共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Zhufang Li Nannan Zhou Yongnian Sun Neelanjana Ray Max Lataillade George J. Hanna Mark Krystal 《Antimicrobial agents and chemotherapy》2013,57(9):4172-4180
BMS-626529 is a novel small-molecule HIV-1 attachment inhibitor active against both CCR5- and CXCR4-tropic viruses. BMS-626529 functions by preventing gp120 from binding to CD4. A prodrug of this compound, BMS-663068, is currently in clinical development. As a theoretical resistance pathway to BMS-663068 could be the development of a CD4-independent phenotype, we examined the activity of BMS-626529 against CD4-independent viruses and investigated whether resistance to BMS-626529 could be associated with a CD4-independent phenotype. Finally, we evaluated whether cross-resistance exists between BMS-626529 and other HIV-1 entry inhibitors. Two laboratory-derived envelopes with a CD4-independent phenotype (one CXCR4 tropic and one CCR5 tropic), five envelopes from clinical isolates with preexisting BMS-626529 resistance, and several site-specific mutant BMS-626529-resistant envelopes were examined for their dependence on CD4 for infectivity or susceptibility to BMS-626529. Viruses resistant to other entry inhibitors (enfuvirtide, maraviroc, and ibalizumab) were also examined for susceptibility to BMS-626529. Both CD4-independent laboratory isolates retained sensitivity to BMS-626529 in CD4− cells, while HIV-1 envelopes from viruses resistant to BMS-626529 exhibited no evidence of a CD4-independent phenotype. BMS-626529 also exhibited inhibitory activity against ibalizumab- and enfuvirtide-resistant envelopes. While there appeared to be some association between maraviroc resistance and reduced susceptibility to BMS-626529, an absolute correlation cannot be presumed, since some CCR5-tropic maraviroc-resistant envelopes remained sensitive to BMS-626529. Clinical use of the prodrug BMS-663068 is unlikely to promote resistance via generation of CD4-independent virus. No cross-resistance between BMS-626529 and other HIV entry inhibitors was observed, which could allow for sequential or concurrent use with different classes of entry inhibitors. 相似文献
3.
Ishani Landry Li Zhu Malaz Abu Tarif Matthew Hruska Brian M. Sadler Maria Pitsiu Samit Joshi George J. Hanna Max Lataillade David W. Boulton Richard J. Bertz 《Antimicrobial agents and chemotherapy》2016,60(5):2782-2789
BMS-663068 is an oral prodrug of the HIV-1 attachment inhibitor BMS-626529, which prevents viral attachment to host CD4+ T cells by binding to HIV-1 gp120. To guide dose selection for the phase 3 program, pharmacokinetic/pharmacodynamic modeling was performed using data from two phase 2 studies with HIV-1-infected subjects (n = 244). BMS-626529 population pharmacokinetics were described by a two-compartment model with first-order elimination from the central compartment, zero-order release of prodrug from the extended-release formulation into a hypothetical absorption compartment, and first-order absorption into the central compartment. The covariates of BMS-663068 formulation type, lean body mass, baseline CD8+ T-cell percentage, and ritonavir coadministration were found to be significant contributors to intersubject variability. Exposure-response analyses showed a relationship between the loge-transformed concentration at the end of a dosing interval (Ctau) normalized for the protein binding-adjusted BMS-626529 half-maximal (50%) inhibitory concentration (PBAIC50) and the change in the HIV-1 RNA level from the baseline level after 7 days of BMS-663068 monotherapy. The probability of achieving a decline in HIV-1 RNA level of >0.5 or >1.0 log10 copies/ml as a function of the loge-transformed PBAIC50-adjusted Ctau after 7 days of monotherapy was 99 to 100% and 57 to 73%, respectively, for proposed BMS-663068 doses of 400 mg twice daily (BID), 600 mg BID (not studied in the phase 2b study), 800 mg BID, 600 mg once daily (QD), and 1,200 mg QD. On the basis of a slight advantage in efficacy of BID dosing over QD dosing, similar responses for the 600- and 800-mg BID doses, and prior clinical observations, BMS-663068 at 600 mg BID was predicted to have the optimal benefit-risk profile and selected for further clinical investigation. (The phase 2a proof-of-concept study AI438006 and the phase 2b study AI438011 are registered at ClinicalTrials.gov under numbers and NCT01009814, respectively.) NCT01384734相似文献
4.
Li Zhu Matthew Hruska Carey Hwang Vaishali Shah Michael Furlong George J. Hanna Richard Bertz Ishani Savant Landry 《Antimicrobial agents and chemotherapy》2015,59(7):3816-3822
BMS-663068 is a prodrug of BMS-626529, a first-in-class attachment inhibitor that binds directly to HIV-1 gp120, preventing initial viral attachment and entry into host CD4+ T cells. This open-label, multiple-dose, four-sequence, crossover study addressed potential two-way drug-drug interactions following coadministration of BMS-663068 (BMS-626529 is a CYP3A4 substrate), atazanavir (ATV), and ritonavir (RTV) (ATV and RTV are CYP3A4 inhibitors). Thirty-six healthy subjects were randomized 1:1:1:1 to receive one of four treatment sequences with three consecutive treatments: BMS-663068 at 600 mg twice daily (BID), BMS-663068 at 600 mg BID plus RTV at 100 mg once daily (QD), ATV at 300 mg QD plus RTV at 100 mg QD (RTV-boosted ATV [ATV/r]), or BMS-663068 at 600 mg BID plus ATV at 300 mg QD plus RTV at 100 mg QD. Compared with the results obtained by administration of BMS-663068 alone, coadministration of BMS-663068 with ATV/r increased the BMS-626529 maximum concentration in plasma (Cmax) and the area under the concentration-time curve in one dosing interval (AUCtau) by 68% and 54%, respectively. Similarly, coadministration of BMS-663068 with RTV increased the BMS-626529 Cmax and AUCtau by 53% and 45%, respectively. Compared with the results obtained by administration of ATV/r alone, ATV and RTV systemic exposures remained similar following coadministration of BMS-663068 with ATV/r. BMS-663068 was generally well tolerated, and there were no adverse events (AEs) leading to discontinuation, serious AEs, or deaths. Moderate increases in BMS-626529 systemic exposure were observed following coadministration of BMS-663068 with ATV/r or RTV. However, the addition of ATV to BMS-663068 plus RTV did not further increase BMS-626529 systemic exposure. ATV and RTV exposures remained similar following coadministration of BMS-663068 with either ATV/r or RTV. BMS-663068 was generally well tolerated alone or in combination with either RTV or ATV/r. 相似文献
5.
Hanna GJ Lalezari J Hellinger JA Wohl DA Nettles R Persson A Krystal M Lin P Colonno R Grasela DM 《Antimicrobial agents and chemotherapy》2011,55(2):722-728
BMS-488043 is a novel and unique oral small-molecule inhibitor of the attachment of human immunodeficiency virus type 1 (HIV-1) to CD4(+) lymphocytes. The antiviral activity, pharmacokinetics, viral susceptibility, and safety of BMS-488043 were evaluated in an 8-day monotherapy trial. Thirty HIV-1-infected study subjects were randomly assigned to sequential, safety-guided dose panels of 800 and 1,800 mg BMS-488043 or a matched placebo in a 4:1 ratio, and the drug was administered every 12 h with a high-fat meal for 7 days and on the morning of day 8. Dose-related, albeit less-than-dose-proportional, increases in plasma BMS-488043 concentrations were observed. Mean plasma HIV-1 RNA decreases from the baseline for the BMS-488043 800- and 1,800-mg dose groups on day 8 were 0.72 and 0.96 log(10) copies/ml, respectively, compared with 0.02 log(10) copies/ml for the placebo group. A lower baseline BMS-488043 50% effective concentration (EC(50)) in the active-treatment groups was predictive of a greater antiviral response. Although absolute drug exposure was not associated with an antiviral response, the trough concentration (C(trough)), adjusted by the baseline EC(50) (C(trough)/EC(50)), was associated with antiviral activity. During dosing, four subjects experienced >10-fold reductions in viral susceptibility to BMS-488043, providing further support of the direct antiviral mechanism of BMS-488043. BMS-488043 was generally safe and well tolerated. These results suggest that further development of this novel class of oral HIV-1 attachment inhibitors is warranted. 相似文献
6.
Zhou N Nowicka-Sans B Zhang S Fan L Fang J Fang H Gong YF Eggers B Langley DR Wang T Kadow J Grasela D Hanna GJ Alexander L Colonno R Krystal M Lin PF 《Antimicrobial agents and chemotherapy》2011,55(2):729-737
Attachment inhibitors (AI) are a novel class of HIV-1 antivirals, with little information available on clinical resistance. BMS-488043 is an orally bioavailable AI that binds to gp120 of HIV-1 and abrogates its binding to CD4(+) lymphocytes. A clinical proof-of-concept study of the AI BMS-488043, administered as monotherapy for 8 days, demonstrated significant viral load reductions. In order to examine the effects of AI monotherapy on HIV-1 sensitivity, phenotypic sensitivity assessment of baseline and postdosing (day 8) samples was performed. These analyses revealed that four subjects had emergent phenotypic resistance (a 50% effective concentration [EC(50)] >10-fold greater than the baseline value) and four had high baseline EC(50)s (>200 nM). Population sequencing and sequence determination of cloned envelope genes uncovered five gp120 mutations at four loci (V68A, L116I, S375I/N, and M426L) associated with BMS-488043 resistance. Substitution at the 375 locus, located near the CD4 binding pocket, was the most common (maintained in 5/8 subjects at day 8). The five substitutions were evaluated for their effects on AI sensitivity through reverse genetics in functional envelopes, confirming their role in decreasing sensitivity to the drug. Additional analyses revealed that these substitutions did not alter sensitivity to other HIV-1 entry inhibitors. Thus, our studies demonstrate that although the majority of the subjects' viruses maintained sensitivity to BMS-488043, substitutions can be selected that decrease HIV-1 susceptibility to the AI. Most importantly, the substitutions described here are not associated with resistance to other approved antiretrovirals, and therefore, attachment inhibitors could complement the current arsenal of anti-HIV agents. 相似文献
7.
In vitro resistance profile of the human immunodeficiency virus type 1 protease inhibitor BMS-232632
Gong YF Robinson BS Rose RE Deminie C Spicer TP Stock D Colonno RJ Lin PF 《Antimicrobial agents and chemotherapy》2000,44(9):2319-2326
BMS-232632 is an azapeptide human immunodeficiency virus (HIV) type 1 (HIV-1) protease inhibitor that displays potent anti-HIV-1 activity (50% effective concentration [EC(50)], 2.6 to 5.3 nM; EC(90), 9 to 15 nM). In vitro passage of HIV-1 RF in the presence of inhibitors showed that BMS-232632 selected for resistant variants more slowly than nelfinavir or ritonavir did. Genotypic and phenotypic analysis of three different HIV strains resistant to BMS-232632 indicated that an N88S substitution in the viral protease appeared first during the selection process in two of the three strains. An I84V change appeared to be an important substitution in the third strain used. Mutations were also observed at the protease cleavage sites following drug selection. The evolution to resistance seemed distinct for each of the three strains used, suggesting multiple pathways to resistance and the importance of the viral genetic background. A cross-resistance study involving five other protease inhibitors indicated that BMS-232632-resistant virus remained sensitive to saquinavir, while it showed various levels (0. 1- to 71-fold decrease in sensitivity)-of cross-resistance to nelfinavir, indinavir, ritonavir, and amprenavir. In reciprocal experiments, the BMS-232632 susceptibility of HIV-1 variants selected in the presence of each of the other HIV-1 protease inhibitors showed that the nelfinavir-, saquinavir-, and amprenavir-resistant strains of HIV-1 remained sensitive to BMS-232632, while indinavir- and ritonavir-resistant viruses displayed six- to ninefold changes in BMS-232632 sensitivity. Taken together, our data suggest that BMS-232632 may be a valuable protease inhibitor for use in combination therapy. 相似文献
8.
In vitro activity of a new triazole BAL4815, the active component of BAL8557 (the water-soluble prodrug), against Aspergillus spp 总被引:3,自引:0,他引:3
OBJECTIVES: BAL4815 is the active component of the antifungal triazole agent BAL8557 (the water-soluble prodrug). We compared the in vitro activity of BAL4815 with that of itraconazole, voriconazole, caspofungin and amphotericin B against 118 isolates of Aspergillus comprising four different species (fumigatus, terreus, flavus and niger); the isolates were pre-selected to include 16 isolates demonstrating in vitro resistance to other agents. METHODS: Susceptibilities were determined for BAL4815, amphotericin B, itraconazole and voriconazole using the microdilution plate modification of the NCCLS M38-A method with RPMI 1640 buffered to pH 7.0 with MOPS; for caspofungin the method was modified using incubation in a gas mixture of 1% O2/5% CO2/94% N2 to aid reading. MFCs (> or =99% kill) were also determined for all drugs other than caspofungin. RESULTS: For all isolates, geometric mean (GM) MIC values and ranges (in mg/L) were: BAL4815, 0.620 and 0.125-2.0; itraconazole, 0.399 and 0.063->8.0; voriconazole, 0.347 and 0.125-8.0; caspofungin, 0.341 and 0.125-4.0; amphotericin B, 0.452 and 0.06-4.0. No significant differences in susceptibility to BAL4815 were seen between species and in contrast to itraconazole no isolates demonstrated MICs >2.0 mg/L. For all isolates, GM MFC values and ranges (in mg/L) were: BAL4815, 1.68 and 0.25->8.0; itraconazole, 1.78 and 0.06->8.0; voriconazole, 1.09 and 0.25->8.0; amphotericin B, 0.98 and 0.25->4.0. CONCLUSIONS: BAL4815 demonstrated promising antifungal activity against all four Aspergillus species in vitro including strains resistant to itraconazole, caspofungin or amphotericin B. 相似文献
9.
In vitro activity of RU 29246, the active compound of the cephalosporin prodrug ester HR 916. 下载免费PDF全文
The in vitro activity of RU 29246 was compared with those of other agents against 536 recent clinical isolates. The MICs of RU 29246 for 90% of members of the family Enterobacteriaceae tested (MIC90s) were less than 2 micrograms/ml except those for Morganella spp. (16 micrograms/ml) and Proteus spp. (8 micrograms/ml). RU 29246 was active against Staphylococcus aureus (MIC90, < or = 8 micrograms/ml) and against Staphylococcus saprophyticus and coagulase-negative staphylococci (MIC90s, < or = 2 micrograms/ml). Streptococci and Neisseria gonorrhoeae were highly susceptible to RU 29246, and the activity of the agent against isolates of Streptococcus pneumoniae (MIC90, < or = 0.5 micrograms/ml), Haemophilus influenzae (MIC90, < or = 2 micrograms/ml), and Moraxella catarrhalis (MIC90, < or = 2 micrograms/ml) was comparable to those of the other cephalosporins tested. RU 29246 was insusceptible to hydrolysis by the common plasmid-mediated beta-lactamases (TEM-1 and SHV-1). However, hydrolysis by the new extended-spectrum beta-lactamases (TEM-3, TEM-5, and TEM-9) was detected. Results of the study suggested that RU 29246 should be investigated clinically for use in the treatment of a wide range of infections. 相似文献
10.
11.
In vitro antiviral activity and cross-resistance profile of PL-100, a novel protease inhibitor of human immunodeficiency virus type 1 下载免费PDF全文
Dandache S Sévigny G Yelle J Stranix BR Parkin N Schapiro JM Wainberg MA Wu JJ 《Antimicrobial agents and chemotherapy》2007,51(11):4036-4043
Despite the success of highly active antiretroviral therapy, the current emergence and spread of drug-resistant variants of human immunodeficiency virus (HIV) stress the need for new inhibitors with distinct properties. We designed, produced, and screened a library of compounds based on an original l-lysine scaffold for their potentials as HIV type 1 (HIV-1) protease inhibitors (PI). One candidate compound, PL-100, emerged as a specific and noncytotoxic PI that exhibited potent inhibition of HIV-1 protease and viral replication in vitro (K(i), approximately 36 pM, and 50% effective concentration [EC(50)], approximately 16 nM, respectively). To confirm that PL-100 possessed a favorable resistance profile, we performed a cross-resistance study using a panel of 63 viral strains from PI-experienced patients selected for the presence of primary PI mutations known to confer resistance to multiple PIs now in clinical use. The results showed that PL-100 retained excellent antiviral activity against almost all of these PI-resistant viruses and that its performance in this regard was superior to those of atazanavir, amprenavir, indinavir, lopinavir, nelfinavir, and saquinavir. In almost every case, the increase in the EC(50) for PL-100 observed with viruses containing multiple mutations in protease was far less than that obtained with the other drugs tested. These data underscore the potential for PL-100 to be used in the treatment of drug-resistant HIV disease and argue for its further development. 相似文献
12.
Callebaut C Stray K Tsai L Williams M Yang ZY Cannizzaro C Leavitt SA Liu X Wang K Murray BP Mulato A Hatada M Priskich T Parkin N Swaminathan S Lee W He GX Xu L Cihlar T 《Antimicrobial agents and chemotherapy》2011,55(4):1366-1376
GS-8374 is a novel bis-tetrahydrofuran HIV-1 protease (PR) inhibitor (PI) with a unique diethylphosphonate moiety. It was selected from a series of analogs containing various di(alkyl)phosphonate substitutions connected via a linker to the para position of a P-1 phenyl ring. GS-8374 inhibits HIV-1 PR with high potency (Ki = 8.1 pM) and with no known effect on host proteases. Kinetic and thermodynamic analysis of GS-8374 binding to PR demonstrated an extremely slow off rate for the inhibitor and favorable contributions of both the enthalpic and entropic components to the total free binding energy. GS-8374 showed potent antiretroviral activity in T-cell lines, primary CD4+ T cells (50% effective concentration [EC50] = 3.4 to 11.5 nM), and macrophages (EC50 = 25.5 nM) and exhibited low cytotoxicity in multiple human cell types. The antiviral potency of GS-8374 was only moderately affected by human serum protein binding, and its combination with multiple approved antiretrovirals showed synergistic effects. When it was tested in a PhenoSense assay against a panel of 24 patient-derived viruses with high-level PI resistance, GS-8374 showed lower mean EC50s and lower fold resistance than any of the clinically approved PIs. Similar to other PIs, in vitro hepatic microsomal metabolism of GS-8374 was efficiently blocked by ritonavir, suggesting a potential for effective pharmacokinetic boosting in vivo. In summary, results from this broad in vitro pharmacological profiling indicate that GS-8374 is a promising candidate to be further assessed as a new antiretroviral agent with potential for clinical efficacy in both treatment-naïve and -experienced patients.Fifteen years ago, HIV protease (PR) inhibitors (PIs) were introduced into the clinic as a second class of antiretrovirals, after nucleosides, and launched the era of combination antiretroviral therapy (ART) that brought along a dramatic reduction of the morbidity and mortality among HIV-infected patients (7, 25, 29, 46). PIs evolved to be an important class of agents that are being widely used in combination with other antiretrovirals in both treatment-naïve and -experienced patients (48). On the basis of recent revisions of HIV treatment guidelines, one of several ritonavir-boosted PIs is recommended for use as a third agent of choice in combination with tenofovir and emtricitabine for first-line ART (8, 53). The choice of PIs over other antiretroviral agents is primarily driven by their clinical potency and a higher genetic barrier for resistance development (48). In addition, the clinical use of more recently developed PIs with improved resistance profiles, e.g., darunavir, in combination with new antiretrovirals may represent a promising nucleoside-sparing option for highly treatment-experienced patients (13, 50).Although a total of nine PIs is currently available for the treatment of HIV infection, only a few are widely used. In general, the long-term clinical benefit of PIs across all patient populations can be limited by various factors, including long-term safety and tolerability (3, 27, 38), resistance (36), and drug-drug interactions (18). Among these limitations, the development of viral resistance has been shown to be a major cause of therapy failure (1, 43). Several studies revealed that a significant proportion of patients with detectable viral loads harbor HIV strains resistant to at least one PI (36, 44). Furthermore, transmission of resistant viruses, including strains with reduced susceptibility to approved PIs, has been documented and may limit the choices for the first-line therapy (17, 47). The structural similarity among the multiple PIs used in the clinic increases the possibility of cross-resistance within this therapeutic class (52). Consequently, the mutations conferring resistance are frequently common to multiple PIs (14, 45). Therefore, the design of novel PIs with more favorable resistance profiles and improved pharmacological properties remains an area of high interest.Over more than 2 decades of intense development, HIV therapy became a complex and quickly evolving field of medical research. Novel therapeutic concepts and regimens using both the established and new antiretroviral drug classes are being explored with a primary goal to address limitations of ART in various patient populations. Increasing age of HIV-infected patients brings about additional challenges, such as long-term effects of HIV infection and tolerability of ART (15). In addition, ongoing health care reforms generate pressure to reduce treatment costs, providing an incentive for exploring novel simplified treatment regimens. These evolving aspects of anti-HIV therapy create additional need for potent, durable, and well-tolerated antiretrovirals, including novel PIs.Being aware of both the unique qualities and limitations of PIs, we explored the design of novel compounds through the application of novel modifications to established PI chemotypes. Recently, we reported on inhibitors containing a phosphonate moiety and showed that in comparison with the parent scaffolds, the phosphonate-modified compounds exhibit improved activity against a limited panel of PI-resistant viruses (4). Based on these initial data, we further explored a range of di(alkyl)phosphonate substituents in the structural context of TMC-126, a previously described bis-tetrahydrofuran (bis-THF) peptidomimetic PI (9, 10). Here and in a parallel report (12) we describe the profiling of GS-8374 (Fig. (Fig.1),1), a novel diethylphosphonate derivative of TMC-126 that exhibits favorable pharmacological properties, including a resistance profile superior to the profiles of all clinically approved PIs.Open in a separate windowFIG. 1.Structure of GS-8374. 相似文献
13.
14.
15.
J C Fung-Tomc B Minassian E Huczko B Kolek D P Bonner R E Kessler 《Antimicrobial agents and chemotherapy》1995,39(2):295-300
A new pradimicin derivative, BMS-181184, was compared with amphotericin B and fluconazole against 249 strains from 35 fungal species to determine its antifungal spectrum. Antifungal testing was performed by the broth macrodilution reference method recommended by the National Committee for Clinical Laboratory Standards (document M27-P, 1992). BMS-181184 MICs for 97% of the 167 strains of Candida spp., Cryptococcus neoformans, Torulopsis glabrata, and Rhodotorula spp. tested were < or = 8 micrograms/ml, with a majority of MICs being 2 to 8 micrograms/ml. Similarly, for Aspergillus fumigatus and 89% of the 26 dermatophytes tested BMS-181184 MICs were < or = 8 micrograms/ml. BMS-181184 was fungicidal for the yeasts, dermatophytes, and most strains of A. fumigatus, although the reduction in cell counts was less for A. fumigatus than for the yeasts. BMS-181184 was active against Sporothrix schenckii, dematiaceous fungi, and some members of the non-Aspergillus hyaline hyphomycetes. BMS-181184, however, was not fungicidal against members of the family Dematiaceae. BMS-181184 lacked activity or had poorer activity (MICs, > or = 16 micrograms/ml) against Aspergillus niger, Aspergillus flavus, Malassezia furfur, Fusarium spp., Pseudallescheria boydii, Alternaria spp., Curvularia spp., Exserohilum mcginnisii, and the zygomycetes than against yeasts. The activity of BMS-181184 was minimally (twofold or less) affected by changes in testing conditions (pH, inoculum size, temperature, the presence of serum), testing methods (agar versus broth macrodilution), or test media (RPMI 1640, yeast morphology agar, high resolution test medium). Overall, our results indicate that BMS-181184 has a broad antifungal spectrum and that it is fungicidal to yeasts and, to a lesser extent, to filamentous fungi. 相似文献
16.
In vitro activity of BMS-181139, a new carbapenem with potent antipseudomonal activity. 总被引:5,自引:2,他引:5 下载免费PDF全文
R E Kessler J Fung-Tomc B Kolek B Minassian E Huczko E Gradelski D P Bonner 《Antimicrobial agents and chemotherapy》1995,39(2):380-385
The in vitro activities of the carbapenem BMS-181139 were determined in comparison with those of imipenem, meropenem, ciprofloxacin, ceftriaxone, and vancomycin. BMS-181139 was the most active against species of Pseudomonas and related genera Alteromonas and Burkholderia, with MICs for 147 of 149 isolates of < 4 micrograms/ml. Of 22 imipenem-resistant (MIC > 8 micrograms/ml) P. aeruginosa strains, only 1 required an MIC of BMS-181139 of > 4 micrograms/ml, compared with 14 requiring the same meropenem MIC. BMS-181139 was the most active carbapenem against the majority of other gram-negative species except members of the tribe Proteeae, against which meropenem was more active. Although imipenem was more active against gram-positive species, BMS-18139 MICs at which 90% of strain tested were inhibited were < 1 microgram/ml for these species. BMS-181139 was generally active against isolates resistant to ciprofloxacin or broad-spectrum cephalosporins, including those containing plasmid-encoded beta-lactamases or high levels of chromosome-encoded beta-lactamases, as well as anaerobes except Clostridium difficile. Inoculum effects were noted for all three carbapenems against Klebsiella pneumoniae, Enterobacter cloacae, and Serratia marcescens but not Escherichia coli, Pseudomonas aeruginosa, or Staphylococcus aureus. BMS-181139's inoculum effect tended to be more marked. BMS-181139 exhibited bactericidal activity at the MIC for some strains and up to four to eight times the MIC for others. The postantibiotic effect of BMS-181139 was equal to or less than that of imipenem and, like meropenem, exhibited intraspecies variability. BMS-181139 was 30-fold more stable than imipenem and 7-fold more stable than meropenem to hydrolysis by hog kidney dehydropeptidase. 相似文献
17.
Jansen CA Piriou E De Cuyper IM van Dort K Lange JM Miedema F van Baarle D 《Antiviral therapy》2006,11(1):105-116
In this study we investigated the long-term effect of highly active antiretroviral therapy (HAART) on HIV-specific CD4+ T-cell responses in comparison with virus-specific CD4+ T-cell responses against the persistent herpes viruses cytomegalovirus (CMV) and Epstein-Barr virus (EBV). To this end, HIV- and herpes virus-specific cellular immune responses were measured longitudinally in 10 seroconverters with long-term follow-up including 55 months of successful suppression of viral load by HAART. HIV- and CMV-specific CD4+ T cells producing interferon-gamma (IFNgamma) or interleukin-2 (IL-2) were analysed as well as proliferative capacity. EBV-specific CD4+ T cells were determined using a 12-day ex vivo assay. Initiation of HAART resulted in a transient increase of HIV-specific IL-2(+)IFNgamma(+)CD4(+) T cells and, to a lesser extent, IL-2(+)CD4(+) T cells. Long-term HAART resulted in an increase in HIV-, CMV- and EBV-specific CD4+ T-cell proliferative capacity. The increase in HIV- and herpes-virus-specific CD4+ T-cell proliferative capacity after 55 months of HAART suggests that the improved proliferative response is not specific for HIV, but reflects a more general improvement of antiviral immune responses, which is induced by HAART. 相似文献
18.
19.
Efficacy of constant infusion of A-77003, an inhibitor of the human immunodeficiency virus type 1 (HIV-1) protease, in limiting acute HIV-1 infection in vitro. 下载免费PDF全文
J A Bilello P A Bilello J J Kort M N Dudley J Leonard G L Drusano 《Antimicrobial agents and chemotherapy》1995,39(11):2523-2527
A-77003, a human immunodeficiency virus type 1 (HIV-1) protease inhibitor, is effective for both acute and chronic infection in vitro and was evaluated clinically by continuous intravenous infusion administration. The minimum effective dose (the concentration required to completely inhibit viral replication) was determined in vitro in a population of uninfected (99%) and HIV-infected (1%) cells exposed to A-77003 by continuous infusion in hollow-fiber bioreactors. The production of infectious HIV and release of p24 antigen from infected cells were completely inhibited in cultures exposed to A-77003 at or above a concentration of 0.5 microM. Measurement of unintegrated HIV-1 DNA synthesis and flow cytometric analysis for cells expressing HIV p24 antigen demonstrated that the spread of HIV to uninfected cells was also blocked at 0.5 microM A-77003. Dose deescalation to 0.25 microM or removal of A-77003 resulted in the limited spread of the virus throughout the culture, the resumption of viral DNA synthesis, and release of p24. HIV produced after exposure to 0.5 microM A-77003 was noninfectious for a period of 72 h after the removal of the drug. Addition of 1 mg of alpha 1-acid glycoprotein per ml to this in vitro system completely ablated the anti-HIV effect of 0.5 microM A-77003. These data suggest that determination of the minimum effective dose under conditions which simulate human pharmacodynamic patterns may be useful in determining the initial dose and schedule for clinical trials. However, other factors, such as serum protein binding, may influence the selection of a therapeutic regimen. 相似文献
20.
《Diagnostic microbiology and infectious disease》1997,28(4):179-182
BMS-181184 is a water-soluble derivative of the pradimicin group of antifungal compounds. We determined the in vitro activities of BMS-181184 and comparator agents amphotericin B, 5-fluorocytosine, fluconazole, and ketoconazole against 184 systemic fungal isolates collected at the Health Sciences Centre in Winnipeg, Canada, between 1987 and 1995. BMS-181184 demonstrated MICs of between 1 and 8 μg/mL for all Candida albicans, Candida glabrata, Candida tropicalis, Candida krusei, Candida lusitaniae, and Cryptococcus neoformans isolates tested. BMS-181184 was less active against Candida parapsilosis (MIC90 = 16 μg/mL) and Blastomyces dermatitidis (MIC90 = 32 μg/mL). Isolates of Candida species with fluconazole MICs of ≥16 μg/mL and those with fluconazole MICs of ≤8 μg/mL demonstrated similar BMS-181184 sensitivities. 相似文献