首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The immunologic barriers to successful xenotransplantation are related to the presence of natural anti‐pig antibodies in humans and non‐human primates that bind to antigens expressed on the transplanted pig organ (the most important of which is galactose‐α1,3‐galactose [Gal]), and activate the complement cascade, which results in rapid destruction of the graft, a process known as hyperacute rejection. High levels of elicited anti‐pig IgG may develop if the adaptive immune response is not prevented by adequate immunosuppressive therapy, resulting in activation and injury of the vascular endothelium. The transplantation of organs and cells from pigs that do not express the important Gal antigen (α1,3‐galactosyltransferase gene‐knockout [GTKO] pigs) and express one or more human complement‐regulatory proteins (hCRP, e.g., CD46, CD55), when combined with an effective costimulation blockade‐based immunosuppressive regimen, prevents early antibody‐mediated and cellular rejection. However, low levels of anti‐non‐Gal antibody and innate immune cells and/or platelets may initiate the development of a thrombotic microangiopathy in the graft that may be associated with a consumptive coagulopathy in the recipient. This pathogenic process is accentuated by the dysregulation of the coagulation‐anticoagulation systems between pigs and primates. The expression in GTKO/hCRP pigs of a human coagulation‐regulatory protein, for example, thrombomodulin, is increasingly being associated with prolonged pig graft survival in non‐human primates. Initial clinical trials of islet and corneal xenotransplantation are already underway, and trials of pig kidney or heart transplantation are anticipated within the next few years.  相似文献   

2.
Xenotransplantation in China: Present status   总被引:1,自引:0,他引:1  
The main obstacle to organ transplantation is the shortage of organs from deceased individuals. Especially in China, the ratio of patients on the waiting list versus the transplant recipients is 30:1. Therefore, there is an urgent need for organ donors. Genetically modified pig organs have proved to be a new source for xenotransplantation, and Chinese scientists have made considerable progress in this area during recent years. In this paper, we review four important aspects of the xenotransplantation field in China. First, a large variety of genetically modified pigs have been generated by Chinese scientists: all these genetically modified pigs and the purpose of these modifications will be summarized. Second, the preclinical research in pig‐to‐nonhuman primate xenotransplantation is outlined. The survival time and major biochemical parameters for the xenografts are summarized. Third, regarding the bench‐to‐bed approach, more suitable organs have been developed for xenotransplantation in humans, and in particular, pig islet transplantation into diabetic patients as well as pig‐to‐human cornea and skin transplantation. Fourth, we briefly address the regulations and prospects for recruiting xenotransplantation experts in China. Based on recent progress, we anticipate that genetically modified pigs will offer suitable organs for the treatment of end‐stage organ diseases in humans in the near future. Given the recent influx of world‐renowned scientists in xenotransplantation to China, our country will definitely become one of the major centers of xenotransplantation research and development in the world.  相似文献   

3.
4.
Xenotransplantation could resolve the increasing discrepancy between the availability of deceased human donor organs and the demand for transplantation. Most advances in this field have resulted from the introduction of genetically engineered pigs, e.g., α1,3‐galactosyltransferase gene‐knockout (GTKO) pigs transgenic for one or more human complement‐regulatory proteins (e.g., CD55, CD46, CD59). Failure of these grafts has not been associated with the classical features of acute humoral xenograft rejection, but with the development of thrombotic microangiopathy in the graft and/or consumptive coagulopathy in the recipient. Although the precise mechanisms of coagulation dysregulation remain unclear, molecular incompatibilities between primate coagulation factors and pig natural anticoagulants exacerbate the thrombotic state within the xenograft vasculature. Platelets play a crucial role in thrombosis and contribute to the coagulation disorder in xenotransplantation. They are therefore important targets if this barrier is to be overcome. Further genetic manipulation of the organ‐source pigs, such as pigs that express one or more coagulation‐regulatory genes (e.g., thrombomodulin, endothelial protein C receptor, tissue factor pathway inhibitor, CD39), is anticipated to inhibit platelet activation and the generation of thrombus. In addition, adjunctive pharmacologic anti‐platelet therapy may be required. The genetic manipulations that are currently being tested are reviewed, as are the potential pharmacologic agents that may prove beneficial.  相似文献   

5.
Genetic modification of pigs (e.g. transgenic expression of human complement regulatory molecules or inactivation of α1,3galactosyltransferase) enabled the development of promising strategies to overcome hyperacute rejection after pig‐to‐primate xenotransplantation. However, cellular rejection still remains a hurdle for successful xenograft survival. Cellular rejection of porcine cells in xenotransplantation models is mediated by macrophages, T cells and NK cells. Activation of human monocytes by pig cells is partly due to the incapacity of porcine ligands to bind the inhibitory receptor SIRPα (signal regulatory protein α). Thus, one approach to impair the ability of human macrophages to phagocyte porcine cells is the overexpression of the human ligand for SIRPα in porcine cells. To inhibit human NK cell reactivity after xenotranslantation transgenic expression of HLA‐E in pigs has been shown to be a promising concept. Cells from these pigs were partially protected from lysis by human NK cells. Our group focuses on manipulation of human anti‐pig T cell responses by negative costimulatory signals. Thus, we asked whether overexpression of PD‐L1 on porcine cells can (i) downregulate human anti‐pig cellular responses in vitro, and (ii) inhibit rat anti‐pig cellular immune responses in vivo. Pig cells overexpressing PD‐L1 triggered reduced proliferation and low amounts of IL‐2, IFNγ, TNF‐alpha, IL‐4, and IL‐5 in human CD4+ T cells compared to control pig cells. The concentration of IL‐10, however, was increased. In long‐term cultures of human CD4+ T cells and PD‐L1 transfectants a high frequency of CD4+ CD25high FoxP3+ cells showed up which had the capacity to suppress the activation of conventional CD4+ T cells. Cytotoxic CD8+ T cells and NK cells lysed pig control cells very efficiently. In contrast, PD‐L1 transfected pig cells were partially protected from lysis by human effector cells. Overexpression of PD‐L1 on porcine cells was not sufficient to prevent rejection after transplantation under the rat kidney capsule. However, in rats that had been grafted with PD‐L1 expressing cells we observed reduced cellular infiltrates in the kidneys and lower antibody responses compared to rats grafted with control cells. Together these observations support the assumption that PD‐1/PD‐Ligand pathways are interesting targets to prevent cellular immune responses after xenotransplantation. PD‐L overexpression might not only impede the initiation of an anti‐pig T cell response by suppressing CD4+ T cells but may also protect pig cells from destruction by cytotoxic effectors. Supported by the Deutsche Forschungsgemeinschaft (Transregio Forschergruppe “Xenotransplantation”, FOR 535).  相似文献   

6.
Hyperacute and acute vascular rejection of xenografts are well defined barriers to clinical pig‐to‐human xenotransplantation. Enormous progress has been made in recent years to overcome these immunological barriers. For example, transgenic expression of human complement regulatory molecules (e.g. CD46, CD55) in pigs has been shown to be an effective strategy to prevent hyperacute rejection in pre‐clinical models of xenotransplantation. Alpha1,3‐galactosyltransferase knock‐out pigs are available and provide a second possibility to avoid hyperacute rejection mediated by pre‐existing antibodies. Furthermore, transfer of protective genes (e.g. A20, HO‐1) to endothelial cells is expected to reduce their susceptibility to effector mechanisms leading to acute vascular rejection. In addition, the efficiency of strategies to avoid coagulation/thrombosis after pig‐to‐human xenotransplantation (e.g. transgenic expression of human thrombomodulin, CD39) is currently tested. Thus, for further development of clinical xenotransplantation immunological concepts are now required facilitating the control of human anti‐pig cellular immune responses. Our group focuses on the inhibition of human anti‐pig T cell responses by targeting “negative” costimulatory pathways. We tested the hypothesis that overexpression of the human negative costimulatory ligands PD‐L1 and PD‐L2 on pig antigen presenting cells will result in reduced human anti‐pig T cell responses. The data so far show that (i) human CD4+ T cells respond with reduced proliferation and cytokine synthesis to PD‐L1/PD‐L2 expressing pig cells, (ii) PD‐L1/PD‐L2 pig transfectants induce human regulatory T cells (Treg) which suppress the activation of conventional T cells, and (iii) PD‐L1/PD‐L2 expressing pig cells are protected from lysis mediated by CD8+ human cells. Together these observations support the assumption that transgenic expression of human PD‐L1 and/or PD‐L2 in pig cells and tissues could be an approach to prevent T cell reactivity after pig‐to‐human xenotransplantation. Supported by the Deutsche Forschungsgemeinschaft (Transregio Forschergruppe “Xenotransplantation”, FOR 535).  相似文献   

7.
Xenotransplantation of solid organs in the pig-to-primate model   总被引:1,自引:0,他引:1  
Xenotransplantation using pig organs could solve the significant increasing shortage of donor organs for allotransplantation. In the last two decades, major progress has been made in understanding the xenoimmunobiology of pig-to-nonhuman primate transplantation, and today we are close to clinical trials. The ability to genetically engineer pigs, such as human decay-accelerating factor (hDAF), CD46 (membrane cofactor protein), or alpha1,3-galactosyltransferase gene-knockout (GT-KO), has been a significant step toward the clinical application of xenotransplantation. Using GT-KO pigs and novel immunosuppressant agents, 2 to 6 months' survival of heterotopic heart xenotransplants has been achieved. In life-supporting kidney xenotransplantation, promising survival of close to 3 months has been achieved. However, liver and lung xenotransplantations do not have such encouraging survival as kidney and heart xenotransplantation. Although the introduction of hDAF and GT-KO pigs largely overcame hyperacute rejection, acute humoral xenograft rejection (AHXR) remains a challenge to be overcome if survival is to be increased. In several studies, when classical AHXR was prevented, thrombotic microangiopathy and coagulation dysregulation became more obvious, which make them another hurdle to be overcome. The initiating cause of failure of pig cardiac and renal xenografts may be antibody-mediated injury to the endothelium, leading to the development of microvascular thrombosis. Potential contributing factors toward the development of the thrombotic microangiopathy include: 1) the presence of preformed anti-non-Gal antibodies, 2) the development of very low levels of elicited antibodies to non-Gal antigens, 3) natural killer cell or macrophage activity, and 4) inherent coagulation dysregulation between pigs and primates. The breeding of pigs transgenic for an 'anticoagulant' or 'anti-thrombotic' gene, such as human tissue factor pathway inhibitor, hirudin, or CD39, or lacking the gene for the prothrombinase, fibrinogen-like protein-2, is anticipated to inhibit the change in the endothelium to a procoagulant state that takes place in the pig organ after transplantation. A further limitation for organ xenotransplantation is the potential for cross-species infection. As far as exogenous viruses are concerned, porcine cytomegalovirus has been detected in the tissues of recipient non-human primates, although no invasive disease was reported. Until today, no formal evidence has been presented from in vivo studies in non-human primates or from humans exposed to pig organs, tissues, or cells that porcine endogenous retroviruses infect primate cells. Xenotransplantation is a potential answer to the current organ shortage. Its future depends on; 1) further genetic modification of pigs, 2) the introduction of novel immunosuppressive agents that target the innate immune system and plasma cells, and 3) the development of clinically-applicable methods to induce donor-specific tolerance.  相似文献   

8.
Pig organ xenotransplantation offers a solution to the shortage of deceased human organs for transplantation. The pathobiological response to a pig xenograft is complex, involving antibody, complement, coagulation, inflammatory, and cellular responses. To overcome these barriers, genetic manipulation of the organ‐source pigs has largely been directed to two major aims—(a) deletion of expression of the known carbohydrate xenoantigens against which humans have natural (preformed) antibodies, and (b) transgenic expression of human protective proteins, for example, complement‐ and coagulation‐regulatory proteins. Conventional (FDA‐approved) immunosuppressive therapy is unsuccessful in preventing an adaptive immune response to pig cells, but blockade of the CD40:CD154 costimulation pathway is successful. Survival of genetically engineered pig kidneys in immunosuppressed nonhuman primates can now be measured in months. Non‐immunological aspects, for example, pig renal function, a hypovolemia syndrome, and rapid growth of the pig kidney after transplantation, are briefly discussed. We suggest that patients on the wait‐list for a deceased human kidney graft who are unlikely to receive one due to long waiting times are those for whom kidney xenotransplantation might first be considered. The potential risk of infection, public attitudes to xenotransplantation, and ethical, regulatory, and financial aspects are briefly addressed.  相似文献   

9.
Xenotransplantation is an innovative field of research with the potential to provide us with an alternative source of organs to face the severe shortage of human organ donors. For several reasons, pigs have been chosen as the most suitable source of organs and tissues for transplantation in humans. However, porcine xenografts undergo cellular immune responses representing a major barrier to their acceptance and normal functioning. Innate and adaptive xenogeneic immunity is mediated by both the recognition of xenogeneic tissue antigens and the lack of inhibition due to molecular cross‐species incompatibilities of regulatory pathways. Therefore, the delivery of immunoreceptor tyrosine‐based inhibitory motif (ITIM)‐dependent and related negative signals to control innate (NK cells, macrophages) and adaptive T and B cells might overcome cell‐mediated xenogeneic immunity. The proof of this concept has already been achieved in vitro by the transgenic overexpression of human ligands of several inhibitory receptors in porcine cells resulting in their resistance against xenoreactivity. Consequently, several transgenic pigs expressing tissue‐specific human ligands of inhibitory coreceptors (HLA‐E, CD47) or soluble competitors of costimulation (belatacept) have already been generated. The development of these robust and innovative approaches to modulate human anti‐pig cellular immune responses, complementary to conventional immunosuppression, will help to achieve long‐term xenograft survival. In this review, we will focus on the current strategies to enhance negative signaling pathways for the regulation of undesirable cell‐mediated xenoreactive immune responses.  相似文献   

10.
Transplantation of pancreas or isolated islet cells is currently the only option to cure type 1 diabetes. The success of islet transplantation is still limited by the requirement of large numbers of high quality islets and the shortage of organ donors. Porcine islets are a promising cell source, but the intensive immunosuppressive regimen required to suppress rejection prevents the translation into clinical practice. We aimed to develop a novel method to inhibit the human‐anti‐pig immune reaction by the expression of immunomodulatory molecules in porcine beta cells. Thus, a transgenic pig was generated expressing LEA29Y – a second generation human CTLA4‐Ig fusion protein, which inhibits activation of T cells by CD80/CD86‐CD28 costimulation – under the control of the porcine insulin promotor. Islet‐like clusters (ICC) from neonatal pigs were isolated and transplanted under the kidney capsule of diabetic NOD‐scid‐IL2γnull (NSG) mice. After an in vivo maturation period mice transplanted with wildtype (wt) as well as with LEA29Y transgenic (tg) ICCs developed normal glucose homeostasis. Within 30 days after the transfer of human PBMCs 80% of NSG mice transplanted with wt‐ICCs developed diabetes indicating xenograft rejection. By contrast, LEA‐tg ICCs were completely protected from rejection in all animals (1). Immunohistochemistry revealed a massive intra‐islet T cell infiltration, which was absent in the LEA‐tg ICCs. This proof of principle study suggests that specific expression of immunomodulatory molecules in beta cells does not disturb beta cell function and may have the potential to modulate immune response locally at the transplantation site without systemic immunosuppression. To overcome the strong xenogeneic barrier of the human and cellular immune system a combination of LEA29Y with additional immunomodulatory factors may be required. Recently, Yi and coworkers demonstrated that the treatment with in vitro expanded regulatory T cells (Treg) prevents porcine islet rejection in humanized NSG mice by the suppression of the T cell‐mediated graft destruction (2). Other potential candidates to induce a state of tolerance against porcine islets currently under investigation are molecules targeting innate immunity and factors that prevent the reoccurrence of autoimmunity. Recent advances in xenotransplantation suggest that it may be possible to start with clinical trials using porcine neonatal or adult islets within the near future. References: 1. KLYMIUK N, VAN BÜRCK L, BÄHR Aet al. Xenografted islet‐cell‐clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immune rejection in humanized mice. Diabetes 2012; 61:1527–1532. 2. YI S, JI M, WU J et al. Adoptive transfer with in vitro expanded human regulatory T cells protects against porcine islet xenograft rejection via interleukin‐10 in humanized mice. Diabetes 2012; 61:1180–1191.  相似文献   

11.
Organ transplantation is a crucial medical procedure, as it is often the only treatment for patients suffering from end‐stage organ failure. Unfortunately, the shortage of donor organs limits the number of patients whose lives can be saved. Carrying out research on xenotransplantation with the aim of eventually replacing human organ transplants with those of animals is very promising, as it could effectively bridge the shortfall in donor organs. Thanks to the success of cloned pigs and to the emergence of gene‐editing techniques, genetically modified pigs have come to be considered ideal animal donors for human xenotransplantation and have been widely used in basic research. Such research focuses on pig‐to‐nonhuman primates transplantation, as the recipients are suitable for preclinical studies because both their genes and organ sizes are similar to those of humans. Chinese transplantation scientists have carried out several experiments on Tibetan macaques, including successful preclinical transplants of material from genetically modified pigs, as well as research on such topics as intraocular pressure, Parkinson's disease, advanced cancer, islet transplantation, and liver transplantation. This article reviews basic and applied research on Tibetan macaques in xenotransplantation, as well as the issues of immune rejection and ethical concerns. We aim to demonstrate the various advantages of Tibetan macaques as transplant recipients compared to other nonhuman primate species and to provide a perspective for the future establishment of Tibetan macaques as principal recipients in preclinical studies of xenotransplantation.  相似文献   

12.
Abstract: Background: Xenotransplantation from pigs provides a potential solution to the severe shortage of human pancreata, but strong immunological rejection prevents its clinical application. A better understanding of the human immune response to pig islets would help develop effective strategies for preventing graft rejection. Methods: We assessed pig islet rejection by human immune cells in humanized mice with a functional human immune system. Humanized mice were prepared by transplantation of human fetal thymus/liver tissues and CD34+ fetal liver cells into immunodeficient mice. Islet xenograft survival/rejection was determined by histological analysis of the grafts and measurement of porcine C‐peptide in the sera of the recipients. Results: In untreated humanized mice, adult pig islets were completely rejected by 4 weeks. These mice showed no detectable porcine C‐peptide in the sera, and severe intra‐graft infiltration by human T cells, macrophages, and B cells, as well as deposition of human antibodies. Pig islet rejection was prevented by human T‐cell depletion prior to islet xenotransplantation. Islet xenografts harvested from T‐cell‐depleted humanized mice were functional, and showed no human cell infiltration or antibody deposition. Conclusions: Pig islet rejection in humanized mice is largely T‐cell‐dependent, which is consistent with previous observations in non‐human primates. These humanized mice provide a useful model for the study of human xenoimmune responses in vivo.  相似文献   

13.
Xenotransplantation of solid organs will only ever become a clinical reality with genetic modification of the pig, which is now widely accepted as the most likely donor species for humans. The understanding of the barriers to xenotransplantation has required advances in genetic technologies to resolve these problems. Hyperacute rejection has been overcome by overexpression of complement regulatory proteins or targeted disruption of the enzyme associated with the major carbohydrate xenoantigen. The subsequent barriers of disordered coagulation, induced antibody, and cell-mediated rejection remain challenging. The mechanisms for these incompatibilities are being deciphered, and multiple genetic manipulations to resolve these issues are currently in progress. Moreover, new technologies offer help to producing sizeable numbers of modified pigs in a timely manner. This article retraces the basis and foreshadows progress of the genetically modified pig for xenotransplantation as it advances toward the clinic.  相似文献   

14.
BACKGROUND: The genetic modification of pigs is a powerful strategy that may ultimately enable successful xenotransplantation of porcine organs into humans. METHODS: Transgenic pigs were produced by microinjection of gene constructs for human complement regulatory proteins CD55 and CD59 and the enzyme alpha1,2-fucosyltransferase (H-transferase, HT), which reduces expression of the major xenoepitope galactose-alpha1,3-galactose (alphaGal). Kidneys from CD55/HT and CD55/CD59/HT transgenic pigs were transplanted into nephrectomised, nonimmunosuppressed adult baboons. RESULTS: In several lines of transgenic pigs, CD55 and CD59 were expressed strongly in all tissues examined, whereas HT expression was relatively weak and did not significantly reduce alphaGal. Control nontransgenic kidneys (n=4) grafted into baboons were hyperacutely rejected within 1 hr. In contrast, kidneys from CD55/HT pigs (n=2) were rejected after 30 hr, although kidneys from CD55/CD59/HT pigs (n=6) maintained function for up to 5 days. In the latter grafts, infiltration by macrophages, T cells, and B cells was observed at days 3 and 5 posttransplantation. The recipients developed thrombocytopenia and abnormalities in coagulation, manifested in increased clotting times and an elevation in the plasma level of the fibrin degradation product D-dimer, within 2 days of transplantation. Treatment with low molecular weight heparin prevented profound thrombocytopenia but not the other aspects of coagulopathy. CONCLUSIONS: Strong expression of CD55 and CD59 completely protected porcine kidneys from hyperacute rejection and allowed a detailed analysis of xenograft rejection in the absence of immunosuppression. Coagulopathy appears to be a common feature of pig-to-baboon renal transplantation and represents yet another major barrier to its clinical application.  相似文献   

15.
Today, organ transplantation represents a well‐established and effective therapy of terminal organ failure revealing high actuarial survival rates. Unfortunately, the enormous potential of organ transplantation cannot be tapped due to the significant gap between organ demand and organ donation. Current statistics of the International Society of Heart and Lung Transplantation prove a continuity of depressed numbers of transplantations performed per year since the late nineties. To counteract the persisting severe shortage of human organs in Germany and worldwide suboptimal donor organs and/or organs from older donors were accepted. Both the acceptance of inferior organs and the implementation of the Transplantation Law (in Germany in 1997) could not answer this problem. Increasing the donor rates emerge difficult to achieve and will ultimately result in numbers which are not sufficient. The improvement of transplant results by e.g. a less nephrotoxic immunosuppression, or the generating of hyporeactivity or even tolerance is an additional aim important to achieve. Alternative techniques to answer the tremendous organ shortage might be the differentiation of embryonic stem cells or the reprogramming of adult stem cells as a virtually unlimited source for cell replacement to treat degenerative diseases or traumatic tissue injury. Yet, disadvantages such as ethical issues and the generation of tumorigenic cells should not be underestimated. A cellular therapy by the injection of undifferentiated bone marrow (CD133+ stem/progenitor) cells into the myocardium in combination with or without aortocoronary surgery for chronic ischemic heart disease as well as cells from the amniotic fluid (Wharton's jelly) might also represent possible future solutions to the organ deficit but still are far from a functional substitution of the human heart. Until now there is no in‐all implantable mechanical heart assist device which is able to completely and permanently replace the human organ and provide a quality of life comparable to that after allotransplantation. In contrast, xenotransplantation, using porcine organs for human transplantation, offers a potential solution to the world‐wide lack of donor organs. The advantages of xenotransplantation are an unlimited disposability of donor organs, an elective transplantation with a subsequent reduction of ischemic time and the possibility of a pre‐operative start of the immunosuppressive therapy of the recipient. Harmful effects of the brain death of the donor to the donor organ could be excluded. Finally, genetic modifications of compatible xenografts could be made. Substantial progress of the research in the field of xenotransplantation has been possible thanks to the introduction of organs from genetically engineered pigs transgenic for human complement regulatory proteins [e.g. human decay accelerating factor (hDAF/hCD55), human membrane cofactor (hMCP/hCD46), and human membrane inhibitor of reactive lysis (hMIRL/hCD59)]. Using an effective and persistent depletion of preformed cytotoxic anti‐Galα(1,3)Gal antibodies (IgM and IgG) by a Galα(1,3)Gal therapeutic (e.g. GAS914, TPC) in combination with these transgenic pigs hyperacute rejection can be avoided successfully. During the early phase after transplant acute vascular rejection triggered by induced anti‐Galα(1,3)Gal antibodies can be controlled. Several groups developed pigs which lack the Galα(1,3)Gal xenoantigen. Studies on xenotransplantations performed with homozygous alpha(1,3)‐galactosyltransferase gene knockout pigs demonstrated that these modified pig organs offer some progress in terms of graft survival. Thus, the major xenoantigen Galα(1,3)Gal is no longer an unsurmountable immunological barrier preventing transplantation of pig organs into humans. Acute vascular rejection, however, remains as a major hurdle to clinical application of xenotransplantation due to cytotoxic anti‐pig antibodies of other specificity than Galα(1,3)Gal. Furthermore, humoral factors are not the only players in xenograft rejection. Primate anti‐pig cellular immunity is defined by multifocal lymphocytic infiltrates, with morphologic evidence of direct tissue damage. Pre‐requisites for the clinical use of xenotransplantation are PERV‐C (porcine endogenous virus C) free animals using a PERV knock down (si‐RNA) technique. Multitransgenic αGalT‐KO [alpha(1,3)‐galactosyltransferase knockout] pigs additionally expressing human complement regulator proteins, and human anticoagulants (e.g. human thrombomodulin) are necessary to reliably prevent not only hyperacute rejection as the first immunological barrier, but also acute vascular rejection at its beginning, when serum cytotoxicity to the pig heart appears to be predominantly Galα(1,3)Gal‐specific. Further co‐stimulation blockade (e.g. PD‐1L, CTLA‐4‐Ig), HLA‐E [protection against human NK (natural killer)‐cells], or haemeoxygenase‐1 (defense against disseminated intravascular coagulation) will help to suppress acute vascular and acute cellular xenograft rejection. Special pathogen free (SPF) units and breeding conditions of pig organ donors limit the risk of microbial contamination by most pathogens liable to be transmitted from a pig graft to a human recipient. Our DFG‐(German Research Council) Transregio Research Group Xenotransplantation assembles an interdisciplinary group of leading German laboratories incl. biotechnologists, immunologists, virologists, and surgeons with vast experimental expertises in the field of experimental and clinical allotransplantation and experimental xenotransplantation. The first clinical goal of xenotransplantation is xenogeneic tissue transplantation such as the transplantation of porcine islet cells (αGalT‐KO (?), CTLA‐4‐Ig expression) in diabetic patients with hypoglycemic attacks as well as porcine cornea, porcine cardiomyocytes and porcine heart valves, possibly porcine bones and teeth (?). Thereafter, xenogeneic organ transplantation starting with the more promising use of kidneys and hearts is the definitive clinical goal. In summary, clinical heart transplantation represents an accepted method of end‐stage heart failure with an outdated “standard immunosuppression” and the need of an individualized immunosuppression adjusted to the specific needs of the individual patient. The organ shortage remains the main obstacle of the heart transplantation, and other organ transplantation, respectively. In the near future, xenotransplantation will be possible!  相似文献   

16.
Phelps CJ, Ball SF, Vaught TD, Vance AM, Mendicino M, Monahan JA, Walters AH, Wells KD, Dandro AS, Ramsoondar JJ, Cooper DKC, Ayares DL. Production and characterization of transgenic pigs expressing porcine CTLA4‐Ig.
Xenotransplantation 2009; 16: 477–485. © 2009 John Wiley & Sons A/S. Abstract: Background: Inhibition of the T‐cell‐mediated immune response is a necessary component of preventing rejection following xenotransplantation with pig α1,3‐galactosyltransferase gene‐knockout (GTKO) organs. Cytotoxic T lymphocyte‐associated antigen (CTLA4) is a co‐stimulatory molecule that inhibits T‐cell activity and may be useful in prolonging graft rejection. Methods: An expression vector was built containing the extracellular coding region of porcine (p) CTLA4 fused to the hinge and CH2/CH3 regions of human IgG1 (pCTLA4‐Ig). Pigs transgenic for pCTLA4‐Ig, on either a GTKO or wild‐type (WT) genetic background, were produced by nuclear transfer and characterized using Western blot analysis, immunofluorescence, ELISA, and necropsy. Results: Fifteen pCTLA4‐Ig‐transgenic piglets resulted from five pregnancies produced by nuclear transfer. All transgenic pigs exhibited robust expression of the pCTLA4‐Ig protein and most expressed the transgene in all organs analyzed, with significant levels in the blood as well. Despite initial good health, these pigs exhibited diminished humoral immunity, and were susceptible to infection, which could be managed for a limited time with antibiotics. Conclusions: Viable pigs exhibiting robust and ubiquitous expression of pCTLA4‐Ig were produced on both a WT and GTKO background. Expression of pCTLA4‐Ig resulted in acute susceptibility to opportunistic pathogens due at least in part to a significantly compromised humoral immune status. As this molecule is known to have immunosuppressive activity, high levels of pCTLA4‐Ig expression in the blood, as well as defective development related to exposure to pCTLA4‐Ig in utero, may contribute to this reduced immune status. Prophylactic treatment with antibiotics may promote survival of disease‐free transgenic pigs to a size optimal for organ procurement for transplantation. Additional genetic modifications and/or tightly regulated expression of pCTLA4Ig may reduce the impact of this transgene on the humoral immune system.  相似文献   

17.
目的培育用于异种移植的新型基因改造猪,在α-Gal基因敲除以及膜辅蛋白CD46、血栓调节蛋白(TM)基因转入的基础上,进一步将Ⅱ类反式激活因子基因N端缺失显性负向(CⅡTA-DN)基因转入猪胎儿成纤维细胞,以抑制猪白细胞抗原(SLA)Ⅱ类分子的表达。方法设计合成博来霉素(Zeocin)抗性基因片段,并将其与含有CⅡTA-DN基因的pST205载体连接,构建置于人Tie2增强子和CMVB—actin启动子下游的pNMU105/CⅡTA-DN表达载体,将线性化的pNMU105通过脂质体转染法转入已经敲除了α-Gal并转入CD46、TM基因的猪胎儿成纤维细胞181B(DKO/CD46/TM)。Zeocin抗性筛选转染pNMU105质粒的181B细胞,PCR方法检测CⅡTA-DN基因在181B细胞中的转入,获得阳性单克隆并进行核移植,得到DKO/CD46/TM/CⅡTA-DN转基因猪。取仔猪的耳缘组织裂解后进行基因鉴定。结果成功设计Zeocin抗性基因片段并构建pNMU105/CⅡTA-DN表达载体,经过质粒转染和Zeocin抗性药物筛选获得多株阳性单克隆,顺利通过核移植得到转基因猪。仔猪耳缘组织经PCR鉴定,在592bp位置检测到预期条带,证明均为CⅡTA-DN转基因阳性。结论通过新型基因改造猪的培育,在抑制超急性排斥反应和补体反应、降低凝血和人CD4+T细胞免疫反应的理论基础上进行了转基因模型猪的构建,为异种移植中更加有效地减少免疫损伤、提高移植器官的存活做出了新的尝试。  相似文献   

18.
The pig is the most likely donor organism for xenotransplantation of organs to humans. However, since this constellation is discordant, hyperacute rejection needs to be overcome. This review summarises current strategies of genetically modifying pigs for xenotransplantation. Limitations of the classical method of DNA-microinjection and new perspectives arising from the possibility of cloning animals from cultured cells are discussed.  相似文献   

19.
A combination of genetic manipulations of donor organs and target‐specific immunosuppression is instrumental in achieving long‐term cardiac xenograft survival. Recently, results from our preclinical pig‐to‐baboon heterotopic cardiac xenotransplantation model suggest that a three‐pronged approach is successful in extending xenograft survival: (a) α‐1,3‐galactosyl transferase (Gal) gene knockout in donor pigs (GTKO) to prevent Gal‐specific antibody‐mediated rejection; (b) transgenic expression of human complement regulatory proteins (hCRP; hCD46) and human thromboregulatory protein thrombomodulin (hTBM) to avoid complement activation and coagulation dysregulation; and (c) effective induction and maintenance of immunomodulation, particularly through co‐stimulation blockade of CD40‐CD40L pathways with anti‐CD40 (2C10R4) monoclonal antibody (mAb). Using this combination of manipulations, we reported significant improvement in cardiac xenograft survival. In this study, we are reporting the survival of cardiac xenotransplantation recipients (n = 3) receiving xenografts from pigs without the expression of hTBM (GTKO.CD46). We observed that all grafts underwent rejection at an early time point (median 70 days) despite utilization of our previously reported successful immunosuppression regimen and effective control of non‐Gal antibody response. These results support our hypothesis that transgenic expression of human thrombomodulin in donor pigs confers an independent protective effect for xenograft survival in the setting of a co‐stimulation blockade‐based immunomodulatory regimen.  相似文献   

20.
Ekser B, Bianchi J, Ball S, Iwase H, Walters A, Ezzelarab M, Veroux M, Gridelli B, Wagner R, Ayares D, Cooper DKC. Comparison of hematologic, biochemical, and coagulation parameters in α1,3‐galactosyltransferase gene‐knockout pigs, wild‐type pigs, and four primate species. Xenotransplantation 2012; 19: 342–354. © 2012 John Wiley & Sons A/S. Abstract: Background: The increasing availability of genetically engineered pigs is steadily improving the results of pig organ and cell transplantation in non‐human primates (NHPs). Current techniques offer knockout of pig genes and/or knockin of human genes. Knowledge of normal values of hematologic, biochemical, coagulation, and other parameters in healthy genetically engineered pigs and NHPs is important, particularly following pig organ transplantation in NHPs. Furthermore, information on parameters in various NHP species may prove important in selecting the optimal NHP model for specific studies. Methods: We have collected hematologic, biochemical, and coagulation data on 71 α1,3‐galactosyltransferase gene‐knockout (GTKO) pigs, 18 GTKO pigs additionally transgenic for human CD46 (GTKO.hCD46), four GTKO.hCD46 pigs additionally transgenic for human CD55 (GTKO.hCD46.hCD55), and two GTKO.hCD46 pigs additionally transgenic for human thrombomodulin (GTKO.hCD46.hTBM). Results: We report these data and compare them with similar data from wild‐type pigs and the three major NHP species commonly used in biomedical research (baboons, cynomolgus, and rhesus monkeys) and humans, largely from previously published reports. Conclusions: Genetic modification of the pig (e.g., deletion of the Gal antigen and/or the addition of a human transgene) (i) does not result in abnormalities in hematologic, biochemical, or coagulation parameters that might impact animal welfare, (ii) seems not to alter metabolic function of vital organs, although this needs to be confirmed after their xenotransplantation, and (iii) possibly (though, by no means certainly) modifies the hematologic, biochemical, and coagulation parameters closer to human values. This study may provide a good reference for those working with genetically engineered pigs in xenotransplantation research and eventually in clinical xenotransplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号