首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Alterations in DNA methylation have been associated with genome-wide hypomethylation and regional de novo methylation in numerous cancers. De novo methylation is mediated by the de novo methyltransferases Dnmt3a and 3b, but only Dnmt3b has been implicated in promoting cancer by silencing of tumor-suppressor genes. In this study, we have analyzed the role of Dnmt3a in lung cancer by using a conditional mouse tumor model. We show that Dnmt3a deficiency significantly promotes tumor growth and progression but not initiation. Changes in gene expression show that Dnmt3a deficiency affects key steps in cancer progression, such as angiogenesis, cell adhesion, and cell motion, consistent with accelerated and more malignant growth. Our results suggest that Dnmt3a may act like a tumor-suppressor gene in lung tumor progression and may be a critical determinant of lung cancer malignancy.  相似文献   

5.
6.
背景:甲基化所致的抑癌基因RUNX3表达沉默是胃癌发生的重要机制,以脱甲基化制剂恢复其表达可起到抗肿瘤作用。目的:研究脱甲基化制剂肼屈嗪对人胃癌细胞株RUNX3基因甲基化及其表达的调节作用,观察肼屈嗪对胃癌细胞生长和凋亡的影响。方法:分别以RT-PCR和甲基化特异性PCR(MSP)检测肼屈嗪和5-Aza-dC处理前后SGC7901、MKN28和MGC803细胞的RUNX3 mRNA表达及其甲基化状态。以MTT法检测MKN28细胞增殖活性,以流式细胞术检测细胞周期和细胞凋亡。结果:MKN28细胞存在甲基化所致的RUNX3基因表达沉默。40μmol/L肼屈嗪作用72 h后,MKN28细胞可扩增出 RUNX3非甲基化条带,呈部分脱甲基化,RUNX3 mRNA恢复表达,但相对表达量低于5-Aza-dC组(P0.05)。10μmol/L以上浓度的肼屈嗪对MKN28细胞生长具有抑制作用,可使细胞周期阻滞于G0/G1期,并诱导细胞凋亡(P0.05)。结论:肼屈嗪可通过脱甲基化恢复RUNX3基因表达并能抑制MKN28细胞生长,诱导细胞凋亡。有必要对肼屈嗪在胃癌治疗中的作用作进一步研究。  相似文献   

7.
8.
9.
Previous study in our laboratory demonstrated suppression of the gene for protein tyrosine phosphatase receptor-type O (PTPRO) in primary and established rat hepatomas. The present study showed methylation-mediated silencing of this gene in primary human lung tumors and in several human lung cancer cell lines, one of the characteristics of many tumor-suppressor genes. The reduced expression of PTPRO in the primary lung tumors correlated with the methylation status of its CpG island. Demethylation of the gene by deoxy-5-azacytidine treatment led to its reactivation in a lung cancer line (A549). Overexpression of PTPRO in A549 cells inhibited anchorage-independent growth, delayed reentry of the cells into the cell cycle after release from cell-cycle arrest, and increased susceptibility of the cells to apoptosis. These data have demonstrated the growth-suppressor characteristics of PTPRO that are unique to a classical tumor suppressor.  相似文献   

10.

Purpose

Cholangiocarcinoma is defined as a chronic liver disease with altered estrogen metabolism and could result in estrogen retention. Estrogenic response was known as a promoting factor in progression of some cancer. In this study, we determined the significant increase of estrogen level in cholangiocarcinoma patients’ sera.

Methods

The estrogen levels in cholangiocarcinoma patients’ sera were measured and correlated with clinical presentations. Estrogen receptor-α expressions in cholangiocarcinoma tissues were detected by immunohistochemistry method. KKU-100 and KKU-M213 cholangiocarcinoma cell lines were treated with 17β-estradiol and tested the proliferative and invasive effects.

Results

The estrogen levels showed positive correlations with serum bilirubin and alkaline phosphatase and a negative correlation with albumin. This study also showed an association with shorter survival times when patients with low and high serum estrogen levels were compared. In vitro studies demonstrated the effect of estrogen on cell proliferation and invasion in dose-dependent manners, which could be inhibited by tamoxifen, a clinical used estrogen antagonist. Invasion showed an association with the TFF1 gene expression and could be inhibited by small interfering RNA against TFF1 gene. Estrogen receptor-α was the main estrogen receptor that response to 17β-estradiol stimulation.

Conclusions

TFF1 trefoil protein could be one of the effectors for estrogen-induced invasion in cholangiocarcinoma via the estrogen receptor-α. These findings could lead to an understanding of the mechanism of cholangiocarcinoma progression.  相似文献   

11.
12.
13.
Mullerian inhibiting substance (MIS) inhibits breast cancer cell growth in vitro. To extend the use of MIS to treat breast cancer, it is essential to test the responsiveness of mammary tumor growth to MIS in vivo. Mammary tumors arising in the C3(1) T antigen mouse model expressed the MIS type II receptor, and MIS in vitro inhibited the growth of cells derived from tumors. Administration of MIS to mice was associated with a lower number of palpable mammary tumors compared with vehicle-treated mice (P=0.048), and the mean mammary tumor weight in the MIS-treated group was significantly lower compared with the control group (P=0.029). Analysis of proliferating cell nuclear antigen (PCNA) expression and caspase-3 cleavage in tumors revealed that exposure to MIS was associated with decreased proliferation and increased apoptosis, respectively, and was not caused by a decline in T antigen expression. The effect of MIS on tumor growth was also evaluated on xenografted human breast cancer cell line MDA-MB-468, which is estrogen receptor- and retinoblastoma-negative and expresses mutant p53, and thus complements the C3(1)Tag mouse mammary tumors that do not express estrogen receptor and have functional inactivation of retinoblastoma and p53. In agreement with results observed in the transgenic mice, MIS decreased the rate of MDA-MB-468 tumor growth and the gain in mean tumor volume in severe combined immunodeficient mice compared with vehicle-treated controls (P=0.004). These results suggest that MIS can suppress the growth of mammary tumors in vivo.  相似文献   

14.
15.
Switching from acetylation to methylation at histone H3 lysine 9 (K9) has recently been shown to contribute to euchromatin gene silencing. To identify genes silenced by K9 modifications, we probed a human CpG island microarray with DNA obtained by chromatin immunoprecipitation (ChIP) in a cancer cell line using an anti-H3-K9 methylated antibody or an anti-H3-K9 acetylated antibody. Of the 27 clones with the highest signal ratio of K9 methylation over acetylation (Me/Ac), 13 contained repetitive sequences. Among 14 nonrepetitive clones, we identified 11 genes (seven known and four previously undescribed), one EST, and two unknown fragments. Using ChIP-PCR, all 18 examined clones showed higher ratios of H3-K9 Me/Ac than the active gene control, P21, thus confirming the microarray data. In addition, we found a strong correlation between the K9 Me/Ac ratio and CpG island DNA methylation (R = 0.92, P < 0.01), and five of seven genes examined (megalin, thrombospondin-4, KR18, latrophilin-3, and phosphatidylinositol-3-OH kinase P101 subunit) showed lack of expression by RT-PCR and reactivation by DNA methylation and/or histone deacetylase inhibition, suggesting that these genes are true targets of silencing through histone modifications. All five genes also showed significant DNA methylation in a cell line panel and in primary colon cancers. Our data suggest that CpG island microarray coupled with ChIP can identify novel targets of gene silencing in cancer. This unbiased approach confirms the tight coupling between DNA methylation and histone modifications in cancer and could be used to probe gene silencing in nonneoplastic conditions as well.  相似文献   

16.
The deoxycytidine analog 5-aza-2'-deoxycytidine (5-azadCyd) has been widely used as a DNA methylation inhibitor to experimentally induce gene expression and cellular differentiation. Prior to the availability of mutant mice with altered DNA methyltransferase levels, treatment of cells with drugs has been the only means to experimentally manipulate the level of genomic DNA methylation in mammalian cells. Substitution of DNA with 5-azadCyd leads to covalent trapping of the enzyme, thereby depleting the cells of enzyme activity and resulting in DNA demethylation. 5-AzadCyd or 5-azacytidine treatment causes multiple changes in treated cells, including activation of silent genes, decondensation of chromatin, and induction of cellular differentiation, all of which are believed to be consequences of drug-induced demethylation. 5-AzadCyd is highly toxic in cultured cells and animals and is utilized as a potent antitumor agent for treatment of certain human cancers. It has been postulated that the toxicity of the drug in mammalian cells is also due to its inhibition of DNA methylation. The chemistry of the methylation reaction is consistent, however, with an alternative mechanism: the cytotoxic effect of 5-azadCyd may be directly mediated through the covalent binding of DNA methyltransferase to 5-azadCyd-substituted DNA. We have tested this possibility by using embryonic stem cells and mice with reduced levels of DNA methyltransferase due to a targeted mutation of the gene. When exposed to 5-azadCyd mutant embryonic stem cells or embryos were significantly more resistant to the toxic effects of the drug than wild-type cells and embryos, respectively. These results strongly suggest that the cellular DNA methyltransferase itself, rather than the secondary demethylation of genomic DNA, is the primary mediator of 5-azadCyd cytotoxicity. In light of our results, some conclusions from previous studies using 5-azadCyd in order to experimentally manipulate cellular methylation levels may have to be reassessed. Also, our data make clear predictions for cancer treatment: tumor cells with elevated DNA methyltransferase levels would be expected to be susceptible to treatment with 5-azadCyd, whereas tumors with reduced levels of the enzyme would be resistant.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号