首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jia J  Wang Y  Zhou L  Jin S 《Infection and immunity》2006,74(12):6557-6570
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that primarily infects immunocompromised individuals and patients with cystic fibrosis. Invasive strains of P. aeruginosa are known to induce apoptosis at a high frequency in HeLa cells and in many other cell lines, a process that is dependent on the ADP-ribosylation (ADPRT) activity of a type III secreted protein ExoS. In our previous report, it was proposed that P. aeruginosa secreting ExoS, upon infection, shuts down host cell survival signal pathways by inhibiting ERK1/2 and p38 activation, and it activates proapoptotic pathways through activation of JNK1/2, leading ultimately to cytochrome c release and activation of caspases. In this study, we demonstrate that the expression of ExoS in HeLa cells by eukaryotic expression vector effectively caused apoptosis in an ADPRT activity-dependent manner, indicating that ExoS alone is sufficient to trigger apoptotic death of host cells independent of any other bacterial factors. By expressing an EGFP-ExoS fusion protein, we were able to directly correlate the death of HeLa cells with the presence of intracellular ExoS and further proved the dependence of this process on both JNK activation and mitochondrial proapoptotic event. The cellular pathway responsible for the ExoS-induced cytotoxicity appears to be well conserved, since the expression of the ADPRT-competent ExoS also induced rapid cell death in the Drosophila melanogaster S2 cell lines. The presented study not only highlights the ability of ExoS ADPRT to modulate host cell signaling, eventually leading to apoptosis, but also establishes ExoS as a valuable tool, in principle, for the elucidation of apoptosis mechanisms.  相似文献   

2.
A primitive protozoan parasite Trichomonas vaginalis selectively activates the signal transduction pathways in macrophages (RAW264.7). This study evaluated the correlation of these signaling pathways and T. vaginalis-induced cell apoptosis. In macrophages infected with T. vaginalis, apoptosis was assessed on the basis of DNA fragmentation on agarose gel electrophoresis. Infection of macrophages with T. vaginalis induced tyrosine phosphorylation of several proteins. Infected cells with T. vaginalis were shown to associate with phosphorylation of the extracellular signal-regulated (ERK)1/2 kinase, p38, c-Jun N-terminal kinase (JNK) mitogen-activated protein (MAP) kinases on Western blot analysis. The present finding also demonstrated a link between the ERK1/2, JNK and p38 apoptotic pathways that was modulated by T. vaginalis infection.  相似文献   

3.
Shiga toxins have been shown to induce apoptosis in many cell types. However, Shiga toxin 1 (Stx1) induced only limited apoptosis of macrophage-like THP-1 cells in vitro. The mechanisms regulating macrophage death or survival following toxin challenge are unknown. Differentiated THP-1 cells expressed tumor necrosis factor receptors and membrane-associated tumor necrosis factor alpha (TNF-alpha) and produced soluble TNF-alpha after exposure to Stx1. However, the cells were refractory to apoptosis induced by TNF-alpha, although the cytokine modestly increased apoptosis in the presence of Stx1. Despite the partial resistance of macrophage-like THP-1 cells to Stx1-mediated killing, treatment of these cells with Stx1 activated a broad array of caspases, disrupted the mitochondrial membrane potential (DeltaPsi(m)), and released cytochrome c into the cytoplasm. The DeltaPsi(m) values were greatest in cells that had detached from plastic surfaces. Specific caspase inhibitors revealed that caspase-3, caspase-6, caspase-8, and caspase-9 were primarily involved in apoptosis induction. The antiapoptotic factors involved in macrophage survival following toxin challenge include inhibitors of apoptosis proteins and X-linked inhibitor of apoptosis protein. NF-kappaB and JNK mitogen-activated protein kinases (MAPKs) appeared to activate survival pathways, while p38 MAPK was involved in proapoptotic signaling. The JNK and p38 MAPKs were shown to be upstream signaling pathways which may regulate caspase activation. Finally, the protein synthesis inhibitors Stx1 and anisomycin triggered limited apoptosis and prolonged JNK and p38 MAPK activation, while macrophage-like cells treated with cycloheximide remained viable and showed transient activation of MAPKs. Collectively, these data suggest that Stx1 activates both apoptotic and cell survival signaling pathways in macrophage-like THP-1 cells.  相似文献   

4.
In human B cells, antigen receptor ligation and CD40 ligation are known to activate the extracellular-regulated kinases (ERK) and c-Jun N-terminal kinase (JNK) pathways, which in turn regulate many important B cell functions. We previously reported that antigen receptor ligation activated the ERK pathway whereas CD40 ligation activated the JNK/stress-activated protein kinase (SAPK) pathway. Here, we demonstrate that another SAPK, p38/Hog1, is activated by both antigen receptor ligation or CD40 ligation in a human B-lymphoblastoid cell line and tonsillar B cells. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase, partially inhibited ERK2 and p38 activation triggered through the B cell receptor whereas activation of JNK1 and p38 through CD40 was not affected. PD98059, a specific inhibitor of mitogen-activated extracellular response kinase kinase (MEK), significantly inhibited ERK2 activation and partially inhibited p38 activation triggered by anti-IgM antibody treatment, but did not affect CD40-dependent signaling events. In addition, anti-IgM antibody-induced signaling pathways were shown to be PKC-dependent in contrast to the CD40-induced signaling pathways. Thus, the B cell receptor and CD40 recruit the ERK, JNK and p38 pathways by using different upstream effectors.  相似文献   

5.
Yin S  Huo Y  Dong Y  Fan L  Yang H  Wang L  Ning Y  Hu H 《Virus research》2012,166(1-2):103-108
Apoptosis of host cells plays a critical role in pathogenesis of virus infection. MAPK kinases especially stress-activated protein kinases c-Jun NH(2)-terminal kinase (SAPK/JNK) and p38 are often involved in virus-mediated apoptosis. It has been shown that porcine reproductive and respiratory syndrome virus (PRRSV) infection resulted in apoptosis of the host cells both in vitro and in vivo. The current investigation was initiated to determine whether stress-activated protein kinases JNK and p38 play a role in apoptosis induction by PRRSV infection. We examined phosphorylation of JNK and p38, and found that JNK but not p38 was activated in response to PRRSV infection. We then examined effects of this kinase on apoptosis induction and virus replication by using specific inhibitor. We found that JNK inhibition by its inhibitor SP600125 led to the abolishment of PRRSV-mediated apoptosis, but did not suppress virus replication. Further studies demonstrated that ROS generation was involved in JNK activation, and Bcl-2 family anti-apoptotic proteins Mcl-1 and Bcl-xl were downstream targets of JNK to mediate apoptosis. We conclude that activation of JNK signaling pathway is essential for PRRSV-mediated apoptosis but not for virus replication.  相似文献   

6.
7.
Enteropathogenic Escherichia coli (EPEC) infection of T84 cells induces a decrease in transepithelial resistance, the formation of attaching and effacing (A/E) lesions, and cytokine production. The purpose of this study was to investigate the ability of EPEC to activate mitogen-activated protein (MAP) kinases in T84 cells and to correlate these signaling pathways with EPEC-induced cell responses. T84 cells were infected with either the wild-type (WT) EPEC strain E2348/69 or two mutants, intimin deletion strain CVD206 (deltaeaeA) and type III secretion apparatus mutant strain CVD452 (deltaescN::aphA). Infection of T84 cells with WT but not mutant EPEC strains induced tyrosine phosphorylation of several proteins in T84 cells, including the p46 and p52 Shc isoforms. Kinetics studies revealed that ERK1/2, p38, and c-Jun N-terminal kinase (JNK) MAP kinases were activated in cells infected with strain E2348/69 but not with the mutant strains. Inhibition of MAP kinases with PD98059 or SB203580 did not affect the EPEC-induced decrease in transepithelial resistance or actin accumulation beneath the WT bacteria, but these two inhibitors significantly decreased interleukin-8 (IL-8) synthesis. We demonstrate that EPEC induces activation of ERK1/2, p38, and JNK cascades, which all depend on bacterial adhesion and expression of the bacterial type III secretion system. ERK1/2 and p38 MAP kinases were equally implicated in IL-8 expression but did not participate in A/E lesion formation or transepithelial resistance modification, indicating that the signaling pathways involved in these events are distinct.  相似文献   

8.
ARV S1133 infection caused apoptosis in vivo and in vitro; however, the intracellular signaling pathways have not been fully delineated. We have previously demonstrated that ARV S1133 activates proapoptotic signaling from Src to p53, and further investigated how ARV S1133 modulates p53. We found that ARV S1133 forms syncytia and induces apoptosis in CEF, DF1 and Vero cells with different kinetics. Enhancement of p53 phosphorylation and DNA-binding capacity to bax and bad promoters was found in this study to increase bax and bad expression in ARV S1133-infected cells. ARV S1133 activates PKC δ and p38 and JNK/SAPK pathways, and inhibition of Ras, p38, JNK/SAPK and PKC δ works efficiently against apoptosis. Suppression of p38, JNK/SAPK and PKC δ selectively abolished ARV S1133-mediated p53 phosphorylation; moreover, inhibition of Src did not affect ARV S1133-induced p38 and JNK/SAPK activation, whereas blocking of Ras resulted in a reduction in the activities of p38 and JNK/SAPK.  相似文献   

9.
10.
The influence of zinc deficiency on the modulation of the mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinase (ERK1/2), p38, and c-Jun N-terminal kinase (JNK) was studied. Using human IMR-32 cells as a model of neuronal cells, the role of oxidants on MAPKs and activator protein-1 (AP-1) activation in zinc deficiency was investigated, characterizing the participation of these events in the triggering of apoptosis. Relative to controls, cells incubated in media with low zinc concentrations showed increased cell oxidants and hydrogen peroxide (H(2)O(2)) release, increased JNK and p38 activation, high nuclear AP-1-DNA binding activity, and AP-1-dependent gene expression. Catalase addition to the media prevented the increase of cellular oxidants and inhibited JNK, p38, and AP-1 activation. Low levels of ERK1/2 phosphorylation were observed in the zinc-deficient cells in association with a reduction in cell proliferation. Catalase treatment did not prevent the above events nor the increased rate of apoptosis in the zinc-deficient cells. It is first demonstrated that a decrease in cellular zinc triggers H(2)O(2)-independent, as well as H(2)O(2)-dependent effects on MAPKs. Zinc deficiency-induced increases in cellular H(2)O(2) can trigger the activation of JNK and p38, leading to AP-1 activation, events that are not involved in zinc deficiency-induced apoptosis.  相似文献   

11.
Pseudomonas aeruginosa, a gram-negative facultative pathogen, causes severe infections in immunocompromised and cystic fibrosis patients. However, the molecular details of the interaction between P. aeruginosa and mammalian cells are still largely unknown. Here we demonstrate that infection of human conjunctiva epithelial Chang cells with the well-characterized P. aeruginosa strain PAO-I results in rapid induction of apoptosis. Apoptosis was mediated by mitochondrial alterations, in particular mitochondrial depolarization, synthesis of reactive oxygen intermediates, and release of cytochrome c, as well as an activation of Jun N-terminal kinases (JNK). Stimulation of these events was dependent on upregulation of CD95 on infected cells, and a deficiency of CD95 or the CD95 ligand prevented mitochondrial changes, JNK activation, and apoptosis upon infection. Further, efficient apoptosis of Chang epithelial cells required infection with live P. aeruginosa, adhesion but not invasion of the bacteria, and expression of the type III secretion system in PAO-I. The data indicate a type III secretion system-dependent, sequential activation of several signaling pathways by P. aeruginosa PAO-I, resulting in apoptosis of the infected cell.  相似文献   

12.
Yan L  Tang Q  Shen D  Peng S  Zheng Q  Guo H  Jiang M  Deng W 《Inflammation》2008,31(3):180-188
Tumor necrosis factor-alpha (TNF-alpha), a proinflammatory cytokine involved in mitogen-activated protein kinase (MAPK) signaling pathways, contributes to the pathogenesis of cardiovascular diseases. Recently, suppressor of cytokine signaling-1 (SOCS-1) has been shown to modulate responses to TNF-alpha. However, whether SOCS-1 suppresses TNF-alpha-dependent apoptotic processes in cardiomyocytes and whether MAPK pathways mediate this effect have not been clearly elucidated. This study was carried out to define the role of SOCS-1 on TNF-alpha-induced apoptosis in neonatal rat cardiomyocytes and to investigate the signal pathways involved. Exposure to TNF-alpha (10 ng/ml for 24 h) significantly increased the number of apoptotic cells, the activity of caspase-8 and caspase-3, and the Bax/Bcl-xl ratio. In contrast, adenovirus-mediated gene transfer of SOCS-1 reversed the pro-apoptotic effect of TNF-alpha. Additionally, preincubation of cardiomyocytes with the extracellular signal-regulated kinase-1 and -2 (ERK1/2) inhibitor PD98059 attenuated the protective effect of SOCS-1, but the p38-MAPK inhibitor SB203580 and the c-Jun amino-terminal kinase (JNK) inhibitor SP600125 had no effect. Furthermore, the TNF-alpha-induced decrease in the phosphorylation of ERK1/2 was abolished by overexpression of SOCS-1. These findings suggest that SOCS-1 prevents TNF-alpha-induced apoptosis in cardiac myocytes via ERK1/2 pathway activation.  相似文献   

13.
2‐(Pro‐1‐ynyl)?5‐(5,6‐dihydroxypenta‐1,3‐diynyl) thiophene (PYDDT) is a naturally occurring thiophene isolated from the roots of Echinops grijsii, a Chinese herbal medicine used to treat colon cancer, breast cancer, and lung cancer. There are many reports on the clinical use of Echinops grijsii alone or in combination with other herbs to treat malignant tumors. We previously reported that the expression and activity of phase II enzymes including GSTs and NQO1 could be induced through the activation of Keap1‐Nrf2 pathway by the treatment of PYDDT. In this study, we reported the anticancer effect and mechanism of PYDDT against human colon cancer SW620 cells. Our results demonstrate that treatment of SW620 cells with PYDDT leads to induction of mitochondrial‐mediated apoptosis, which is characterized by the cleavage of PARP, activation of caspase 9 and caspase 3, release of cytochrome c from mitochondria, loss of mitochondrial membrane potential, down‐regulation of Bcl‐2, and mitochondrial translocation of Bax. The PYDDT treatment caused the production of reactive oxygen species (ROS), and the activation of JNK but not p38 mitogen‐activated protein kinases and ERK1/2. Specific JNK inhibitor SP600125 prevented the PYDDT‐induced down‐regulation of Bcl‐2, mitochondrial translocation of Bax, activation of caspase 3, and apoptosis of SW620 cells. Moreover, PYDDT‐induced apoptosis as well as activation of JNK was abrogated by the pretreatment with antioxidant N‐acetylcysteine. Taken together, these findings suggest that PYDDT induces apoptosis in SW620 cells through a ROS/JNK‐mediated mitochondrial pathway. Anat Rec, 298:376–385, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
15.
16.
This study was performed to evaluate the effects of epigallocatechin 3 gallate (EGCG) on lipopolysaccharide (LPS)-induced acute lung injury in a murine model. In the present study, production of TNF-α and MIP-2 and activation of extracellular signal-regulated kinases (ERK)1/2, c-Jun amino terminal kinases (JNK) and p38 in RAW264.7 cells were measured. EGCG inhibited the production of TNF-α and MIP-2, and attenuated phosphorylation levels of ERK1/2 and JNK, but not p38 in RAW264.7 cells stimulated with LPS. Also, EGCG attenuated the production of TNF-α and MIP-2, and the phosphorylation of ERK1/2 and JNK in the lungs of mice administered with LPS intratracheally. It reduced wet/dry weight ratio, histological severities, and neutrophil accumulation in the lungs in mice given LPS. Our results showed that EGCG attenuated LPS-induced lung injury by suppression of the MIP-2 and TNF-α production, and ERK1/2 and JNK activation in macrophage stimulated with LPS.  相似文献   

17.
TRAF2在B淋巴细胞AP-1信号传导系统中的作用   总被引:1,自引:0,他引:1  
目的利用人B细胞株模型探讨TRAF2在调控AP-1信号系统中的作用。方法将融合有黄色荧光素(YFP)的野生型(WT-TRAF2)或功能缺失型(DN-TRAF2)TRAF2质粒,以及小干扰RNA-TRAF2质粒转染至人类B淋巴细胞株,过夜培养后经流式细胞仪或抗生素G418筛选阳性转染细胞,通过Western blot、ELISA等方法研究TRAF2对AP-1通路中ERK、JNK、P38磷酸化和AP-1亚单位的细胞核内转移等的影响。结果B细胞过度表达WT-TRAF2可增加ERK和P38的磷酸化水平以及C-FOS的核内转录,而过度表达DN-TRAF2或转染小干扰RNA-TRAF2则减少ERK和P38的磷酸化水平以及C-FOS的核内转录。结论TRAF2可选择性地作用于人B淋巴细胞AP-1信号传导系统中的部分激酶,对B细胞AP-1信号系统的活化有重要作用。  相似文献   

18.
Eosinophils are the principal effector cells for the pathogenesis of allergic inflammation. Glucocorticoids such as dexamethasone have long been used therapeutically for eosinophilia in allergic inflammation by inducing eosinophil apoptosis, but little is known about the intracellular mechanisms mediating dexamethasone-induced apoptosis. In the present study, we investigated the effect of dexamethasone on three mitogen-activated protein kinases (MAPK) involved in the intracellular signalling pathway: c-Jun NH2-terminal kinase (JNK), p38 MAPK and extracellular signal-regulated kinase (ERK). We found that dexamethasone could activate JNK and p38 MAPK in a time-dependent manner but not ERK. Further, SB 203580, a specific p38 MAPK inhibitor, was additive with dexamethasone in inducing eosinophil apoptosis, while JNK1/2 antisense phosphorothioate oligodeoxynucleotides did not show any significant effect. These suggest that dexamethasone-induced JNK1/2 and p38 MAPK activation are not crucial to the induction of apoptosis. Pretreatment of eosinophils with benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD.FMK), a broad-spectrum caspase inhibitor, could inhibit dexamethasone-induced apoptosis in eosinophils dose-dependently. Moreover, Z-VAD.FMK partially inhibited dexamethasone-activated JNK and p38 MAPK activities. However, dexamethasone treatment did not activate specific caspase-3, -8 activity in eosinophils compared with spontaneous apoptosis. We therefore conclude that dexamethasone-induced apoptosis and activation of JNK and p38 MAPK activity in eosinophils are regulated by caspases but not through the common apoptosis-related caspase-3, -8 as in other cell types. Elucidation of the important role of caspases in eosinophil apoptosis may facilitate the development of more specific and effective treatment for allergic inflammation.  相似文献   

19.
Mycobacterium massiliense (Mmass) is an emerging, rapidly growing mycobacterium (RGM) that belongs to the M. abscessus (Mabc) group, albeit clearly differentiated from Mabc. Compared with M. tuberculosis, a well-characterized human pathogen, the host innate immune response against Mmass infection is largely unknown. In this study, we show that Mmass robustly activates mRNA and protein expression of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in murine bone marrow-derived macrophages (BMDMs). Toll-like receptor (TLR)-2 and myeloid differentiation primary response gene 88 (MyD88), but neither TLR4 nor Dectin-1, are involved in Mmass-induced TNF-α or IL-6 production in BMDMs. Mmass infection also activates the mitogen-activated protein kinase (MAPKs; c-Jun N-terminal kinase (JNK), ERK1/2 and p38 MAPK) pathway. Mmass-induced TNF-α and IL-6 production was dependent on JNK activation, while they were unaffected by either the ERK1/2 or p38 pathway in BMDMs. Additionally, intracellular reactive oxygen species (ROS), NADPH oxidase-2, and nuclear factor-κB are required for Mmass-induced proinflammatory cytokine generation in macrophages. Furthermore, the S morphotype of Mmass showed lower overall induction of pro-inflammatory (TNF-α, IL-6, and IL-1β) and anti-inflammatory (IL-10) cytokines than the R morphotype, suggesting fewer immunogenic characteristics for this clinical strain. Together, these results suggest that Mmass-induced activation of host proinflammatory cytokines is mediated through TLR2-dependent JNK and ROS signaling pathways.  相似文献   

20.
TNF is implicated in the suppression of neutrophil apoptosis during sepsis. Multiple signaling pathways are involved in TNF-mediated antiapoptotic signaling; a role for the MAP kinases (MAPK), ERK1/2, and p38 MAPK has been suggested. Antiapoptotic signaling is mediated principally through TNF receptor-1 (TNFR-1), and the PKC isotype-delta (delta-PKC) is a critical regulator of TNFR-1 signaling. delta-PKC associates with TNFR-1 in response to TNF and is required for NFkappaB activation and inhibition of caspase 3. The role of delta-PKC in TNF-mediated activation of MAPK is not known. The purpose of this study was to determine whether the MAPK, ERK1/2, and p38 MAPK are involved in TNF antiapoptotic signaling and whether delta-PKC is a key regulator of MAPK activation by TNF. In human neutrophils, TNF activated both p38 MAPK and ERK1/2 principally via TNFR-1. The MEK1/2 inhibitors PD098059 and U0126, but not the p38 MAPK inhibitor SB203580, decreased TNF antiapoptotic signaling as measured by caspase 3 activity. A specific delta-PKC antagonist, V1.1delta-PKC-Tat peptide, inhibited TNF-mediated ERK1/2 activation, but not p38 MAPK. ERK1/2 inhibition did not alter recruitment of delta-PKC to TNFR-1, indicating delta-PKC is acting upstream of ERK1/2. In HL-60 cells differentiated to a neutrophilic phenotype, delta-PKC depletion by delta-PKC siRNA resulted in inhibition of TNF mediated ERK1/2 activation but not p38 MAPK. Thus, ERK1/2, but not p38 MAPK, is an essential component of TNF-mediated antiapoptotic signaling. In human neutrophils, delta-PKC is a positive regulator of ERK1/2 activation via TNFR-1 but has no role in p38 MAPK activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号