femoral condyle.

Conclusions

The use of the MaioRegen scaffold is a good procedure for the treatment for large osteochondral defects where other classic techniques are difficult to apply. It is an open one-step surgery with promising stable results at medium follow-up.

Level of evidence

IV.  相似文献   

16.

Purpose

To assess the distal femoral cartilage after unilateral arthroscopic partial meniscectomy and to explore the relationship between cartilage thickness and various disease-/surgery-related parameters.

Methods

Eighty-nine patients (42 M, 47 F) who had undergone arthroscopic partial meniscectomy surgery were evaluated. Ultrasonographic distal femoral cartilage thicknesses were measured with a 5–13-MHz linear probe (General Electric, Logiq P5) on mid-points of the lateral condyle, intercondylar notch and medial condyle of operated and non-operated knees by a physician blinded to patients’ data. Demographic features, duration after surgery, type of meniscal tear and site of meniscectomy were recorded.

Results

Mean age of the patients was 51.8 ± 12.8 years (range 18–88). Mean body mass index was 29.4 ± 4.4 kg/m2 (range 18–38). Overall, in patients with degenerative meniscal tears, femoral cartilage thicknesses pertaining to all the three measured sites (lateral, intercondylar and medial) were found to be decreased in the operated knees when compared with those of the non-operated knees (p = 0.004, p = 0.003, p = 0.041, respectively), whereas in patients with non-degenerative tears, this decrease was significant only in the intercondylar area (p = 0.038). When patients were grouped according to the duration (months) after their surgery (≤36, 37–48 and ≥49), cartilage thickness was similar between both knees in the first group, decreased at the lateral condyle (p = 0.008) and intercondylar area (p = 0.049) in the second group and decreased at all three sites (lateral, intercondylar and medial) in the third group (p = 0.015, p = 0.005 and p = 0.008, respectively).

Conclusion

These findings would be considered as unfavourable with respect to weight-bearing, and thus, conservative measures to support relevant joints would strongly be kept in mind during clinical practice. Lastly, ultrasonography may be a convenient alternative imaging method for the evaluation of short- and medium-term cartilage loss in patients with arthroscopic partial meniscectomy.

Levels of evidence

III.  相似文献   

17.

Purpose

The goal of our study was to investigate the associations between surgical delay, pain and meniscus, and articular cartilage lesions seen at the time of ACL reconstruction.

Methods

One hundred and sixty-two consecutive patients who had received ACL reconstruction were recruited. The preoperative International Knee Documentation Committee (IKDC) questionnaires, and cartilage and meniscal lesions seen at the time of surgery were analysed.

Results

Patients with surgery within 12 months were less likely to have meniscus injury (59.8/77.4 %, p = 0.032), and the meniscus injury was more likely to be salvageable. (56.3/36.0 %, p = 0.042). Patients with meniscal tear larger than 10 mm had higher pain intensity than tear <10 mm (mean 6.8/8.2, p = 0.007). Patients older than 35 years of age were more likely to suffer from cartilage injury (76.4/39.1 %, p = 0.004). Patients with cartilage lesions had longer surgical delay (mean 18.9/12.1 months, p = 0.033). The presence of meniscal tear increased the risk of cartilage lesions (p = 0.038, OR = 2.14). Patients with cartilage lesions had a greater pain frequency (mean 6.9/7.7, p = 0.048). Moderate correlation was found between the size of cartilage lesion and the frequency of pain (p = 0.013).

Conclusions

Increased surgical delay was associated with an increased incidence of meniscus and articular cartilage injuries in patients suffering from ACL tear; also, the meniscus was less likely to be salvageable. The presence of cartilage lesions was associated with an increased frequency of pain. Size of meniscal and cartilage lesions was significantly associated with pain.

Level of evidence

Retrospective comparative study, Level III.  相似文献   

18.

Purpose

Autologous chondrocyte implantation (ACI) is an established procedure in the ankle providing satisfactory results. The development of a completely arthroscopic ACI procedure in the ankle joint made the technique easier and reduced the morbidity. The purpose of this investigation was to report the clinical results of a series of patients who underwent arthroscopic ACI of the talus at a mean of 7 ± 1.2-year follow-up.

Methods

Forty-six patients (mean age 31.4 ± 7.6) affected by osteochondral lesions of the talar dome (OLT) received arthroscopic ACI between 2001 and 2006. Patients were clinically evaluated using AOFAS score pre-operatively and at 12, 36 months and at final follow-up of 87.2 ± 14.5 months.

Results

The mean pre-operative AOFAS score was 57.2 ± 14.3. At the 12-month follow-up, the mean AOFAS score was 86.8 ± 13.4 (p = 0.0005); at 36 months after surgery, the mean score was 89.5 ± 13.4 (p = 0.0005); whereas at final follow-up of 87.2 ± 14.5 months it was 92.0 ± 11.2 (p = 0.0005). There were three failures. Histological and immunohistochemical evaluations of specimens harvested from failed implants generally showed several aspects of a fibro-cartilaginous tissue associated with some aspects of cartilage tissue remodelling as indicated by the presence of type II collagen expression.

Conclusion

This study confirmed the ability of arthroscopic ACI to repair osteochondral lesions in the ankle joint with satisfactory clinical results after mid-term follow-up.

Level of evidence

IV, retrospective case series.  相似文献   

19.

Objectives

To retrospectively investigate the role of 18 F–fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) for the diagnosis and therapeutic response in relapsing polychondritis (RP) patients.

Methods

18F-FDG PET/CT findings were reviewed in six RP patients. The initial scans were performed for all patients, follow-up scans were performed during steroid therapy for five patients. Changes in the abnormal lesions and the maximal standard uptake value (SUVmax) were analyzed.

Results

The initial PET/CT scans revealed intense FDG uptake in the cartilages for all six patients. The lesions of abnormal FDG uptake were tracheal/bronchial cartilage (n = 4), costicartilage (n = 4), nasal cartilage (n = 3), cricoid cartilage (n = 3), auricular cartilage (n = 3), arytenoid cartilage (n = 3), thyroid cartilage (n = 2), hyoid cartilage (n = 1) and mediastinum lymph node (n = 1). The mean visual score and the mean SUVmax were 2.96 ± 0.20 and 4.10 ± 0.6. The intense uptake reduced or disappeared during steroid therapy for five patients, the mean visual score and the mean SUVmax were 1.58 ± 1.4 and 1.51 ± 1.4.

Conclusions

18F-FDG PET/CT enables the acquisition of both morphologic and glucose metabolic of the related cartilage structures. It plays a valuable role in assessing almost all cartilage and detecting RP, which is a better selection of a biopsy site as well as therapeutic response monitoring.  相似文献   

20.

Purpose

The type of osteoarthritis and the degree of severity which causes restriction of knee range of motion (ROM) is still largely unknown. The objective of this study was to analyse the location and the degree of cartilage degeneration that affect knee range of motion and the connection, if any, between femorotibial angle (FTA) and knee ROM restriction.

Methods

Four hundreds and fifty-six knees in 230 subjects with knee osteoarthritis undergoing knee arthroplasty were included. Articular surface was divided into eight sections, and cartilage degeneration was evaluated macroscopically during the operation. Cartilage degeneration was classified into four grades based on the degree of exposure of subchondral bone. A Pearson correlation was conducted between FTA and knee flexion angle to determine whether high a degree of FTA caused knee flexion restriction. A logistic regression analysis was also conducted to detect the locations and levels of cartilage degeneration causing knee flexion restriction.

Results

No correlation was found between FTA and flexion angle (r = ?0.08). Flexion angle was not restricted with increasing FTA. Logistic regression analysis showed significant correlation between restricted knee ROM and levels of knee cartilage degeneration in the patella (odds ratio (OR) = 1.77; P = 0.01), the lateral femoral condyle (OR = 1.62; P = 0.03) and the posterior medial femoral condyle (OR = 1.80; P = 0.03).

Conclusion

For clinical relevance, soft tissue release and osteophyte resection around the patella, lateral femoral condyle and posterior medial femoral condyle might be indicated to obtain a higher degree of knee flexion angle.

Level of evidence

Case–control study, Level III.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号