首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synovial fibroblast hyperplasia, T‐cell hyperactivity, B‐cell overactivation, and the self‐perpetuating interactions among these cell types are major characteristics of rheumatoid arthritis (RA). The inflamed joints of RA patients are hypoxic, with upregulated expression of hypoxia‐inducible factor‐1α (HIF‐1α) in RA synovial fibroblasts (RASFs). It remains unknown whether HIF‐1α regulates interactions between RASFs and T cells and B cells. We report here that HIF‐1α promotes the expression of inflammatory cytokines IL‐6, IL‐8, TNF‐α, and IL‐1β, and cell–cell contact mediators IL‐15, vascular cell adhesion molecule (VCAM)‐1, thrombospondin (TSP)‐1, and stromal cell‐derived factor (SDF)‐1 in RASFs. Furthermore, HIF‐1α perpetuates RASF‐mediated inflammatory Th1‐ and Th17‐cell expansion while differentially inhibiting regulatory B10 and innate‐like B cells, leading to increased IFN‐γ, IL‐17, and IgG production and decreased protective natural IgM secretion. Our findings suggest that HIF‐1α perpetuates the interactions between RASFs and T cells and B cells to induce inflammatory cytokine and autoantibody production, thus exacerbating the severity of RA. Targeting HIF‐1α may provide new therapeutic strategies for overcoming this persistent disease.  相似文献   

2.
Intestinal epithelial cells (IECs), an important barrier to gut microbiota, are subject to low oxygen tension, particularly during intestinal inflammation. Hypoxia inducible factor‐1α (HIF‐1α) is expressed highly in the inflamed mucosa of inflammatory bowel disease (IBD) and functions as a key regulator in maintenance of intestinal homeostasis. However, how IEC‐derived HIF‐1α regulates intestinal immune responses in IBD is still not understood completely. We report here that the expression of HIF‐1α and IL‐33 was increased significantly in the inflamed mucosa of IBD patients as well as mice with colitis induced by dextran sulphate sodium (DSS). The levels of interleukin (IL)?33 were correlated positively with that of HIF‐1α. A HIF‐1α‐interacting element was identified in the promoter region of IL‐33, indicating that HIF‐1α activity regulates IL‐33 expression. Furthermore, tumour necrosis factor (TNF) facilitated the HIF‐1α‐dependent IL‐33 expression in IEC. Our data thus demonstrate that HIF‐1α‐dependent IL‐33 in IEC functions as a regulatory cytokine in inflamed mucosa of IBD, thereby regulating the intestinal inflammation and maintaining mucosal homeostasis.  相似文献   

3.
Hypoxia‐inducible factor‐1α (HIF‐1α) plays a critical role in immune and inflammatory responses. One of the HIF‐1α target genes is vascular endothelial growth factor (VEGF), which is a potent stimulator of inflammation, airway remodeling, and physiologic dysregulation in allergic airway diseases. Using OVA‐treated mice and murine tracheal epithelial cells, the signaling networks involved in HIF‐1α activation and the role of HIF‐1α in the pathogenesis of allergic airway disease were investigated. Transfection of airway epithelial cells with HIF‐1α siRNA suppressed VEGF expression. In addition, the increased levels of HIF‐1α and VEGF in lung tissues after OVA inhalation were substantially decreased by an HIF‐1α inhibitor, 2‐methoxyestradiol. Our data also show that the increased numbers of inflammatory cells, increased airway hyperresponsiveness, levels of IL‐4, IL‐5, IL‐13, and vascular permeability in the lungs after OVA inhalation were significantly reduced by 2‐methoxyestradiol or a VEGF inhibitor, CBO‐P11. Moreover, we found that inhibition of the PI3K p110δ isoform (PI3K‐δ) or HIF‐1α reduced OVA‐induced HIF‐1α activation in airway epithelial cells. These findings indicate that HIF‐1α inhibition may attenuate antigen‐induced airway inflammation and hyperresponsiveness through the modulation of vascular leakage mediated by VEGF, and that PI3K‐δ signaling may be involved in the allergen‐induced HIF‐1α activation.  相似文献   

4.
Peripheral blood mononuclear cells taken from patients with scleroderma express increased levels of interleukin (IL)‐13. Moreover, the expression of matrix metalloproteinase‐1 (MMP‐1) from involved scleroderma skin fibroblasts is refractory to stimulation by tumour necrosis factor (TNF)‐α. To elucidate the mechanism(s) involved, we examined the effect of IL‐13 on TNF‐α‐induced MMP‐1 expression in normal and scleroderma human dermal fibroblast lines and studied the involvement of serine/threonine kinase B/protein kinase B (Akt) in this response. Dermal fibroblast lines were stimulated with TNF‐α in the presence of varying concentrations of IL‐13. Total Akt and pAkt were quantitated using Western blot analyses. Fibroblasts were treated with or without Akt inhibitor VIII in the presence of IL‐13 followed by TNF‐α stimulation. MMP‐1 expression was analysed by real‐time polymerase chain reaction (PCR) and enzyme‐linked immunosorbent assay (ELISA). Statistical analysis was performed using analysis of variance (anova ) or Student's t‐test. Upon TNF‐α stimulation, normal dermal fibroblasts secrete more MMP‐1 than systemic sclerosis (SSc) fibroblasts. This increase in MMP‐1 is lost when fibroblasts are co‐incubated with IL‐13 and TNF‐α. IL‐13 induced a significant increase in levels of pAkt in dermal fibroblasts, while Akt inhibitor VIII reversed the suppressive effects of IL‐13 on the response of cultured fibroblasts to TNF‐α, increasing their expression of MMP‐1. We show that IL‐13 suppresses MMP‐1 in TNF‐α‐stimulated normal and scleroderma dermal fibroblast. Akt inhibitor VIII is able to reverse the suppressive effect of IL‐13 on MMP‐1 expression and protein synthesis. Our data suggest that IL‐13 regulates MMP‐1 expression in response to TNF‐α through an Akt‐mediated pathway and may play a role in fibrotic diseases such as scleroderma.  相似文献   

5.
This study examined the expression of the inhibitory receptor, leucocyte‐associated immunoglobulin (Ig)‐like receptor‐1 (LAIR‐1) in fibroblast‐like synoviocytes (FLS) in rheumatoid arthritis (RA) patients to investigate its potential role in the modulation of inflammatory cytokines, matrix metalloproteinases (MMPs) and invasiveness of synoviocytes. LAIR‐1 expression in synovial tissues from RA patients, osteoarthritis patients and healthy donors was analysed by immunohistochemistry. The membrane‐bound form (mLAIR‐1) was detected by flow cytometry. Factors involved in inflammation and MMP activity in FLS were analysed by quantitative polymerase chain reaction (qPCR). LAIR‐1 expression was higher in the synovia of the RA patients than those of the osteoarthritis patients. Co‐immunostaining of vimentin/LAIR‐1 demonstrated that LAIR‐1 was localized mainly in FLS in the RA patients. Surprisingly, primary FLS isolated from the RA patients had low levels of mLAIR‐1 expression, with cytoplasmic distribution. The extracellular domain of LAIR‐1 was shed from the cell surface in response to tumour necrosis factor (TNF)‐α, and this process could be blocked by serine protease inhibitors. Additional experiments indicated that LAIR‐1 over‐expression reduced FLS invasion considerably, which reduced simultaneously the mRNA levels of interleukin (IL)‐6, IL‐8 and MMP‐13 in the presence of TNF‐α. Our study demonstrated that LAIR‐1 is an anti‐inflammatory molecule, and was up‐regulated in FLS in the RA patients; however, cell‐surface LAIR‐1 could be shed from cells in the inflammatory microenvironment in RA. This may weaken the interaction of LAIR‐1 with its ligand, thus reducing the anti‐inflammatory effects of LAIR‐1. These findings suggested that LAIR‐1 may be an important factor involved in the mediation of the progressive joint destruction in RA.  相似文献   

6.
7.
Chronic inflammation, which is regulated by overactivated microglia in the brain, accelerates the occurrence and development of Alzheimer's disease (AD). Gx‐50 has been investigated as a novel drug for the treatment of AD in our previous studies. Here, we investigated whether gx‐50 possesses anti‐inflammatory effects in primary rat microglia and a mouse model of AD, amyloid precursor protein (APP) Tg mice. The expression of TNF‐α, IL‐1β, NO, prostaglandin E2, and the expression of iNOS and COX2 were inhibited by gx‐50 in amyloid β (Aβ) treated rat microglia; additionally, microglial activation and the expression of IL‐1β, iNOS, and COX2 were also significantly suppressed by gx‐50 in APP+ transgenic mice. Furthermore, gx‐50 inhibited the activation of NF‐κB and MAPK cascades in vitro and in vivo in APP‐Tg mice. Moreover, the expression of TLR4 and its downstream signaling proteins MyD88 and tumor necrosis factor receptor associated factor 6 (TRAF6) was reduced by gx‐50 in vitro and in vivo. Interestingly, silencing of TLR4 reduced Aβ‐induced upregulation of IL‐1β and TRAF6 to levels similar to gx‐50 inhibition; moreover, overexpression of TLR4 increased the expression of MyD88 and TRAF6, which was significantly reduced by gx‐50. These findings provide strong evidence that gx‐50 has anti‐inflammatory effects against Aβ‐triggered microglial overactivation via a mechanism that involves the TLR4‐mediated NF‐κBB/MAPK signaling cascade.  相似文献   

8.
Recent studies have reported that calcitonin gene‐related peptide (CGRP) contributes to joint pain. However, regulation of the CGRP/CGRP receptor signalling in osteoarthritis (OA) is not fully understood. To investigate the regulation of CGRP/CGRP receptor signalling by macrophages in the synovial tissue (ST) of OA joints, we characterized the gene expression profiles of CGRP and CGRP receptors in the ST of OA mice (STR/Ort). In addition, we examined whether macrophage depletion by the systemic injection of clodronate‐laden liposomes affected the expression of CGRP and CGRP receptors in ST. CD11c+ macrophages in the ST of STR/Ort and C57BL/6J mice were analysed by flow cytometry. Real‐time polymerase chain reaction (PCR) was used to evaluate the expression of interleukin (IL)‐1β, CGRP, calcitonin receptor‐like receptor (CLR) and receptor activity‐modifying protein 1 (RAMP1) in F4/80+ and F4/80? cells. The effects of IL‐1β on the expression of CGRP and CLR by cultured synovial cells were also examined. The percentage of CD11c+ macrophages in the ST of STR/Ort was higher than that in C57/BL6J mice. Notably, the F4/80+ cell fraction expressed IL‐1β highly, whereas the F4/80? cell fraction expressed CGRP, CLR, and RAMP1 highly. In addition, expression of the IL‐1β and CLR genes was increased in ST, but was decreased upon macrophage depletion, and the IL‐1β treatment of cultured synovial cells up‐regulated CLR. Taken together, the present findings suggest that synovial macrophages are the major producers of IL‐1β and regulators of CLR in OA mice. Therefore, macrophages and IL‐1β may be suitable therapeutic targets for treating OA pain.  相似文献   

9.
10.
11.
12.
Since the molecular mechanism of hypoxic adaptation in cancer cells is cell‐type specific, we investigated whether glycogen synthase kinase‐3β (GSK‐3β) activation is involved in hypoxia‐induced gastric tumor promotion. Stable gastric cancer cell lines (SNU‐638, SNU‐484, MKN1, and MKN45) were cultured under hypoxic conditions. Cells overexpressing wild‐type GSK‐3β (WT‐GSK‐3β) or kinase‐dead mutant of GSK‐3β (KD‐GSK‐3β) were generated and used for cell culture and animal studies. In cell culture experiments, hypoxia decreased GSK‐3β activation in gastric cancer cells. Cell viability and the expressions of HIF‐1α protein and VEGF mRNA in gastric cancer cells were higher in KD‐GSK‐3β transfectants than in WT‐GSK‐3β transfectants under hypoxic conditions, but not under normoxic conditions. Gastric cancer xenografts showed that tumor growth, microvessel area, HIF‐1α activation, and VEGF expression were higher in KD‐GSK‐3β tumors than in WT‐GSK‐3β tumors in vivo. In addition, the expression of hypoxia‐induced HIF‐1α protein was regulated by GSK‐3β at the translational level. Our data suggest that GSK‐3β is involved in hypoxic adaptation of gastric cancer cells as an inhibitory upstream regulator of the HIF‐1α/VEGF signaling pathway.  相似文献   

13.
Inflammatory processes induced by IL‐1β are critical for host defence responses, but are also implicated in disease. Zinc deficiency is a common consequence of, or contributor to, human inflammatory disease. However, the molecular mechanisms through which zinc contributes to inflammatory disease remain largely unknown. We report here that zinc metabolism regulates caspase‐1 activation and IL‐1β secretion. One of the endogenous mediators of IL‐1β secretion is adenosine triphosphate, acting via the P2X7‐receptor and caspase‐1 activation in cells primed with an inflammatory stimulus such as LPS. We show that this process is selectively abolished by a brief pre‐treatment with the zinc chelator N,N,N′,N′‐tetrakis‐(2‐pyridylmethyl) ethylene diamine (TPEN). These effects on IL‐1β secretion were independent of rapid changes in free zinc within the cell, not a direct effect on caspase‐1 activity, and upstream of caspase‐1 activation. TPEN did however inhibit the activity of pannexin‐1, a hemi‐channel critical for adenosine triphosphate and nigericin‐induced IL‐1β release. These data provide new insights into the mechanisms of caspase‐1 activation and how zinc metabolism contributes to inflammatory mechanisms.  相似文献   

14.
Interleukin (IL)‐1α is a potent proinflammatory cytokine that has been implicated in the development of atherosclerosis. We investigated whether a vaccine inducing IL‐1α neutralizing antibodies could interfere with disease progression in a murine model of atherosclerosis. We immunized Apolipoprothin E (ApoE)‐deficient mice with a vaccine (IL‐1α‐C‐Qβ) consisting of full‐length, native IL‐1α chemically conjugated to virus‐like particles derived from the bacteriophage Qβ. ApoE?/? mice were administered six injections of IL‐1α‐C‐Qβ or nonconjugated Qβ over a period of 160 days while being maintained on a western diet. Atherosclerosis was measured in the descending aorta and in cross‐sections at the aortic root. Macrophage infiltration in the aorta was measured using CD68. Expression levels of VCAM‐1, ICAM‐1, and MCP‐1 were quantified by RT‐PCR. Immunization against IL‐1α reduced plaque progression in the descending aorta by 50% and at the aortic root by 37%. Macrophage infiltration in the aorta was reduced by 22%. Inflammation was also reduced in the adventitia, with a decrease of 54% in peri‐aortic infiltrate score and reduced expression levels of VCAM‐1 and ICAM‐1. Active immunization targeting IL‐1α reduced both the inflammatory reaction in the plaque as well as plaque progression. In summary, vaccination against IL‐1α protected ApoE?/? mice against disease, suggesting that this may be a potential treatment option for atherosclerosis.  相似文献   

15.
Neutrophils are essential players in acute inflammatory responses. Upon stimulation, neutrophils activate NADPH oxidase, generating an array of reactive oxygen species (ROS). Interleukin‐1 beta (IL‐1β) is a major proinflammatory cytokine synthesized as a precursor that has to be proteolytically processed to become biologically active. The role of ROS in IL‐1β processing is still controversial and has not been previously studied in neutrophils. We report here that IL‐1β processing in human neutrophils is dependent on caspase‐1 and on the serine proteases elastase and/or proteinase 3. NADPH oxidase deficient neutrophils activated caspase‐1 and did not exhibit differences in NALP3 expression, indicating that ROS are neither required for inflammasome activation nor for its priming, as has been reported for macrophages. Strikingly, ROS exerted opposite effects on the processing and secretion of IL‐1β; whereas ROS negatively controlled caspase‐1 activity, as reported in mononuclear phagocytes, ROS were found to be necessary for the exportation of mature IL‐1β out of the cell, a role never previously described. The complex ROS‐mediated regulation of neutrophil IL‐1β secretion might constitute a physiological mechanism to control IL‐1β‐dependent inflammatory processes where neutrophils play a crucial role.  相似文献   

16.
The proinflammatory cytokines interleukin (IL)‐17 and tumour necrosis factor (TNF)‐α are targets for treatment in many chronic inflammatory diseases. Here, we examined their role in liver inflammatory response compared to that of IL‐6. Human hepatoma cells (HepaRG, Huh7.5 and HepG2 cells) and primary human hepatocytes (PHH) were cultured with IL‐6, IL‐17 and/or TNF‐α. To determine the contribution of the IL‐6 pathway in the IL‐17/TNF‐α‐mediated effect, an anti‐IL‐6 receptor antibody was used. IL‐17 and TNF‐α increased in synergy IL‐6 secretion by HepaRG cells and PHH but not by Huh7.5 and HepG2 cells. This IL‐17/TNF‐α synergistic cooperation enhanced the levels of C‐reactive protein (CRP) and aspartate aminotransferase (ASAT) in HepaRG cell and PHH cultures through the induction of IL‐6. IL‐17/TNF‐α also up‐regulated IL‐8, monocyte chemoattractant protein (MCP)‐1 and chemokine (C‐C motif) ligand 20 (CCL20) chemokines in synergy through an IL‐6‐independent pathway. Interestingly, first exposure to IL‐17, but not to TNF‐α, was crucial for the initiation of the IL‐17/TNF‐α synergistic effect on IL‐6 and IL‐8 production. In HepaRG cells, IL‐17 enhanced IL‐6 mRNA stability resulting in increased IL‐6 protein levels. The IL‐17A/TNF‐α synergistic effect on IL‐6 and IL‐8 induction was mediated through the activation of extracellular signal‐regulated kinase (ERK)‐mitogen‐activated protein kinase, nuclear factor‐κB and/or protein kinase B (Akt)–phosphatidylinositol 3‐kinase signalling pathways. Therefore, the IL‐17/TNF‐α synergistic interaction mediates systemic inflammation and cell damage in hepatocytes mainly through IL‐6 for CRP and ASAT induction. Independently of IL‐6, the IL‐17A/TNF‐α combination may also induce immune cell recruitment by chemokine up‐regulation. IL‐17 and/or TNF‐α neutralization can be a promising therapeutic strategy to control both systemic inflammation and liver cell attraction.  相似文献   

17.
To understand more clearly the link between osteoarthritis and hyperlipidaemia, we investigated the inflammatory macrophage subsets and macrophage‐regulated matrix metalloprotease‐3 (MMP‐3) and A disintegrin and metalloprotease with thrombospondin motifs‐4 (ADAMTS4) in synovial (ST) and adipose tissues (AT) of osteoarthritic mice with hyperlipidaemia (STR/Ort). CD11c+F4/80+CD11b+ macrophage populations in the ST and AT of 9‐month‐old STR/Ort and C57BL/6J mice were characterized and compared by flow cytometry and real‐time polymerase chain reaction (PCR) analyses. Expression of tumour necrosis factor (TNF)‐α, MMP‐3 and ADAMTS4, and the response of these factors to anionic liposomal clodronate induced‐macrophage depletion were also evaluated by real‐time PCR. Expression of TNF‐α in CD11c+ cells, which were isolated by magnetic beads, was compared to CD11c cells. In addition, the effect of TNF‐α on cultured synovial fibroblasts and adipocytes was investigated. CD11c+F4/80+CD11b+ macrophages were increased in ST and AT of STR/Ort mice. The CD11c+ cell fraction highly expressed TNF‐α. Expression of TNF‐α and MMP3 was increased in ST and AT, and was decreased upon macrophage depletion. TNF‐α treatment of cultured synovial fibroblasts and adipocytes markedly up‐regulated MMP‐3. CD11c+F4/80+CD11b+ macrophages were identified as a common inflammatory subset in the AT and ST of STR/Ort mice with hyperlipidaemia. The induction of inflammation in AT and ST may be part of a common mechanism that regulates MMP3 expression through TNF‐α. Our findings suggest that increased numbers of CD11c+ macrophages and elevated levels of TNF‐α and MMP‐3 in AT and ST may explain the relationship between hyperlipidaemia and OA.  相似文献   

18.
Hepatic stellate cells (HSCs) are the major producers of collagen in the liver. Their conversion from resting cells to proliferative, contractile, and activated cells is a critical step leading to liver fibrosis that is characterized by the deposition of excessive extracellular matrix. Interleukin‐1 (IL‐1) may play a role in maintaining HSC in a proliferative state that is responsible for hepatic fibrogenesis. The aim of this study was to study the roles of the IL‐1 type I receptor (IL‐1R1), c‐Jun N‐terminal kinase (JNK), and activation protein‐1 (AP‐1) in IL‐1β–mediated proliferation in rat HSCs. We showed that IL‐1β can upregulate proliferation in rat HSCs; however, inhibition of the JNK pathway could inhibit HSCs proliferation. Furthermore, IL‐1β activated IL‐1R1 expression, the JNK signaling pathway, and AP‐1 activity in a time‐dependent manner in rat HSCs. These data demonstrate that IL‐1β could promote the proliferation of rat HSCs and that the IL‐1R1, JNK, and AP‐1 pathways were involved in this process. In summary, IL‐1β‐induced proliferation is possibly mediated by the IL‐1R1, JNK, and AP‐1 pathways in rat HSCs. Therefore, drugs that block these pathways may inhibit the proliferation of HSCs and suppress liver fibrosis.  相似文献   

19.
In chorioamnionitis (CAM), a major cause of preterm birth (PTB), maternal–fetal inflammation of the decidua and amniochorion cause the release of cytokines that elicit cervical ripening, fetal membrane rupture and myometrial activation. We posit that this inflammatory milieu triggers PTB by inhibiting progesterone receptor (PR) expression and increasing decidual prostaglandin (PG) production. Immunohistochemical staining of decidua detected significantly lower PR levels in decidual cells (DCs) from CAM‐complicated PTB. Incubation of DCs with IL‐1β decreased PR expression and significantly increased PGE2 and PGF production and COX‐2 expression. The addition of PGF to DC cultures also suppressed PR expression. However, the COX inhibitor, indomethacin, did not reverse IL‐1β suppression of PR expression in DC cultures. Although IL‐1β treatment activated the NF‐K B, ERK1/2 and p38 MAPK signalling cascades in DCs, inhibition of ERK1/2 MAPK signalling alone was sufficient to completely reverse the suppression of PR levels by IL‐1β. These findings suggest that CAM‐associated PTB is induced at least in part by IL‐1β‐mediated functional progesterone withdrawal. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

20.
The rapid differentiation of monocytes into macrophages (MΦ) and dendritic cells is a pivotal aspect of the innate immune response. Differentiation is triggered following recognition of microbial ligands that activate pattern recognition receptors or directly by pro‐inflammatory cytokines. We demonstrate that interleukin‐1β (IL‐1β) induces the rapid differentiation of monocytes into CD209+ MΦ, similar to activation via Toll‐like receptor 2/1, but with distinct phenotypic and functional characteristics. The IL‐1β induced MΦ express higher levels of key markers of phagocytosis, including the Fc‐receptors CD16 and CD64, as well as CD36, CD163 and CD206. In addition, IL‐1β‐induced MΦ exert potent phagocytic activity towards inert particles, oxidized low‐density lipoprotein and mycobacteria. Furthermore, IL‐1β‐induced MΦ express higher levels of HLA‐DR and effectively present mycobacterial antigens to T cells. Therefore, the ability of IL‐1β to induce monocyte differentiation into MΦ with both phagocytosis and antigen‐presenting function is a distinct part of the innate immune response in host defence against microbial infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号