首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the central tasks of stem cell biology is to understand the molecular mechanisms that control self-renewal in stem cells. Several cytokines are implicated as crucial regulators of hematopoietic stem cells (HSCs), but little is known about intracellular signaling for HSC self-renewal. To address this issue, we attempted to clarify how self-renewal potential is enhanced in HSCs without the adaptor molecule Lnk, as in Lnk-deficient mice HSCs are expanded in number >10-fold because of their increased self-renewal potential. We show that Lnk negatively regulates self-renewal of HSCs by modifying thrombopoietin (TPO)-mediated signal transduction. Single-cell cultures showed that Lnk-deficient HSCs are hypersensitive to TPO. Competitive repopulation revealed that long-term repopulating activity increases in Lnk-deficient HSCs, but not in WT HSCs, when these cells are cultured in the presence of TPO with or without stem cell factor. Single-cell transplantation of each of the paired daughter cells indicated that a combination of stem cell factor and TPO efficiently induces symmetrical self-renewal division in Lnk-deficient HSCs but not in WT HSCs. Newly developed single-cell immunostaining demonstrated significant enhancement of both p38 MAPK inactivation and STAT5 and Akt activation in Lnk-deficient HSCs after stimulation with TPO. Our results suggest that a balance in positive and negative signals downstream from the TPO signal plays a role in the regulation of the probability of self-renewal in HSCs. In general, likewise, the fate of stem cells may be determined by combinational changes in multiple signal transduction pathways.  相似文献   

2.
Hematopoiesis is a tightly controlled process maintained by a small pool of hematopoietic stem cells (HSCs). Here, we demonstrate that the LT-HSC, MPP, premegakaryocytic/erythroid, Pre CFU-E, Pre GM, MkP, and granulocyte-macrophage compartments were all significantly reduced in E2A-deficient bone marrow. Despite a severe depletion of erythroid progenitors, the erythrocyte and megakaryocyte compartments were equivalent in E2A-deficient bone marrow as compared with wild-type mice. E2A-deficient HSCs also failed to efficiently maintain the HSC pool on serial transplantation, and we demonstrate that the E2A proteins regulate cell cycle progression of HSCs by regulating the expression of p21Cip1, p27Kip1, and the thrombopoietin receptor, known regulators of HSC self-renewal activity. Based on these observations, we propose that the E2A proteins promote the developmental progression of the entire spectrum of early hematopoietic progenitors and to suppress an erythroid specific program of gene expression in alternative cell lineages. Last, the data mechanistically link E2A, cell cycle regulators, and the maintenance of the HSC pool in a common pathway.  相似文献   

3.
Hematopoietic stem cells (HSCs) are the key elements responsible for maintaining blood-cell production throughout life and for lymphohematopoietic reconstitution following bone marrow (BM) transplantation. Enhancement of the engrafting potential and expansion capabilities of HSCs as well as hematopoietic progenitor cells (HPCs) has been a long-time desire as a means of reducing the risks and difficulties that accompany BM transplantation. The ability of HSCs/HPCs to reconstitute the hematopoietic system of irradiated hosts is negatively regulated by an intracellular adaptor protein, Lnk. Here we have identified the functional domains of Lnk and developed a dominant-negative (DN) Lnk mutant that inhibits the functions of Lnk endogenously expressed in the HSCs/HPCs and thereby potentiates the HSCs/HPCs for engraftment. Importantly, even transient expression of DN-Lnk in HSCs/HPCs facilitated their engraftment under nonmyeloablative conditions and fully reconstituted the lymphoid compartments of immunodeficient host animals. HPCs expressing DN-Lnk were efficiently trapped by immobilized vascular cell adhesion molecule-1 (VCAM-1) in a transwell migration assay, suggesting involvement of Lnk in the regulation of cell mobility or cellular interaction in microenvironments. Transient inhibition of Lnk or Lnk-mediated pathways could be a potent approach to augment engraftment of HSCs/HPCs without obvious side effects.  相似文献   

4.
5.
Engraftment of hematopoietic stem cells (HSCs) is a pre-requisite for the success of hematopoietic stem cell transplantation (HSCT). Fetal blood cell (FBC)-derived endothelial progenitor cells (EPCs) are known to facilitate HSC reconstitution in the early phase. However, longer term effects on HSCs remain unclear. The purpose of this study was to evaluate the effect of EPCs on the quality of transplanted hematopoietic stem cells in mouse HSCT model. BALB/c mice were randomly divided into four groups, namely, control, total body irradiation only, HSCT, and HSCT + EPCs (with infusion of 5?×?105 EPCs). Mice was sacrificed on days 7, 14, 21, and 28 post-HSCT for the analysis of the bone marrow pathology by H&E staining, measurement of c-kit+sca-1+, c-kit+, apoptosis, and necrosis by flow cytometry as well as colony formation assay. Secondary transplantation involved the injection of transplanted BALB/c-derived HSCs into new TBI-treated BALB/c mice. Compared with HSCT, EPCs infusion promoted the differentiation and reduced apoptosis of transplanted HSCs, possibly through promotion of vascular repair of the bone marrow microenvironment via differentiation into the bone marrow endothelial cells. Significantly, EPCs’ effect on HSCs was maintained for a long period as demonstrated using a secondary transplantation approach. These data revealed EPCs improved the quality and quantity of transplanted HSCs and maintained their effects over the longer term, suggesting a novel approach to improve HSCT efficiency and outcomes.  相似文献   

6.
The enhanced production of monocytes expressing pro-inflammatory markers such as the integrin CD11b in patients with hypercholesterolemia may promote vascular inflammation and exacerbate atherogenesis. The objective of the present study was to determine whether hypercholesterolemia stimulates the production of CD11b(+) monocytes in bone marrow, and whether the renin-angiotensin system participates in this process and thus provides a target for therapeutic intervention. The dietary induction of hypercholesterolemia in adult male cynomolgus monkeys was accompanied by increased bone marrow cellularity and elevated peripheral blood and bone marrow monocyte CD11b expression. Isolated bone marrow CD34(+) hematopoietic stem cells (HSCs) evaluated by in vitro functional assays exhibited enhanced myeloproliferative capacity and differentiation into CD11b(+) monocytes. Treatment of hypercholesterolemic monkeys with the angiotensin II AT(1) receptor blocker losartan for 15 weeks reduced bone marrow cellularity, suppressed peripheral blood and bone marrow monocyte CD11b expression, and normalized CD34(+) cell function assays. All variables returned to pretreatment levels 6 weeks after discontinuation of losartan treatment. Hypercholesterolemia was associated with increased CD34(+) cell AT(1) receptor expression and an exaggerated in vitro myeloproliferative response to angiotensin II stimulation that positively correlated to plasma LDL concentrations. In vitro exposure to native low-density lipoproteins (LDL) also increased CD34(+) cell AT(1) receptor expression and the myeloproliferative response to angiotensin II stimulation in a dose-dependent and receptor-mediated manner. Our data provide support for a positive regulatory role of plasma LDL on AT(1) receptor-mediated HSC differentiation and the production of pro-atherogenic monocytes. LDL-regulated HSC function may explain in part hypercholesterolemia-induced inflammation as well as the anti-inflammatory and anti-atherosclerotic effects of AT(1) receptor blockers.  相似文献   

7.
Tong W  Zhang J  Lodish HF 《Blood》2005,105(12):4604-4612
Erythropoietin (Epo), along with its receptor EpoR, is the principal regulator of red cell development. Upon Epo addition, the EpoR signaling through the Janus kinase 2 (JAK2) activates multiple pathways including Stat5, phosphoinositide-3 kinase (PI-3K)/Akt, and p42/44 mitogen-activated protein kinase (MAPK). The adaptor protein Lnk is implicated in cytokine receptor signaling. Here, we showed that Lnk-deficient mice have elevated numbers of erythroid progenitors, and that splenic erythroid colony-forming unit (CFU-e) progenitors are hypersensitive to Epo. Lnk(-/-) mice also exhibit superior recovery after erythropoietic stress. In addition, Lnk deficiency resulted in enhanced Epo-induced signaling pathways in splenic erythroid progenitors. Conversely, Lnk overexpression inhibits Epo-induced cell growth in 32D/EpoR cells. In primary culture of fetal liver cells, Lnk overexpression inhibits Epo-dependent erythroblast differentiation and induces apoptosis. Lnk blocks 3 major signaling pathways, Stat5, Akt, and MAPK, induced by Epo in primary erythroblasts. In addition, the Lnk Src homology 2 (SH2) domain is essential for its inhibitory function, whereas the conserved tyrosine near the C-terminus and the pleckstrin homology (PH) domain of Lnk are not critical. Furthermore, wild-type Lnk, but not the Lnk SH2 mutant, becomes tyrosine-phosphorylated following Epo administration and inhibits EpoR phosphorylation and JAK2 activation. Hence, Lnk, through its SH2 domain, negatively modulates EpoR signaling by attenuating JAK2 activation, and regulates Epo-mediated erythropoiesis.  相似文献   

8.
The 67-kDa laminin receptor (67LR) is a nonintegrin cell-surface receptor with high affinity for laminin, which plays a key role in tumor invasion and metastasis. We investigated the role of 67LR in granulocyte colony-stimulating factor (G-CSF)-induced mobilization of CD34+ hematopoietic stem cells (HSCs) from 35 healthy donors. G-CSF-mobilized HSCs, including CD34+/CD38- cells, showed increased 67LR expression as compared with unstimulated marrow HSCs; noteworthy, also, is the fact that the level of 67LR expression in G-CSF-mobilized HSCs correlated significantly with mobilization efficiency. During G-CSF-induced HSC mobilization, the expression of laminin receptors switched from alpha6 integrins, which mediated laminin-dependent adhesion of steady-state human marrow HSCs, to 67LR, responsible for G-CSF-mobilized HSC adhesion and migration toward laminin. In vitro G-CSF treatment, alone or combined with exposure to marrow-derived endothelial cells, induced 67LR up-regulation in marrow HSCs; moreover, anti-67LR antibodies significantly inhibited transendothelial migration of G-CSF-stimulated marrow HSCs. Finally, G-CSF-induced mobilization in mice was associated with 67LR up-regulation both in circulating and marrow CD34+ cells, and anti-67LR antibodies significantly reduced HSC mobilization, providing the first in vivo evidence for 67LR involvement in stem-cell egress from bone marrow after G-CSF administration. In conclusion, 67LR up-regulation in G-CSF-mobilized HSCs correlates with their successful mobilization and reflects its increase in marrow HSCs, which contributes to the egress from bone marrow by mediating laminin-dependent cell adhesion and transendothelial migration.  相似文献   

9.
Hematopoietic stem cells (HSCs) reside in complex bone marrow microenvironments, where niche-induced signals regulate hematopoiesis. Focal adhesion kinase (Fak) is a nonreceptor protein tyrosine kinase that plays an essential role in many cell types, where its activation controls adhesion, motility, and survival. Fak expression is relatively increased in HSCs compared to progenitors and mature blood cells. Therefore, we explored its role in HSC homeostasis. We have used the Mx1-Cre-inducible conditional knockout mouse model to investigate the effects of Fak deletion in bone marrow compartments. The total number as well as the fraction of cycling Lin(-)Sca-1(+)c-kit(+) (LSK) cells is increased in Fak(-/-) mice compared to controls, while hematopoietic progenitors and mature blood cells are unaffected. Bone marrow cells from Fak(-/-) mice exhibit enhanced, long-term (i.e., 20-week duration) engraftment in competitive transplantation assays. Intrinsic Fak function was assessed in serial transplantation assays, which showed that HSCs (Lin(-)Sca-1(+)c-kit(+)CD34(-)Flk-2(-) cells) sorted from Fak(-/-) mice have similar self-renewal and engraftment ability on a per-cell basis as wild-type HSCs. When Fak deletion is induced after engraftment of Fak(fl/fl)Mx1-Cre(+) bone marrow cells into wild-type recipient mice, the number of LSKs is unchanged. In conclusion, Fak inactivation does not intrinsically regulate HSC behavior and is not essential for steady-state hematopoiesis. However, widespread Fak inactivation in the hematopoietic system induces an increased and activated HSC pool size, potentially as a result of altered reciprocal interactions between HSCs and their microenvironment.  相似文献   

10.
11.
Background Hepatic stellate cells (HSCs) play a pivotal role in liver fibrogenesis. Here, we studied whether the iron chelator deferoxamine (DFO) affected cultured HSC activation and apoptosis. Methods The effect of DFO on HSCs was investigated using quiescent and activated stellate cells. Results Treatment with DFO inhibited HSC activation, resulting in the reduced expression of α-smooth muscle actin protein and type I procollagen, matrix metalloproteinase-2 and -9, and tissue inhibitors of metalloproteinase-1 and -2 mRNAs. DFO induced apoptosis of activated HSCs, which was associated with decreasing Bcl-2 expression and the release of cytochrome c from the mitochondria to the cytosol with enhanced caspase-3 activity. DFO also induced activated HSCs to express peroxisome proliferator-activated receptor γ with the reaccumulation of intracellular lipids. Conclusions The iron chelation of stellate cells inhibits their activation, causing them to become deactivated as well as to undergo apoptosis. These data suggest a potential role for an iron chelation treatment of liver fibrosis.  相似文献   

12.
In the injured liver, hepatic stellate cells (HSCs) secrete many different cytokines, recruit lymphocytes, and thus participate actively in the pathogenesis of liver disease. Little is known of the role of HSCs in immune responses. In this study, HSCs isolated from C57BL/10 (H2b) mice were found to express scant key surface molecules in the quiescent stage. Activated HSCs express major histocompatibility complex class I, costimulatory molecules, and produce a variety of cytokines. Stimulation by interferon gamma (IFN-gamma) or activated T cells enhanced expression of these molecules. Interestingly, addition of the activated (but not quiescent) HSCs suppressed thymidine uptake by T cells that were stimulated by alloantigens or by anti-CD3-mediated T-cell receptor ligation in a dose-dependent manner. High cytokine production by the T cells suggests that the inhibition was probably not a result of suppression of their activation. T-cell division was also found to be normal in a CFSE dilution assay. The HSC-induced T-cell hyporesponsiveness was associated with enhanced T-cell apoptosis. Activation of HSCs was associated with markedly enhanced expression of B7-H1. Blockade of B7-H1/PD-1 ligation significantly reduced HSC immunomodulatory activity, suggesting an important role of B7-H1. In conclusion, the bidirectional interactions between HSCs and immune cells may contribute to hepatic immune tolerance.  相似文献   

13.
Differentiation of hematopoietic stem cells (HSCs) after birth is largely restricted to the bone marrow cavity, where HSCs are associated closely with osteoblasts (OBs). How OBs localize HSCs to the endosteal niche remains unclear. To explore adhesive interactions between HSCs and OBs, a cell blot analysis was used that revealed 2 major bands that corresponded to monomers and multimers of annexin II (Anxa2). Immunohistochemistry revealed that OBs and marrow endothelial cells express Anxa2 at high levels. Function-blocking studies confirmed that Anxa2 mediates HSC adhesion mainly via the N-terminal portion of the Anxa2 peptide. Adhesion of HSCs to OBs derived from Anxa2-deficient animals (Anxa2(-/-)) was significantly impaired compared with OBs obtained from wild-type animals (Anxa2(+/+)). Moreover, fewer HSCs were found in the marrow of Anxa2(-/-) versus Anxa2(+/+) animals. Short-term lodging, engraftment, and survival of irradiated mice with whole marrow cells were substantially inhibited by N-terminal peptide fragments of Anxa2 or anti-Anxa2 antibodies. Similar findings were noted in long-term competitive repopulation studies. Collectively, these findings reveal that Anxa2 regulates HSC homing and binding to the bone marrow microenvironment and suggest that Anxa2 is crucial for determining the bone marrow niche of HSCs.  相似文献   

14.
The interaction between stem cells and their supportive microenvironment is critical for their maintenance, function, and survival. Whereas hematopoietic stem cells (HSCs) are among the best characterized of tissue stem cells, their precise site of residence (referred to as the niche) in the adult bone marrow has not been precisely defined. In this study, we found that a Gata2 promoter directs activity in all HSCs. We show that HSCs can be isolated efficiently from bone marrow cells by following Gata2-directed GFP fluorescence, and that they can also be monitored in vivo. Each individual GFP-positive cell lay in a G0/G1 cell cycle state, in intimate contact with osteoblasts beside the endosteum, at the edge of the bone marrow. We conclude that the HSC niche is composed of solitary cells and that adult bone marrow HSC are not clustered.  相似文献   

15.
Throughout life, one's blood supply depends on sustained division of hematopoietic stem cells (HSCs) for self-renewal and differentiation. Within the bone marrow microenvironment, an adhesion-dependent or -independent niche system regulates HSC function. Here we show that a novel adhesion-dependent mechanism via integrin-β3 signaling contributes to HSC maintenance. Specific ligation of β3-integrin on HSCs using an antibody or extracellular matrix protein prevented loss of long-term repopulating (LTR) activity during ex vivo culture. The actions required activation of αvβ3-integrin "inside-out" signaling, which is dependent on thrombopoietin (TPO), an essential cytokine for activation of dormant HSCs. Subsequent "outside-in" signaling via phosphorylation of Tyr747 in the β3-subunit cytoplasmic domain was indispensable for TPO-dependent, but not stem cell factor-dependent, LTR activity in HSCs in vivo. This was accompanied with enhanced expression of Vps72, Mll1, and Runx1, 3 factors known to be critical for maintaining HSC activity. Thus, our findings demonstrate a mechanistic link between β3-integrin and TPO in HSCs, which may contribute to maintenance of LTR activity in vivo as well as during ex vivo culture.  相似文献   

16.
BACKGROUND: Systemic lupus erythematosus (SLE) is associated with a high prevalence of cardiovascular disease. Circulating endothelial progenitor cells (EPCs) contribute to vascular regeneration and repair, thereby protecting against atherosclerotic disease. EPCs are derived from CD34+ haematopoietic stem cells (HSCs), which have an increased propensity for apoptosis in the bone marrow of patients with SLE. AIM: To determine whether circulating HSCs and EPCs are reduced in SLE, contributing to an increased cardiovascular risk. METHODS: Progenitor cells were sampled from 15 female patients with SLE in prolonged clinical remission from their disease and 15 matched healthy controls. HSC and CD34+KDR+ EPCs were quantified by flow cytometry. Annexin V staining was used to identify apoptotic cells. RESULTS: Patients with SLE had reduced levels of circulating CD34+ HSCs and CD34+KDR+ EPCs, associated with increased HSC apoptosis. Compared with controls, the fraction of HSCs that could be identified as EPCs was higher in patients with SLE, consistent with a primary defect of HSCs. EPC outgrowth from mononuclear cells, which depends mainly on CD34- cells, was unaffected. CONCLUSIONS: Patients with SLE have lower levels of circulating HSCs and EPCs, even during clinical remission. The data suggest that increased HSC apoptosis is the underlying cause for this depletion. These observations indicate that progenitor cell-mediated endogenous vascular repair is impaired in SLE, which may contribute to the accelerated development of atherosclerosis.  相似文献   

17.
Hematopoietic stem cells (HSCs) are found in yolk sac, fetal liver, umbilical cord blood, placenta, and amniotic fluid during mammalian embryonic development. In adults, HSCs reside in marrow cavity of long bones where they self-renew and differentiate to replenish short-lived mature blood cells. HSCs exist in very low frequencies within specific “niches” where they interact with the surrounding environment through molecular associations. Overall HSC function can last much longer than a normal lifetime, but HSCs do show functional senescence with characteristic features of decreased self-renewal, reduced clonal stability, reduced homing and engraftment, and biased lineage commitment. The progressive shortening of telomeres with increasing age, especially under conditions with specific mutations in the telomerase gene complex, could predispose patients to HSC dysfunction and bone marrow failure diseases. Continuous investigation into HSC biology should facilitate the utilization of HSCs as a therapeutic modality and helps to prevent HSC malfunction.  相似文献   

18.
Abkowitz JL  Robinson AE  Kale S  Long MW  Chen J 《Blood》2003,102(4):1249-1253
We created parabiotic mice, joining ROSA26 and PeP3b animals, to study the trafficking of hematopoietic stem cells (HSCs) from marrow to blood and their return to marrow. The transfer of HSCs was assayed by secondary marrow transplantation and was 1.0% to 2.5% after 3, 6, 8, and 12 weeks. Thus, HSC homeostasis is primarily maintained by the retention of stem cells derived from replication events within the marrow, not the homing and engraftment of HSCs from the circulation. Of interest, the phenotypes of marrow progenitors and granulocytes were similar to those for HSCs, implying that the marrow functions as an intact compartment where differentiating cells derive from endogenous HSC. In contrast, 50% of splenic granulocytes and progenitor cells derived from the parabiotic partner, suggesting splenic progenitor cells were in constant equilibrium with progenitors in blood. In additional studies, animals were exposed to granulocyte-colony-stimulating factor (G-CSF) and stem cell factor at days 17 to 20 of parabiosis and were studied 3 weeks later; 10.1% of marrow HSCs derived from the parabiotic partner. These data imply that HSCs, mobilized to the blood in response to cytokine exposure, are destined to later return to marrow, an observation that supports the concept that the mobilized peripheral blood stem cells used in clinical transplantation function physiologically.  相似文献   

19.
OBJECTIVE: The receptor tyrosine kinase Flk-2/Flt-3 (Flt-3) represents an important molecule involved in early hematopoiesis. Murine hematopoietic stem cells (HSCs) have been shown to be negative for the expression of Flt-3. We now present clear evidence for the expression change of Flt-3(-) HSCs in an activating state, and the reversibility of Flt-3 expression by HSCs in vivo. MATERIALS AND METHODS: Bone marrow cells isolated from Ly5.1 mice were sorted on the basis of Flt-3 expression and transplanted into lethally irradiated Ly5.2 recipients. After 24 weeks, peripheral blood was analyzed for donor contribution by flow cytometry. RESULTS: Although long-term engraftment was predominantly detected in Flt-3(-) populations as previously described, a 6-day cultivation of Lin(-/low)c-kit(+)Sca-1(+) Flt-3(-) bone marrow cells with stem cell factor and interleukin-11 resulted in the generation of Flt-3(+) HSCs with long-term engraftment capabilities. However, the Flt-3 ligand had no significant effect on self-renewal of the Flt-3(+) HSCs. Next, to examine reversible expression of this receptor molecule, Flt-3(+) cells converted in vitro from Ly5.1 Lin(-/low)c-kit(+)Sca-1(+) Flt-3(-) bone marrow cells were isolated and transplanted into Ly5.2 primary recipients. After 24 weeks, Ly5.1 Lin(-/low) bone marrow cells were again separated into Flt-3(-) and Flt-3(+) cells and retransplanted into Ly5.2 secondary recipients. The majority of donor HSCs with long-term engraftment capabilities were detected in the Flt-3(-) populations, indicating the reversion of Flt-3(+) to Flt-3(-) HSCs. CONCLUSIONS: These observations suggest that Flt-3 is a useful cell-surface marker of HSC activation and that this phenotypic change is reversible.  相似文献   

20.
Zhang CC  Lodish HF 《Blood》2004,103(7):2513-2521
Hematopoietic stem cells (HSCs) undergo dramatic expansion during fetal liver development, but attempts to expand their numbers ex vivo have failed. We hypothesized that unidentified fetal liver cells produce growth factors that support HSC proliferation. Here we describe a novel population of CD3+ and Ter119- day-15 fetal liver cells that support HSC expansion in culture, as determined by limiting dilution mouse reconstitution analyses. DNA array experiments showed that, among other proteins, insulin-like growth factor 2 (IGF-2) is specifically expressed in fetal liver CD3+ cells but not in several cells that do not support HSCs. Treatment of fetal liver CD3+Ter119- cells with anti-IGF-2 abrogated their HSC supportive activity, suggesting that IGF-2 is the key molecule produced by these cells that stimulates HSC expansion. All mouse fetal liver and adult bone marrow HSCs express receptors for IGF-2. Indeed, when combined with other growth factors, IGF-2 supports a 2-fold expansion of day-15 fetal liver Lin-Sca-1+c-Kit+ long-term (LT)-HSC numbers. Thus, fetal liver CD3+Ter119- cells are a novel stromal population that is capable of supporting HSC expansion, and IGF-2, produced by these cells, is an important growth factor for fetal liver and, as we show, adult bone marrow HSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号