首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tonotopically comparable subfields of the primary auditory area (AI) and nonprimary auditory areas (non-AI), i.e. posterodorsal area (PD) and ventral auditory area (VA), in the rat cortex have similar topographies in the projection to the ventral division of the medial geniculate nucleus (MGV), but reverse topographies in the projection to the thalamic reticular nucleus (TRN). In this study, we examined axonal projections of single auditory TRN cells, using juxtacellular recording and labeling techniques, to determine features of TRN projections and estimate how the TRN mediates corticofugal inhibition along with the reverse topographies of cortical projections to the TRN. Auditory TRN cells sent topographic projections to limited parts of the MGV in a manner that relays cortical inputs from tonotopically comparable subfields of the AI and non-AI (PD and VA) to different parts of the MGV. The results suggest that corticofugal excitations from the AI and non-AI modulate thalamic cell activity in the same part of the MGV, whereas corticofugal inhibitions via the TRN modulate cell activity in different parts of the MGV with regard to tonotopic organization. The AI and non-AI could serve distinctive gating functions for auditory attention through the differential topography of inhibitory modulation. In addition, we obtained an intriguing finding that a subset of auditory TRN cells projected to the somatosensory but not to the auditory thalamic nuclei. There was also a cell projecting to the MGV and somatosensory nuclei. These findings extend the previously suggested possibility that TRN has a cross-modal as well as an intramodal gating function in the thalamus.  相似文献   

2.
This study investigates the origins of tone-evoked oscillations (5-13 Hz) in the thalamo-cortical auditory system of anaesthetized rats. In three separate experiments, the auditory sector of the reticular nucleus (RE), the auditory cortex and the auditory thalamus were inactivated by local applications of muscimol (1 mg/mL). To assess the efficacy of this procedure, recordings were performed in the inactivated structure in each experiment; and to determine the extent of the drug diffusion autoradiographic experiments were carried out. The evolution of the strength of the oscillations was followed using power spectra during the whole recording session. In the first experiment, muscimol injection in the auditory RE totally suppressed the tone-evoked oscillations in the auditory thalamus and cortex. In the second experiment, inactivation of the auditory cortex did not interfere with the presence of tone-evoked oscillations in the auditory RE. In the third experiment, inactivation of the auditory thalamus impaired the oscillations produced by cortical stimulation in the auditory RE. From these results, it appears that both the auditory thalamus and the auditory sector of the RE, but not the auditory cortex, are involved in the generation of stimulus-evoked oscillations in the thalamo-cortical auditory system.  相似文献   

3.
In this study and its companion, the cortical and subcortical connections of the medial belt region of the marmoset monkey auditory cortex were compared with the core region. The main objective was to document anatomical features that account for functional differences observed between areas. Injections of retrograde and bi-directional anatomical tracers targeted two core areas (A1 and R), and two medial belt areas (rostromedial [RM] and caudomedial [CM]). Topographically distinct patterns of connections were revealed among subdivisions of the medial geniculate complex (MGC) and multisensory thalamic nuclei, including the suprageniculate (Sg), limitans (Lim), medial pulvinar (PM), and posterior nucleus (Po). The dominant thalamic projection to the CM was the anterior dorsal division (MGad) of the MGC, whereas the posterior dorsal division (MGpd) targeted RM. CM also had substantial input from multisensory nuclei, especially the magnocellular division (MGm) of the MGC. RM had weak multisensory connections. Corticotectal projections of both RM and CM targeted the dorsomedial quadrant of the inferior colliculus, whereas the CM projection also included a pericentral extension around the ventromedial and lateral portion of the central nucleus. Areas A1 and R were characterized by focal topographic connections within the ventral division (MGv) of the MGC, reflecting the tonotopic organization of both core areas. The results indicate that parallel subcortical pathways target the core and medial belt regions and that RM and CM represent functionally distinct areas within the medial belt auditory cortex.  相似文献   

4.
The thalamic reticular nucleus (TRN) occupies a highly strategic position to modulate sensory processing in the thalamocortical loop circuitries. It has been shown that TRN visual cells projecting to first‐ and higher‐order thalamic nuclei have distinct levels of burst spiking, suggesting the possibility that the TRN exerts differential influences on information processing in first‐ and higher‐order thalamic nuclei that compose the lemniscal and non‐lemniscal sensory systems, respectively. To determine whether this possibility could extend across sensory modalities, the present study examined activities of TRN auditory cells projecting to the ventral and dorsal divisions (first‐ and higher‐order auditory thalamic nuclei) of the medial geniculate nucleus (TRN‐MGV and TRN‐MGD cells) in anesthetized rats, using juxta‐cellular recording and labeling techniques. Burst spiking of TRN‐MGV cells consisted of larger numbers of spikes with shorter inter‐spike intervals as compared with that of TRN‐MGD cells in auditory response evoked by noise burst stimuli. Similar distinctions, although not statistically significant, were observed in spontaneous activity. Furthermore, the features of burst spiking varied in association with the topographies of cell body and terminal field locations. These features of burst spiking are similar to those observed in the two types of TRN visual cells. First‐ and higher‐order thalamic nuclei are known to have distinct levels of burst spiking across sensory modalities. Taken together, it is suggested that the distinctions in burst spiking in the TRN, in conjunction with those in thalamic nuclei, could constitute distinct circuitries for lemniscal and non‐lemniscal sensory processing in the thalamocortical loop.  相似文献   

5.
The γ-aminobutyric acid (GABA)-containing neurons of the thalamic reticular nucleus (nRt) are a major source of inhibitory innervation in dorsal thalamic nuclei. Individual nRt neurons were intracellularly recorded and labelled in an in vitro rat thalamic slice preparation to investigate their projection into ventrobasal thalamic nuclei (VB). Camera lucida reconstructions of 37 neurons indicated that nRt innervation ranges from a compact, focal projection to a widespread, diffuse projection encompassing large areas of VB. The main axons of 65% of the cells gave rise to intra-nRt collaterals prior to leaving the nucleus and, once within VB, ramified into one of three branching patterns cluster, intermediate, and diffuse. The cluster arborization encompassed a focal region averaging approximately 25,000 μm2 and contained a high density of axonal swellings, indicative of a topographic projection. The intermediate structure extended across an area approximately fourfold greater and also contained numerous axonal swellings. The diffuse arborization of nRt neurons covered a large region of VB and contained a relatively low density of axonal swellings. Analysis of somatic size and shape revealed that diffuse arborizations arose from significantly smaller, fusiform-shaped somata. Cytochrome oxidase reactivity or parvalbumin immunoreactivity was used to delineate a discontinuous staining pattern representing thalamic barreloids. The size of a cluster arborization closely approximated that of an individual barreloid. The heterogeneous arborizations from nRt neurons may reflect a dynamic range of inhibitory influences of nRt on dorsal thalamic activity. © 1996 Wiley-Liss, Inc.  相似文献   

6.
The thalamic reticular nucleus (TRN) receives topographically organized input from specific sensory nuclei such as the lateral geniculate nucleus. The present study shows this in the rat. However, the pattern of thalamic connections to the limbic reticular sector is unknown. Injecting biocytin into the ventral parts of anteroventral and anteromedial nuclei labeled neurons and axons in the rostral TRN. Filled axon collaterals and their terminals occupied a rectangular sheet in a plane close to the horizontal, and were confined to the inner zone (the medial portion) of the limbic TRN. Retrogradely filled cells were in the middle of the rostral pole in the same horizontal plane, receiving synapses from surrounding labeled boutons. In electron micrographs, thalamic terminals were found to contain round, densely packed synaptic vesicles and formed asymmetrical synapses onto reticular somata and dendritic profiles. Displacing the injection site along the dorso-ventral and rostro-caudal axs in the anterior nuclei produced corresponding shifts of antero- and retrograde labeling within the inner reticular zone. Projections from the dorsal portions of the anterior nuclei did not follow this pattern. Axons from the anterodorsal nucleus occupied the rostralmost tip of both inner and outer zones of the dorsal limbic sector. In accordance with earlier reports, the limbie sector was found to represent several dorsal thalamic nuclei parallel to each other medio-laterally. A topography is described for the limbic reticulo-thalamic connections, suggesting that the rostral TRN is able to influence circumscribed areas of the limbic thalamus. © 1995 Wiley-Liss, Inc.  相似文献   

7.
The ventral lateral geniculate nucleus (LGNv) is a retinorecipient part of the ventral thalamus and in cats, it consists of medial (M), medial intermediate (IM), lateral intermediate (IL), lateral (L), and dorsal (D) subdivisions. These subdivisions can be differentiated not only by their cytoarchitecture, but also by their connectivity and putative functions. The LGNv may play a role in visuomotor gating, in that there is evidence of cerebellar afferent projections to the intermediate subdivisions. The cerebellar posterior interpositus (IP) and lateral (LC) nuclei are known to project to IM and IL, but the specifics of these projections are unclear. We hypothesized that the IP and LC project differentially to IM and IL. To evaluate LGNv innervation by the deep cerebellar nuclei, we injected the tract‐tracer wheat germ agglutinin‐horseradish peroxidase (WGA‐HRP) into several different regions of the LGNv and cerebellar nuclei of adult cats in either sex. Small injections into the middle and posterior LGNv retrogradely labeled cells in the ventral part of the IP. However, injections in the anterior regions of the LGNv, with or without diffusion into the thalamic reticular nucleus (Re), retrogradely labeled cells in the ventral part of both the IP and the LC. Confirmatory injections into the IP and LC produced terminal‐like labeling distributed in IM, IL, and Re; injections mostly localized to the LC resulted in labeling mainly in IM and Re. We concluded that the IP projects to IL whereas the LC projects to IM and Re.  相似文献   

8.
Thalamocortical relay neurons from the rat ventrobasal nucleus were identified physiologically and injected intracellularly with horseradish peroxidase. The axons of these cells were followed through serial sections in order to determine if collaterals were given off within the ventrobasal nucleus or the thalamic reticular nucleus. No local collaterals were seen in the ventrobasal nucleus, thus indicating that interactions between relay cells in this nucleus are minimal. Of axons that could be followed into the internal capsule, 76% gave off visible collaterals in the thalamic reticular nucleus. Half of these axons had collaterals showing extensive branching with the potential of innervating a large number of thalamic reticular neurons. The other half had short, simple branches of restricted extent. No correlations were found between the physiological properties of a cell and the existence or extent of axon collaterals. These results describe the anatomical basis for the initial part of a feedback loop through the thalamic reticular nucleus that provides the major inhibitory influence on rat ventrobasal neurons.  相似文献   

9.
The present study utilises the capacity of wheat germ agglutinin-conjugated horseradish peroxidase to label both afferent and efferent projections from selected regions of the thalamic reticular nucleus (TRN) to the pulvinar lateralis-posterior complex (Pul-LP) of the cat. Fourteen injections into the TRN located between anterior-posterior levels 8.5 and 4.5 were analysed. The projection of the TEN to the Pul-LP complex is roughly organised in a topographic manner and is not widespread within the thalamus. Anterograde labelling in the Pul-LP extended rostrocaudally with a slight oblique dorsoventral orientation. Projections to the medial LP were predominantly but not exclusively from rostral areas of TRN, while projections to the lateral LP were largely from caudal areas of the TRN. Projections to other areas of the Pul-LP were sparse. The connections between TRN and Pul-LP were reciprocal, although the distribution of labelled cells and anterograde labelling was not completely overlapping. Reciprocal connections with the dorsal lateral geniculate nucleus were largely with the C-laminae and the medial interlaminar nucleus. The results are discussed with reference to the corticothalamic projections and the visuotopy of the Pul-LP. © 1995 Wiley-Liss, Inc.  相似文献   

10.
Patterns of connections underlying cross-modality integration were studied by injecting distinguishable, retrograde tracers (Fluoro-Gold and diamidino yellow) in pairwise manner into different sensory representations (visual, somatosensory, and auditory) in the cerebral cortex of the rat. In agreement with previous single tracer studies, our results indicate that the central core of sensory areas receives projections mainly from a set of association areas located in a ringlike fashion along the margin of the cortical mantle. The visual cortex received projections from areas 48/49, area 29d, posterior agranular medial cortex (AGm), area 11, area 13, and area 35. All these areas were also connected to the auditory cortex with the exception of areas 29d and AGm. However, lateral to area 29d and posterior AGm, a band of neurons projecting to the auditory cortex was present. Somatosensory cortex was connected mainly with the more anterior aspect of the hemisphere, which included primary motor area, area 11, and area 13. The patterns of intermodality relationships revealed in the present study were of two main categories. In the anterior and lateral areas, an intermingling of cells projecting to different sensory modalities was observed. In contrast, in areas located along the medial aspect of the hemisphere, cells connected to different sensory modality representations tended to be segregated from each other. Postsubicular cortex (areas 48/49) contained both intermingled and segregated groups of cells. The incidence of clearly identified double-labeled cells concurrently projecting to two different sensory representations was extremely rare. These patterns may form a substrate for different levels of cross-modal sensory integration in the rat cortex.  相似文献   

11.
The expression of a presynaptic phosphoprotein, growth-associated protein (GAP)-43, is associated with synaptogenesis during development and synaptic remodeling in the adult. This study examined GAP-43 mRNA expression and distribution in primary and secondary areas of visual, auditory, and somatosensory cortex of the adult rat, by in situ hybridization with a digoxigenin-coupled mRNA probe, focusing particularly on the corticothalamic cells in layers 5 and 6. In the six cortical areas studied, GAP-43 mRNA was expressed predominantly in layers 5 and 6 and was greater in secondary than primary areas. There were densely labeled cells in layers 5 and 6 of all areas, which showed a restricted sublaminar distribution in primary areas and more even distribution in secondary areas. Combining retrograde transport of rhodamine beads with in situ hybridization in visual and auditory cortex showed that corticothalamic cells in layers 5 and 6 express GAP-43 mRNA. There are more of these GAP-43 mRNA positive corticothalamic cells in layer 5 of secondary areas than in primary areas. The evidence suggests that in the adult rat, plasticity related to GAP-43 is present in primary and secondary sensory cortex and more so in secondary areas.  相似文献   

12.
Somatosensory-evoked potential (SEP) components recorded over the primary somatosensory cortex (SI) and vertex in the rat within the 10-30 ms latency range were characterised with respect to the anatomy and function of the primary somatosensory pathway. To this aim, these components were compared to SEP components in the similar latency range recorded from the ventral posterolateral thalamic (VPL) nucleus, a nucleus known to be part of the subcortical structure of the primary somatosensory pathway and were described with respect to their stimulus-response characteristics and their response to the mu-opioid agonist fentanyl. The VPL positive (P)11-negative (N)18-P22 and SI P13-N18-P22 differed with respect to peak occurrence (P11 versus P13, respectively) and waveform morphology, but did not differ with respect to stimulus-response characteristics and their response to fentanyl. When compared to the vertex P15-N19-P26, the VPL P11-N18-P22 and SI P13-N18-P22 complex follow a relatively fast acquisition in stimulus intensity-response and were affected significantly less to increasing stimulus frequencies and to fentanyl. These results demonstrated that when compared to the VPL-SEP and SI-SEP, the Vx-SEP was modulated differently by the experimental conditions. It is suggested that this may be related to involvement of neural structures within different functional somatosensory pathways.  相似文献   

13.
We investigated the synaptic terminals of fibers originating in the ventroposteromedial thalamic nucleus (VPM) and projecting to the main input layers (IV/III) of the rat posteromedial barrel subfield. It was our aim to determine whether or not the subpopulation of vasoactive intestinal polypeptide (VIP)-immunoreactive neurons in these layers are directly innervated by the sensory thalamus. Anterograde tracing with Phaseolus vulgaris leucoagglutinin (PHA-L) and immunohistochemistry for VIP were combined for correlated light and electron microscopic examination. Columns of cortical tissue were well defined by barrel-like patches of PHA-L-labeled fibers and boutons in layers IV and III. Within these columns VIP-immunoreactive perikarya were located mainly in supragranular layers. Marked perikarya were also seen in infragranular layers, but their immunoreactivity was often weaker. Granular layer IV, which is the main terminal field for thalamic fibers, contained fewer VIP neurons than supragranular layers. In the light microscope, however, PHA-L-labeled fibers appeared to contact the somata or proximal dendrites of 60–86% of the layer IV VIP neurons. By contrast, only 18–35% of the VIP neurons in the supragranular layers, which receive a moderately dense projection from the VPM, appeared to be contacted. PHA-L-labeled boutons were seen close to 13–25% of infragranular VIP-positive cells. Electron microscopy showed that thalamic fibers formed at most four asymmetric synapses on a single layer IV, VIP-positive neuron. Although the proportion of VIP-positive neurons with labeled synapses was lower in supragranular layers, most of them shared multiple asymmetric synapses with labeled thalamic fibers. Up to six labeled synapses were seen on individual VIP neurons in layer III. We conclude that subpopulations of VIP-immunoreactive neurons, located in layers IV, III, and II are directly innervated by the VPM. These neurons may be involved in the initial stages of cortical processing of sensory information from the large, mystacial vibrissae. Since VIP is known to be colocalized with the inhibitory transmitter GABA, it is likely that VIP neurons participate in the shaping of the receptive fields in the barrel cortex. © 1996 Wiley-Liss, Inc.  相似文献   

14.
It is a well-known phenomenon that cerebral blood flow is coupled to neural activation induced by non-noxious somatosensory stimulation. However, basic questions related to pain-induced cerebral blood flow changes remain unanswered. In the present study, the sciatic nerve of anesthetized rats was subjected to electric stimulation with noxious and non-noxious parameters. Changes in local cerebral blood flow and neuronal activity were determined simultaneously in the sensory cortex and in the thalamus by laser-Doppler flowmetry and c-fos immunohistochemistry, respectively. The role of different vasoregulatory mechanisms and the pain-induced increase in mean arterial blood pressure (MABP) were examined with specific blocking agents and by means of rapid intra-arterial transfusion. Noxious stimulation resulted in significant enhancement of neuronal activity both in the thalamus and in the somatosensory cortex indicated by marked c-fos expression in these areas. Cortical and thalamic blood flow (cBF and tBF) increased by 47±4 and 44±3% during the stimulation while the MABP elevated by 35±2%. Similar changes in MABP induced by intra-arterial transfusion had no effect on tBF, while cBF increased only by 18±5%. Blockade of ATP sensitive potassium channels (K+ATP) and sympathetic β-receptors significantly attenuated the pain-induced blood flow increases in both investigated areas, while inhibition of nitric oxide synthase was effective only in the thalamus. The blockade of the sympathetic -receptors, opiate receptors, and the cyclooxygenase enzyme had no effect on the pain-induced cerebral blood flow elevations. These findings demonstrate that during noxious stimulation, cerebral blood flow is adjusted to the increased neural activity by the interaction of vasoconstrictor autoregulatory and specific vasodilator mechanisms, involving the activation of sympathetic β-receptors, K+ATP-channels and the release of nitric oxide.  相似文献   

15.
The striatum integrates sensory information to enable action selection and behavioural reinforcement. In the rat, a large topographical projection from the rat barrel cortex to widely distributed areas of the striatum is assumed to be an important structural component supporting these processes. The striatal sensory response is, however, not comprehensively understood at a network level. We used a 10-Hz, 100-ms air puff, allowing undamped movement of multiple whiskers, to look at functional connectivity in contralateral cortex and striatum in response to sensory stimulation. Simultaneous recordings of cortical and striatal local field potentials (LFPs) were made under isoflurane anaesthesia in 15 male Brown Norway rats. Four electrodes were placed in the barrel cortex while the dorsolateral striatum was mapped with a 500-μm resolution, resulting in a maximum of 315 recording positions per animal. Significant event-related responses were unevenly distributed throughout the striatum in 34.8% of positions recorded within this area. Only 10.3% of recorded positions displayed significant total power increases in the LFPs during the stimulation period at the stimulus frequency. This suggests that the responses seen in the LFPs are due to phase rearrangement rather than an amplitude increase in the signal. Analysis of corticostriatal imaginary coherence revealed stimulus-induced changes in the functional connectivity of 12% of corticostriatal pairs, the sensory response of sparsely distributed neuronal ensembles within the dorsolateral striatum is reflected in the phase relationship between the cortical and striatal local fields.  相似文献   

16.
Afferent projections to the thalamic lateral dorsal nucleus were examined in the rat by the use of retrograde axonal transport techniques. Small iontophoretic injections of horseradish peroxidase were placed at various locations within the lateral dorsal nucleus, and the location and morphology of cells of origin of afferent projections were identified by retrograde labeling. For all cases examined, subcortical retrogradely labeled neurons were most prominent in the pretectal complex, the intermediate layers of the superior colliculus, and the ventral lateral geniculate nucleus. Labeled cells were also seen in the thalamic reticular nucleus and the zona incerta. Within the cerebral cortex, labeled cells were prominent in the retrosplenial areas (areas 29b, 29c, and 29d) and the presubiculum. Labeled cells were also seen in areas 17 and 18 of occipital cortex. Peroxidase injections in the dorsal lateral part of the lateral dorsal nucleus result in labeled neurons in all of the ipsilateral pretectal nuclei, but especially those that receive direct retinal afferents. Labeled cells were also seen in the ventral lateral geniculate nucleus and the rostral tip of laminae IV-VI of the superior colliculus. In contrast, peroxidase injections in ventral medial portions of the lateral dorsal nucleus result in fewer labeled pretectal cells, and these labeled cells are found exclusively in the pretectal nuclei that do not receive retinal afferents. Other labeled cells following injections in the rostral and medial portions of the lateral dorsal nucleus are seen contralaterally in the medial pretectal region and nucleus of the posterior commissure, and bilaterally in the rostral tips of laminae IV and V of the superior colliculus. Camera lucida drawings of HRP labeled cells reveal that projecting cells in each pretectal nucleus have a characteristic soma size and dendritic branching pattern. These results are discussed with regard to the type of sensory information that may reach the lateral dorsal nucleus and then be relayed on to the medial limbic cortex.  相似文献   

17.
Previous physiological studies have identified a tonotopically organized primary auditory cortical field (AI) in the rat. Some of this prior research suggests that the rat, like other mammals, may have additional fields surrounding AI. We, therefore, recorded in the Sprague-Dawley rat extracellular responses of single neurons throughout AI, and continued posteriorly to verify the existence of a posterior field (P) and to compare the neuronal properties in the two regions. Acoustic stimuli, including tones, bandpass noise, broadband noise, and temporally modulated stimuli, were delivered dichotically via sealed systems. Consistent with previous findings, AI was characterized by an anterior-to-posterior tonotopic progression from high to low frequencies (ranging from >40 kHz to <1 kHz). A frequency reversal at the posterior border of AI marked entry into a second core tonotopic region, P, with progressively higher frequencies encountered further posteriorly, up to a point (approximately 8 kHz) where cells were no longer tone responsive. Nevertheless, bandpass noise was an effective stimulus in P, enabling characterization of cells up to 15 kHz. Compared with AI, the frequency tuning of response areas was relatively broader in P, the response latency was often longer and more variable, and the response magnitude was more commonly a nonmonotonic function of stimulus level. In both fields, most neurons were binaurally influenced. The presence of multiple auditory cortical fields in the rat is consistent with auditory cortical organization in other mammals. Moreover, the response properties of P relative to AI in the rat also resemble those found in other mammals. Finally, the physiological data suggest that core auditory cortex (temporal area TE1) is composed not only of AI as previously thought, but also of at least two other subdivisions, P and an anterior field (A). Furthermore, our physiological characterization of TE1 reveals that it is larger than suggested by previous anatomical characterizations.  相似文献   

18.
The parvocellular subparafascicular thalamic nucleus (SPFp) is located in the posterior thalamus, consists of horizontally oriented cells, and extends from rostromedial to caudolateral, fusing with the posterior intralaminar nucleus and the peripeduncular nucleus. The present study demonstrates a chemoarchitechtonic and functional parcellation of the rat SPFp. Analysis of the distributions of the neuropeptides galanin, calcitonin gene related peptide (CGRP), substance P, and calbindin revealed the existence of a medial and lateral subdivision within SPFp, and a possible intermediate subdivision. The medial subdivision contains a dense population of galanin-immunoreactive fibers, originating from galanin neurons in the lumbosacral spinal cord. In contrast, the lateral subdivision contains CGRP-positive fibers and neurons. The presence of substance P and calbindin immunoreactivity throughout the entire nucleus suggests that these are separate subdivisions of SPFp, rather than different subnuclei. The present study also investigated the functional association of the separate subdivisions of SPFp for male and female rat sexual behavior. In the medial subdivision, Fos-positive neurons were activated in males by display of ejaculation and in females by vaginocervical stimulation. Thus, Fos induction in medial SPFp appears to reflect processing of inputs related to those events. In contrast, sexual behavior did not induce Fos in the lateral SPFp. Taken together, the present results indicate the existence of separate subdivisions in SPFp that are involved in different behavioral functions. The medial SPFp may process inputs important for sexual behavior, whereas the lateral SPFp may be involved in convergence of auditory and nociceptive inputs important for conditioned fear responses.  相似文献   

19.
Akira Shosaku   《Brain research》1985,347(1):36-40
Response properties of vibrissa-responding neurons in the somatosensory part of the rat thalamic reticular nucleus (S-TR) and ventro-basal complex (VB) were studied. Receptive field size was approximately the same between S-TR and VB neurons, i.e. most of the neurons were driven from only single vibrissa. On the other hand, there was a noticeable difference in direction sensitivity. VB neurons generally had a preference for a particular direction of vibrissa deflection; but most of the S-TR neurons responded equally well to all directions. In addition to the neurons showing excitatory responses, there were the small number of VB neurons which had exclusively inhibitory receptive fields. Response latencies of S-TR neurons to electrical stimulation of the medial lemniscus were longer by 0.9 ms on the average than those of VB neurons, indicating that the former neurons were driven monosynaptically by the latter.  相似文献   

20.
Our attention to a sensory cue of a given modality interferes with attention to a sensory cue of another modality. However, an object emitting various sensory cues attracts attention more effectively. The thalamic reticular nucleus (TRN) could play a pivotal role in such cross‐modal modulation of attention given that cross‐modal sensory interaction takes place in the TRN, because the TRN occupies a highly strategic position to function in the control of gain and/or gating of sensory processing in the thalamocortical loop. In the present study cross‐modal interactions between visual and auditory inputs were examined in single TRN cells of anesthetised rats using juxta‐cellular recording and labeling techniques. Visual or auditory responses were modulated by subthreshold sound or light stimuli, respectively, in the majority of recordings (46 of 54 visual and 60 of 73 auditory cells). However, few bimodal sensory cells were found. Cells showing modulation of the sensory response were distributed in the whole visual and auditory sectors of the TRN. Modulated cells sent axonal projections to first‐order or higher‐order thalamic nuclei. Suppression predominated in modulation that took place not only in primary responses but also in late responses repeatedly evoked after sensory stimulation. Combined sensory stimulation also evoked de‐novo responses, and modulated response latency and burst spiking. These results indicate that the TRN incorporates sensory inputs of different modalities into single cell activity to function in sensory processing in the lemniscal and non‐lemniscal systems. This raises the possibility that the TRN constitutes neural pathways involved in cross‐modal attentional gating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号