首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Chikungunya virus (CHIKV) is an emerging arbovirus transmitted to humans by mosquitoes such as Aedes albopictus. To be transmitted, CHIKV must replicate in the mosquito midgut, then disseminate in the hemocele and infect the salivary glands before being released in saliva. We have developed a standardized protocol to visualize viral particles in the mosquito salivary glands using transmission electron microscopy. Here we provide direct evidence for CHIKV replication and storage in Ae. albopictus salivary glands.  相似文献   

2.
The mechanisms involved in determining arbovirus vector competence, or the ability of an arbovirus to infect and be transmitted by an arthropod vector, are still incompletely understood. It is well known that vector competence for a particular arbovirus can vary widely among different populations of a mosquito species, which is generally attributed to genetic differences between populations. What is less understood is the considerable variability (up to several logs) that is routinely observed in the virus titer between individual mosquitoes in a single experiment, even in mosquitoes from highly inbred lines. This extreme degree of variation in the virus titer between individual mosquitoes has been largely ignored in past studies. We investigated which biological factors can affect titer variation between individual mosquitoes of a laboratory strain of Aedes aegypti, the Orlando strain, after Sindbis virus infection. Greater titer variation was observed after oral versus intrathoracic infection, suggesting that the midgut barrier contributes to titer variability. Among the other factors tested, only the length of the incubation period affected the degree of titer variability, while virus strain, mosquito strain, mosquito age, mosquito weight, amount of blood ingested, and virus concentration in the blood meal had no discernible effect. We also observed differences in culture adaptability and in the ability to orally infect mosquitoes between virus populations obtained from low and high titer mosquitoes, suggesting that founder effects may affect the virus titer in individual mosquitoes, although other explanations also remain possible.  相似文献   

3.
DEN-3 parent (strain CH53489) and progeny candidate vaccine (clone 24/28) viruses were compared in their abilities to interact with Aedes aegypti and Ae. albopictus. The parent and progeny virus were equivalent in their ability to infect, to replicate in, and to be transmitted by both species of mosquitoes. The candidate vaccine DEN-3 clone was temperature sensitive and had small plaque morphology. These phenotypic markers remained stable during mosquito passage. Thus, temperature sensitivity and small plaque morphology are not reliable biological markers for attenuation.  相似文献   

4.
The Japanese encephalitis (JE) virus vaccine candidate, ChimeriVax-JE, which consists of a yellow fever (YF) 17D virus backbone containing the prM and E genes from the JE vaccine strain JE SA14--14--2, exhibits restricted replication in non-human primates, producing only a low-level viremia following peripheral inoculation. Although this reduces the likelihood that hematophagous insects could become infected by feeding on a vaccinated host, it is prudent to investigate the replication kinetics of the vaccine virus in mosquito species that are known to vector the viruses from which the chimera is derived. In this study ChimeriVax-JE virus was compared to its parent viruses, as well as to wild-type JE virus, for its ability to replicate in Culex tritaeniorhynchus, Aedes albopictus, and Aedes aegypti mosquitoes. Individual mosquitoes were exposed to the viruses by oral ingestion of a virus-laden blood meal or by intrathoracic (IT) virus inoculation. ChimeriVax-JE virus did not replicate following ingestion by any of the three mosquito species. Additionally, replication was not detected after IT inoculation of ChimeriVax-JE in the primary JE virus vector, Cx. tritaeniorhynchus. ChimeriVax-JE exhibited moderate growth following IT inoculation into Ae. aegypti and Ae. albopictus, reaching titers of 3.6-5.0 log(10) PFU/mosquito. There was no change in the virus genotype associated with replication in mosquitoes. Similar results were observed in mosquitoes of all three species that were IT inoculated or had orally ingested the YF 17D vaccine virus. In contrast, all mosquitoes either IT inoculated with or orally fed wild-type and vaccine JE viruses became infected, reaching maximum titers of 5.4-7.3 log(10) PFU/mosquito. These results indicate that ChimeriVax-JE virus is restricted in its ability to infect and replicate in these mosquito vectors. The low viremia caused by ChimeriVax-JE in primates and poor infectivity for mosquitoes are safeguards against secondary spread of the vaccine virus.  相似文献   

5.
The chimeric yellow fever (YF) 17D-dengue type 2 (ChimeriVax-DEN2) vaccine virus developed by Acambis, Inc. (Cambridge, MA) contains the prM and E genes of wild-type (wt) dengue 2 (DEN-2) (strain PUO-218) virus in the YF vaccine virus (strain 17D) backbone. The potential of ChimeriVax-DEN2 virus to infect and be transmitted by Aedes aegypti, the principal DEN and YF virus mosquito vector, and Aedes albopictus, a species that occurs in areas of active transmission of YF and DEN viruses, was evaluated. Mosquitoes were intrathoracically (IT) inoculated with virus or were fed a virus-laden blood meal, and the replication kinetics of ChimeriVax-DEN2 were compared with the wt DEN-2 and YF 17D vaccine viruses. Replication of YF 17D virus is attenuated in cultured Ae. albopictus C6/36 mosquito cells and in Ae. aegypti and Ae. albopictus mosquitoes. Growth of ChimeriVax-DEN2 virus similarly was restricted in C6/36 cells and in mosquitoes. ChimeriVax-DEN2 replicated in 56% of IT inoculated Ae. aegypti, and virus disseminated to head tissue in 36%, with a mean viral titer of 1.8 log10 PFU/mosquito. Of mosquitoes, 16% of Ae. aegypti and 24% of Ae. albopictus were infected 14 days after a blood meal containing ChimeriVax-DEN2, but virus did not disseminate to head tissue. In contrast, DEN-2 replicated in all IT inoculated and orally infected Ae. aegypti (mean titer 5.5 log10 PFU/mosquito), and virus disseminated to head tissue in 95%. Of Ae. albopictus, 84% were infected after a blood meal containing DEN-2 virus; dissemination occurred in 36%. Replication of ChimeriVax-DEN2 virus in mosquitoes corresponded to that of YF 17D vaccine virus, which is restricted in its ability to infect and replicate in mosquitoes. Therefore, transmission of ChimeriVax-DEN2 virus by vector mosquitoes is unlikely.  相似文献   

6.
Insect-specific viruses (ISVs) are viruses that replicate exclusively in arthropod cells. Many ISVs have been studied in mosquitoes as many of them act as vectors for human etiological agents, such as arboviruses. Aedes (Stegomyia) albopictus is an important potential vector of several arboviruses in Brazil, such as dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV). The development of next-generation sequencing metagenomics has enabled the discovery and characterization of new ISVs. Ae. albopictus eggs were collected using oviposition traps placed in two urban parks in the city of São Paulo, Brazil. The Aedes albopictus females were divided into pools and the genetic material was extracted and processed for sequencing by metagenomics. Complete genomes of ISV Wenzhou sobemo-like virus 4 (WSLV4) were obtained in three of the four pools tested. This is the first detection of ISV WSLV4 in Ae. albopictus females in Latin America. Further studies on ISVs in Ae. albopictus are needed to better understand the role of this species in the dynamics of arbovirus transmission in the Americas.  相似文献   

7.
Dengue (DEN-1) and DEN-4 parent (P) and progeny candidate vaccine (CV) viruses were compared in their abilities to infect and to replicate in Aedes aegypti and Aedes albopictus mosquitoes. The DEN CV clones were temperature sensitive (ts) and had small plaque morphology. The DEN-1 and DEN-4 CV viruses differed in their ability to infect, to replicate in, and to be transmitted by mosquitoes. The DEN-1 CV virus was not attenuated for the vector mosquitoes; oral infection rates with the CV virus were as high as or higher than the P virus, and the CV virus replicated efficiently in mosquitoes after oral infection. The DEN-4 CV virus was attenuated; it was less efficient than its P virus in infection and replication in mosquitoes. Thus, the ts phenotype and small plaque morphology are not reliable biological markers for prediction of vector attenuation. Similar results were reported by others for attenuation in man and monkeys. These studies with DEN-1 and DEN-4 viruses, and previously reported studies with DEN-2 virus and with DEN-3 virus suggest that vector and vertebrate host attenuation are genetically linked. Thus, vector attenuation may be a biological marker for human attenuation.  相似文献   

8.
Mosquitoes in the Aedes and Culex genera are considered the main vectors of pathogenic flaviviruses worldwide. Entomological surveillance using universal flavivirus sets of primers in mosquitoes can detect not only pathogenic viruses but also insect-specific ones. It is hypothesized that insect-specific flaviviruses, which naturally infect these mosquitoes, may influence their vector competence for zoonotic arboviruses. Here, entomological surveillance was performed between January 2014 and May 2018 in five different provinces in the northeastern parts of South Africa, with the aim of identifying circulating flaviviruses. Mosquitoes were sampled using different carbon dioxide trap types. Overall, 64,603 adult mosquitoes were collected, which were screened by RT-PCR and sequencing. In total, 17 pools were found positive for insect-specific Flaviviruses in the mosquito genera Aedes (12/17, 70.59%) and Anopheles (5/17, 29.41%). No insect-specific viruses were detected in Culex species. Cell-fusing agent viruses were detected in Aedes aegypti and Aedes caballus. A range of anopheline mosquitoes, including Anopheles coustani, An. squamosus and An. maculipalpis, were positive for Culex flavivirus-like and Anopheles flaviviruses. These results confirm the presence of insect-specific flaviviruses in mosquito populations in South Africa, expands their geographical range and indicates potential mosquito species as vector species.  相似文献   

9.
West Nile virus (WNV) is a zoonotic flavivirus transmitted by mosquitoes as a biological vector. Because of its biting behavior, the widespread snow-melt mosquito Aedes punctor could be a potential bridge vector for WNV to humans and nonhuman mammals. However, little is known on its role in transmission of WNV. The aim of this study was to determine the vector competence of German Ae. punctor for WNV lineages 1 and 2. Field-collected larvae and pupae were reared to adults and offered infectious blood containing either an Italian WNV lineage 1 or a German WNV lineage 2 strain via cotton stick feeding. Engorged females were incubated for 14/15 or 21 days at 18 °C. After incubation; surviving mosquitoes were dissected and forced to salivate. Mosquito bodies with abdomens, thoraces and heads, legs plus wings and saliva samples were investigated for WNV RNA by RT-qPCR. Altogether, 2/70 (2.86%) and 5/85 (5.88%) mosquito bodies were found infected with WNV lineage 1 or 2, respectively. In two mosquitoes, viral RNA was also detected in legs and wings. No saliva sample contained viral RNA. Based on these results, we conclude that Ae. punctor does not play an important role in WNV transmission in Germany.  相似文献   

10.
Objective To report dengue virus and its disease transmission in Aedes albopictus in the National Capital Territory of Delhi, India. Methods Monthly Aedes surveys were carried out in 126 urban localities of Delhi in 2008 and 2009. Pools of all three species of Aedes mosquitoes were tested for Dengue virus (DENV) using an antigen‐capture enzyme‐linked immunosorbent assay. Results Aedes aegypti was the most prevalent species, breeding throughout the year. Aedes albopictus was found in 9.52% of surveyed localities including the central urban part of Delhi, in March and from August to October. Aedes albopictus and Aedes vittatus are adapting to breed in manmade containers in the urban areas of Delhi in addition to their natural habitats of bamboo bushes and rock pits. Of the 229 pools of Ae. aegypti and 34 pools of Ae. albopictus tested, 10.5% and 11.76% were positive for dengue virus, respectively. No dengue virus infection was recorded in Ae. vittatus. Conclusion This is the first report of dengue virus in Ae. albopictus from north India. Because DENV was detected in Ae. albopictus, which adapted to manmade containers, both its spread and transmission dynamics should be checked.  相似文献   

11.
Transmission of arthropod-borne viruses (arboviruses) are an emerging global health threat in the last few decades. One important arbovirus family is the Togaviridae, including the species Sindbis virus within the genus Alphavirus. Sindbis virus (SINV) is transmitted by mosquitoes, but available data about the role of different mosquito species as potent vectors for SINV are scarce. Therefore, we investigated seven mosquito species, collected from the field in Germany (Ae. koreicus, Ae. geniculatus, Ae. sticticus, Cx. torrentium, Cx. pipiens biotype pipiens) as well as lab strains (Ae. albopictus, Cx. pipiens biotype molestus, Cx. quinquefasciatus), for their vector competence for SINV. Analysis was performed via salivation assay and saliva was titrated to calculate the amount of infectious virus particles per saliva sample. All Culex and Aedes species were able to transmit SINV. Transmission could be detected at all four investigated temperature profiles (of 18 ± 5 °C, 21 ± 5 °C, 24 ± 5 °C or 27 ± 5 °C), and no temperature dependency could be observed. The concentration of infectious virus particles per saliva sample was in the same range for all species, which may suggest that all investigated mosquito species are able to transmit SINV in Germany.  相似文献   

12.
13.
目的 比较三种捕蚊器对白蚊伊蚊成蚊的引诱效果。方法 选择苏州市城镇居民区和环境监测中心进行现场试验,监测时间为每天15:00-15:30 开始,持续2 h。每处生境分别放置三种捕蚊器,对捕获的蚊虫进行分类鉴定和计数,依次轮换放置捕蚊器的位置,共计试验三轮。结果 BG-trap 捕蚊器监测发现,白纹伊蚊成蚊活动有两个高峰,分别为5:00-7:00 和15:00-17:00。在城镇居民区,功夫小帅、迈斯翠和BG-trap 三种捕蚊器白纹伊蚊成蚊捕获数分别为2. 0、0. 9、57. 5 只/ 盏;在环境监测中心,功夫小帅、迈斯翠和BG-trap 三种捕蚊器白纹伊蚊成蚊捕获数分别为4. 7、1. 3、42. 0 只/ 盏。BG-trap 捕蚊器还可捕获少量淡色库蚊。结论 三种捕蚊器均能捕获一定数量白纹伊蚊成蚊,其中BG-trap 捕蚊器白纹伊蚊成蚊捕获率最高,是一款值得推广的伊蚊监测工具。  相似文献   

14.
Surveys of mosquito larvae were carried out in six areas of Kosrae Island, Kosrae State, the Federated States of Micronesia in December 2009 and June 2012. A total of 962 larvae of six species were collected from 106 natural and artificial habitats. They were identified as Aedes aegypti, Ae. albopictus, Ae. marshallensis, Culex quinquefasciatus, Cx. annulirostris, and Cx. kusaiensis. This is the first report from Kosrae Island for three of these species—Ae. marshallensis, Cx. quinquefasciatus, and Cx. annulirostris. The most abundant species was Ae. albopictus, followed by Ae. marshallensis, and these two species were found in all areas. Relatively large numbers of Cx. quinquefasciatus and Cx. kusaiensis were found in five areas. Fewer Cx. annulirostris were found, and only in three areas. Aedes aegypti larvae were collected from a single habitat at Tafunsak in 2009. To prevent the outbreak of dengue fever, environmental management should focus on the destruction, alteration, disposal and recycling of containers that produce larger numbers of adult Aedes mosquitoes.  相似文献   

15.
16.
Dengue virus (DENV) is the most important mosquito-transmitted flavivirus that is transmitted throughout the tropical and subtropical regions of the world. The primary mosquito vector of DENV in urban locations is Aedes aegypti. Key to understanding the transmission of DENV is the relationship between pathogen and vector. Accordingly, we report our preliminary characterization of the differentially expressed proteins from Ae. aegypti mosquitoes after DENV infection. We investigated the virus–vector interaction through changes in the proteome of the salivary glands of mosquitoes with disseminated DENV serotype 2 (DENV-2) infections using two-dimensional gel electrophoresis and identification by mass spectrometry. Our findings indicate that DENV-2 infection in the Ae. aegypti salivary gland alters the expression of structural, secreted, and metabolic proteins. These changes in the salivary gland proteome highlight the virally influenced environment caused by a DENV-2 infection and warrant additional investigation to determine if these differences extend to the expectorated saliva.  相似文献   

17.
In an effort to derive an efficacious live attenuated vaccine against tick-borne encephalitis, we generated a chimeric virus bearing the structural protein genes of a Far Eastern subtype of tick-borne encephalitis virus (TBEV) on the genetic background of recombinant dengue 4 (DEN4) virus. Introduction of attenuating mutations into the TBEV envelope protein gene, as well as the DEN4 NS5 protein gene and 3' noncoding region in the chimeric genome, results in decreased neurovirulence and neuroinvasiveness in mice, and restricted replication in mouse brain. Since TBEV and DEN4 viruses are transmitted in nature by ticks and mosquitoes, respectively, it was of interest to investigate the infectivity of the chimeric virus for both arthropod vectors. Therefore, parental and chimeric viruses were tested for growth in mosquito and tick cells and for oral infection in vivo. Although all chimeric viruses demonstrated moderate levels of replication in C6/36 mosquito cells, they were unable to replicate in ISE6 tick cells. Further, the chimeric viruses were unable to infect or replicate in Aedes aegypti mosquitoes and Ixodes scapularis tick larvae. The poor infectivity for both potential vectors reinforces the safety of chimeric virus-based vaccine candidates for the environment and for use in humans.  相似文献   

18.
Oropouche virus (OROV), a vector-borne Orthobunyavirus circulating in South and Central America, causes a febrile illness with high rates of morbidity but with no documented fatalities. Oropouche virus is transmitted by numerous vectors, including multiple genera of mosquitoes and Culicoides biting midges in South America. This study investigated the vector competence of three North American vectors, Culex tarsalis, Culex quinquefasciatus, and Culicoides sonorensis, for OROV. Cohorts of each species were fed an infectious blood meal containing 6.5 log10 PFU/mL OROV and incubated for 10 or 14 days. Culex tarsalis demonstrated infection (3.13%) but not dissemination or transmission potential at 10 days post infection (DPI). At 10 and 14 DPI, Cx. quinquefasciatus demonstrated 9.71% and 19.3% infection, 2.91% and 1.23% dissemination, and 0.97% and 0.82% transmission potential, respectively. Culicoides sonorensis demonstrated 86.63% infection, 83.14% dissemination, and 19.77% transmission potential at 14 DPI. Based on these data, Cx. tarsalis is unlikely to be a competent vector for OROV. Culex quinquefasciatus demonstrated infection, dissemination, and transmission potential, although at relatively low rates. Culicoides sonorensis demonstrated high infection and dissemination but may have a salivary gland barrier to the virus. These data have implications for the spread of OROV in the event of a North American introduction.  相似文献   

19.

Objective

To determine the mosquito repellent activity of herbal essential oils against female Aedes aegypti and Culex quinquefasciatus.

Methods

On a volunteer''s forearm, 0.1 mL of each essential oil was applied to 3 cm×10 cm of exposed skin. The protection time was recorded for 3 min after every 30 min.

Results

Essential oil from clove oil in olive oil and in coconut oil gave the longest lasting period of 76.50 min and 96.00 min respectively against Aedes aegypti. The citronella grass oil in olive oil, citronella grass oil in coconut oil and lemongrass oil in coconut oil exhibited protection against Culex quinquefasciatus at 165.00, 105.00, and 112.50 min respectively.

Conclusions

The results clearly indicated that clove, citronella and lemongrass oil were the most promising for repellency against mosquito species. These oils could be used to develop a new formulation to control mosquitoes.  相似文献   

20.
Some mosquito species have significant public health importance given their ability to transmit major diseases to humans and animals, making them the deadliest animals in the world. Among these, the Aedes (Ae.) genus is a vector of several viruses such as Dengue, Chikungunya, and Zika viruses that can cause serious pathologies in humans. Since 2004, Ae. albopictus has been encountered in the South of France, and autochthonous cases of Dengue, Chikungunya, and Zika diseases have recently been reported, further highlighting the need for a comprehensive survey of the mosquitoes and their associated viruses in this area. Using high throughput sequencing (HTS) techniques, we report an analysis of the DNA and RNA viral communities of three mosquito species Ae. albopictus, Culex (Cx.) pipiens, and Culiseta (Cs.) longiareolata vectors of human infectious diseases in a small sub-urban city in the South of France. Results revealed the presence of a significant diversity of viruses known to infect bacteria, plants, insects, and mammals. Several novel viruses were detected, including novel members of the Rhabdoviridae, Totiviridae, Iflaviviridae, Circoviridae, and Sobemoviridae families. No sequence related to major zoonotic viruses transmitted by mosquitoes was detected. The use of HTS on arthropod vector populations is a promising strategy for monitoring the emergence and circulation of zoonoses and epizooties. This study is a contribution to the knowledge of the mosquito microbiome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号