首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 507 毫秒
1.
Excess intake of arsenic is known to cause vascular diseases as well as skin lesions and cancer in humans. Recent reports suggest that trivalent methylated arsenicals, which are intermediate metabolites in the methylation process of inorganic arsenic, are responsible for the toxicity and carcinogenicity of environmental arsenic. We investigated acute toxicity and accumulation of monomethylarsonic acid (MMA(V)), dimethylarsinic acid (DMA(V)), trimethylarsine oxide (TMAO), and monomethylarsonous acid diglutathione (MMA(III) (GS)(2)) in rat heart microvessel endothelial (RHMVE) cells. MMA(V) (LC(50) = 36.6 mM) and DMA(V) (LC(50) = 2.54 mM) were less toxic than inorganic arsenicals (cf. LC(50) values for inorganic arsenite (iAs(III)), and inorganic arsenate (iAs(V)) was reported to be 36 and 220 microM, respectively, in RHMVE cells. TMAO was essentially not toxic. However, MMA(III) (GS)(2) was highly toxic (LC(50) = 4.1 microM). The order of cellular arsenic accumulation of those four organic arsenic compounds was MMA(III) (GS)(2) > MMA(V) > DMA(V) > TMAO. MMA(III) (GS)(2) was efficiently taken up by the cells and cellular arsenic content increased with the concentration of MMA(III) (GS)(2) in culture medium. N-acetyl-l-cysteine (NAC) reduced cellular arsenic content in DMA(V)-exposed cells and also decreased the cytotoxicity of DMA(V), whereas it changed neither cellular arsenic content nor the viability in MMA(V)-exposed cells. mRNA levels of heme oxygenase-1 (HO-1) were decreased by NAC in DMA(V)-exposed, but MMA(V)-exposed cells. Buthionine sulfoximine (BSO), a cellular glutathione (GSH) depleting agent, enhanced the cytotoxicity of MMA(V). However, BSO reduced, rather than enhanced, the cytotoxicity of DMA(V). These results suggest that intracellular GSH modulated the toxic effects of arsenic in opposite ways for MMA(V) and DMA(V). Even though intracellular GSH decreased the cytotoxicity of MMA(V), extracellularly added GSH enhanced the cytotoxicity of MMA(V). The use of high-performance liquid chromatography (HPLC)-inductively coupled plasma mass spectrometric analyses suggested that a small amount of MMA(V) was converted to MMA(III) (GS)(2) in the presence of GSH. These results suggest that MMA(III) (GS)(2) is highly toxic compared to other arsenic compounds because of faster accumulation of this species by cells, in addition to having the toxic nature of methylated trivalent organic arsenics.  相似文献   

2.
Chronic ingestion of arsenic-contaminated drinking water induces skin lesions and urinary bladder cancer in humans. It is now recognized that thioarsenicals such as dimethylmonothioarsinic acid (DMMTA (V)) are commonly excreted in the urine of humans and animals and that the production of DMMTA (V) may be a risk factor for the development of the diseases caused by arsenic. The toxicity of DMMTA (V) was compared with that of related nonthiolated arsenicals with respect to cell viability, uptake ability, generation of reactive oxygen species (ROS), and cell cycle progression of human epidermoid carcinoma A431 cells, arsenate (iAs (V)), arsenite (iAs (III)), dimethylarsinic acid (DMA (V)), and dimethylarsinous acid (DMA (III)) being used as reference nonthiolated arsenicals. DMMTA (V) (LC 50 = 10.7 microM) was shown to be much more cytotoxic than iAs (V) (LC 50 = 571 microM) and DMA (V) (LC 50 = 843 microM), and its potency was shown to be close to that of trivalent arsenicals iAs (III) (LC 50 = 5.49 microM) and DMA (III) (LC 50 = 2.16 microM). The greater cytotoxicity of DMMTA (V) was associated with greater cellular uptake and distribution, and the level of intracellular ROS remarkably increased in A431 cells upon exposure to DMMTA (V) compared to that after exposure to other trivalent arsenicals at the respective LC 50. Exposure of DMMTA (V) to cells for 24 h induced cell cycle perturbation. Namely, the percentage of cells residing in S and G2/M phases increased from 10.2 and 15.6% to 46.5 and 20.8%, respectively. These results suggest that although DMMTA (V) is a pentavalent arsenical, it is taken up efficiently by cells and causes various levels of toxicity, in a manner different from that of nonthiolated pentavalent arsenicals, demonstrating that DMMTA (V) is one of the most toxic arsenic metabolites. The high cytotoxicity of DMMTA (V) was explained and/or proposed by (1) efficient uptake by cells followed by (2) its transformation to DMA (V), (3) producing ROS in the redox equilibrium between DMA (V) and DMA (III) in the presence of glutathione.  相似文献   

3.
Kobayashi Y  Cui X  Hirano S 《Toxicology》2005,211(1-2):115-123
Inorganic arsenicals such as arsenite (iAs(III)) and arsenate (iAs(V)) are well-known human carcinogens. Arsenic is metabolized by repetitive reduction and oxidative methylation, and is excreted mainly in urine as monomethylated arsenicals (MMAs) and dimethylated arsenicals (DMAs). Recently, it has been shown that iAs(III) administered intravenously or orally is excreted into bile as arsenic-glutathione (As-GSH) complexes such as arsenic triglutathione [As(GS)(3)] and methylarsenic diglutathione [CH(3)As(GS)(2)]. In order to carry out the speciation of As-GSH complexes, it is important to understand their stability. The present study was designed to clarify the stability of As-GSH complexes in rat bile, and the role of GSH in stabilizing these complexes. Arsenic species were separated on an anion-exchange column and were analyzed by high-performance liquid chromatography-inductively coupled argon plasma mass spectrometry (HPLC-ICP MS). As(GS)(3) and CH(3)As(GS)(2) were unstable in bile and were hydrolyzed to iAs(III) and monomethylarsonous acid (MMA(III)) in the absence of GSH. As(GS)(3) appeared to be stable in the presence of 10mM GSH. Exogenously added GSH also stabilized CH(3)As(GS)(2) in bile at the concentrations of 5mM or higher. It has been suggested that trivalent arsenicals, especially MMA(III), are more toxic than corresponding pentavalent ones. These results suggest that GSH plays an important role in preventing hydrolysis of As-GSH complexes and the generation of well-known toxic trivalent arsenicals.  相似文献   

4.
There is strong evidence from epidemiologic studies of an association between chronic exposure to inorganic arsenic (iAs) and hyperpigmentation, hyperkeratosis, and neoplasia in the skin. Although it is generally accepted that methylation is a mechanism of arsenic detoxification, recent studies have suggested that methylated arsenicals also have deleterious biological effects. In these studies we compare the effects of inorganic arsenicals (arsenite (iAs(III)) and arsenate (iAs(V))) and trivalent and pentavalent methylated arsenicals (methylarsine oxide (MAs(III)O), complex of dimethylarsinous acid with glutathione (DMAs(III)GS), methylarsonic acid (MAs(V)), and dimethylarsinic acid (DMAs(V))) in human keratinocyte cultures. Viability testing showed that the relative toxicities of the arsenicals were as follows: iAs(III) > MAs(III)O > DMAs(III)GS > DMAs(V) > MAs(V) > iAs(V). Trivalent arsenicals induced an increase in cell proliferation at concentrations in the 0.001 to 0.01 microM range, while at high concentrations (>0.5 microM) cell proliferation was inhibited. Pentavalent arsenicals did not stimulate cell proliferation. As seen in the viability studies, the methylated forms of As(V) were more cytotoxic than iAs(V). Exposure to low doses of trivalent arsenicals stimulated secretion of the growth-promoting cytokines, granulocyte macrophage colony stimulating factor and tumor necrosis factor-alpha. DMAs(V) reduced cytokine secretion at concentrations at which proliferation and viability were not affected. These data suggest that methylated arsenicals, products of the metabolic conversion of inorganic arsenic, can significantly affect viability and proliferation of human keratinocytes and modify their secretion of inflammatory and growth-promoting cytokines.  相似文献   

5.
The human bladder is one of the primary target organs for arsenic-induced carcinogenicity, and arsenic metabolites in urine have been suspected to be directly involved in carcinogenesis. Thioarsenicals are commonly found in human and animal urine and are also considered to be highly toxic arsenic metabolites. The present study was performed to gain insight into the toxicity and accumulation of arsenic species found in urine, including arsenate (iAs(V)), arsenite (iAs(III)), monomethylarsonic acid (MMA(V)), monomethylmonothioarsonic acid (MMMTA(V)), dimethylarsinic acid (DMA(V)), dimethylarsinous acid (DMA(III)), dimethylmonothioarsinic acid, (DMMTA(V)), and dimethyldithioarsinic acid (DMDTA(V)) in human bladder cancer EJ-1 cells. The order of cytotoxicity of these arsenic compounds in EJ-1 human bladder cancer cells was DMA(III), DMMTA(V) > iAs(III) ? iAs(V) > MMMTA(V) > MMA(V), DMA(V), and DMDTA(V), indicating that the sulfur-containing DMMTA(V) was among the most toxic arsenic compounds similar to trivalent DMA(III). We further characterized the DNA damage, generation of highly reactive oxygen species (hROS), and expression of proteins p21 and p53 in cells after exposure to iAs(III), DMA(III), and DMMTA(V). Cellular exposure to DMMTA(V) resulted in reduced protein expression of p53 and p21, increased DNA damage, and increased intracellular hROS (hydroxyl radical). In contrast, iAs(III) significantly increased the protein expression of p21 and p53 and did not increase the hROS at the IC(50). Intracellular glutathione (GSH) was reduced by 60% after exposure to DMA(III) or DMMTA(V), suggesting that DMMTA(V) causes cell death through oxidative stress. In contrast, GSH levels increased in cells exposed to iAs(III), and hROS only increased after a long exposure to iAs(III). Our findings demonstrate that DMMTA(V) may be one of the most toxicologically potent arsenic species, relevant to arsenic-induced carcinogenicity in the urinary bladder.  相似文献   

6.
The ATP-binding cassette (ABC) transporter protein multidrug resistance protein 1 (MRP1; ABCC1) plays an important role in the cellular efflux of the high-priority environmental carcinogen arsenic as a triglutathione conjugate [As(GS)(3)]. Most mammalian cells can methylate arsenic to monomethylarsonous acid (MMA(III)), monomethylarsonic acid (MMA(V)), dimethylarsinous acid (DMA(III)), and dimethylarsinic acid (DMA(V)). The trivalent forms MMA(III) and DMA(III) are more reactive and toxic than their inorganic precursors, arsenite (As(III)) and arsenate (As(V)). The ability of MRP1 to transport methylated arsenicals is unknown and was the focus of the current study. HeLa cells expressing MRP1 (HeLa-MRP1) were found to confer a 2.6-fold higher level of resistance to MMA(III) than empty vector control (HeLa-vector) cells, and this resistance was dependent on GSH. In contrast, MRP1 did not confer resistance to DMA(III), MMA(V), or DMA(V). HeLa-MRP1 cells accumulated 4.5-fold less MMA(III) than HeLa-vector cells. Experiments using MRP1-enriched membrane vesicles showed that transport of MMA(III) was GSH-dependent but not supported by the nonreducing GSH analog, ophthalmic acid, suggesting that MMA(III)(GS)(2) was the transported form. MMA(III)(GS)(2) was a high-affinity, high-capacity substrate for MRP1 with apparent K(m) and V(max) values of 11 μM and 11 nmol mg(-1)min(-1), respectively. MMA(III)(GS)(2) transport was osmotically sensitive and inhibited by several MRP1 substrates, including 17β-estradiol 17-(β-D-glucuronide) (E(2)17βG). MMA(III)(GS)(2) competitively inhibited the transport of E(2)17βG with a K(i) value of 16 μM, indicating that these two substrates have overlapping binding sites. These results suggest that MRP1 is an important cellular protective pathway for the highly toxic MMA(III) and have implications for environmental and clinical exposure to arsenic.  相似文献   

7.
The metabolic pathways for arsenic were precisely studied by determining the metabolic balance and chemical species of arsenic to gain an insight into the mechanisms underlying the animal species difference in the metabolism and preferential accumulation of arsenic in red blood cells (RBCs) in rats. Male Wistar rats were injected intravenously with a single dose of arsenite (iAs(III)) at 2.0 mg of As/kg of body weight, and then the time-dependent changes in the concentrations of arsenic in organs and body fluids were determined. Furthermore, arsenic in the bile was analyzed on anion and cation exchange columns by high-performance liquid chromatography-inductively coupled argon plasma mass spectrometry (HPLC-ICP MS). The metabolic balance and speciation studies revealed that arsenic is potentially transferred to the hepato-enteric circulation through excretion from the liver in a form conjugated with glutathione (GSH). iAs(III) is methylated to mono (MMA)- and dimethylated (DMA) arsenics in the liver during circulation in the conjugated form [iAs(III)(GS)(3)], and a part of MMA is excreted into the bile in the forms of MMA(III) and MMA(V), the former being mostly in the conjugated form [CH(3)As(III)(GS)(2)], and the latter being in the nonconjugated free form. DMA(III) and DMA(V) were not detected in the bile. In the urine, arsenic was detected in the forms of iAs(III), arsenate, MMA(V), and DMA(V), iAs(III) being the major arsenic in the first 6-h-urine, and DMA(V) being increased in the second 6-h-urine. The present metabolic balance and speciation study suggests that iAs(III) is methylated in the liver during its hepato-enteric circulation through the formation of the GSH-cojugated form [iAs(III)(GS)(3)], and MMA(III) and MMA(V) are partly excreted into the bile, the former being in the conjugated form [CH(3)As(III)(GS)(2)]. DMA is not excreted into the bile but into the bloodstream, accumulating in RBCs, and then excreted into the urine mostly in the form of DMA(V) in rats.  相似文献   

8.
Nail and hair are rich in fibrous proteins, i.e., alpha-keratins that contain abundant cysteine residues (up to 22% in nail and 10-14% in hair). Although they are metabolically dead materials in the epidermis, the roots are highly influenced by the health status of the living beings and their analyses are used as a tool to monitor occupational and environmental exposure to toxic elements. The aims of the present study are to speciate arsenicals in human nail and hair and also to judge whether they should be used as a biomarker to arsenic (As) exposure and/or toxicity. All human fingernail and hair samples (n = 47) were collected from the As-affected area of West Bengal, India. Speciation of arsenicals in water extracts of fingernails and hair at 90 degrees C was carried out by HPLC-inductively coupled argon plasma mass spectrometer (ICP MS). Fingernails contained iAs(III) (58.6%), iAs(V) (21.5), MMA(V) (7.7), DMA(III) (9.2), and DMA(V) (3.0), and hair contained iAs(III) (60.9%), iAs(V) (33.2), MMA(V) (2.2), and DMA(V) (3.6). Fingernails contained DMA(III), but hair did not. The higher percentage of iAs(III) both in fingernails and hair than that of iAs(V) suggests more affinity of iAs(III) to keratin. Although all arsenicals in fingernails and hair correlate to As exposure positively, As speciation in fingernails seems to be more correlated with arsenism than that in hair. Exogenous contamination is a confounding factor for hair to consider it as a biomarker, whereas this is mostly absent in fingernails, which recommends it to be a better biomarker to arsenic exposure. DMA(III) content in fingernails and DMA(V) contents in both fingernails and hair could be the biomarker to As exposure.  相似文献   

9.
Mammals are able to convert inorganic arsenic to mono-, di-, and trimethylated metabolites. In previous studies we have shown that the trivalent organoarsenic compounds are more toxic than their inorganic counterparts and that the toxicity is associated with the cellular uptake of the arsenicals. In the present study, we investigated cyto-/genotoxic effects of the arsenic compounds arsenate [As(i)(V)], arsenite [As(i)(III)], monomethylarsonic acid [MMA(V)], monomethylarsonous acid [MMA(III)], dimethylarsinic acid [DMA(V)], dimethylarsinous acid [DMA(III)], and trimethylarsine oxide [TMAO(V)] after an extended exposure time (24 h) and compared the uptake capabilities of fibroblasts (CHO-9 cells: Chinese hamster ovary) used for genotoxicity studies, with those of hepatic cells (Hep G2: hepatoma cell-line). To find out whether the arsenic compounds are bound to membranes or if they are present in the cytosol, the amount of arsenic was measured in whole-cell extracts and in membrane-removed cell extracts by inductively coupled plasma-mass spectrometry (ICP-MS). In addition, we forced the cellular uptake of the arsenic compounds into CHO-9 cells by electroporation and measured the intracellular arsenic concentrations before and after this procedure. Our results show that organic and inorganic arsenicals are taken up to a higher degree by fibroblasts compared to hepatoma cells. The arsenic metabolite DMA(III) was the most membrane permeable species in both cell lines and induced strong genotoxic effects in CHO-9 cells after an exposure time of 24 h. The uptake of all other arsenic species was relatively low (<1% by Hep G2 and <4% by CHO cells), but was dose-dependent. Electroporation increased the intracellular arsenic levels as well as the number of induced MN in CHO-9 cells. With the exception of As(i)(III) and DMA(III) in CHO-9 cells, the tested arsenic compounds were not bound to cell membranes, but were present in the cytosol. This may indicate the existence of DMA(III)-specific exporter proteins as are known for As(i)(III). Our results indicate that the uptake capabilities of arsenic compounds are highly dependent upon the cell type. It may be hypothesized that the arsenic-induced genotoxic effects observed in fibroblasts are due to the high uptake of arsenicals into this cell type. This may explain the high susceptibility of skin fibroblasts to arsenic exposure.  相似文献   

10.
The chronic exposure of humans through consumption of high levels of inorganic arsenic (iAs)-contaminated drinking water is associated with skin lesions, peripheral vascular disease, hypertension, and cancers. Additionally, humans are exposed to organic arsenicals when used as pesticides and herbicides (e.g., monomethylarsonic acid, dimethylarsinic acid (DMA(V)) also known as cacodylic acid). Extensive research has been conducted to characterize the adverse health effects that result from exposure to iAs and its metabolites to describe the biological pathway(s) that lead to adverse health effects. To further this effort, on May 31, 2006, the United States Environmental Protection Agency (USEPA) sponsored a meeting entitled "Workshop on Arsenic Research and Risk Assessment". The invited participants from government agencies, academia, independent research organizations and consultants were asked to present their current research. The overall focus of these research efforts has been to determine the potential human health risks due to environmental exposures to arsenicals. Pursuant in these efforts is the elucidation of a mode of action for arsenicals. This paper provides a brief overview of the workshop goals, regulatory context for arsenical research, mode of action (MOA) analysis in human health risk assessment, and the application of MOA analysis for iAs and DMA(V). Subsequent papers within this issue will present the research discussed at the workshop, ensuing discussions, and conclusions of the workshop.  相似文献   

11.
Based on epidemiological data, chronic exposure to high levels of inorganic arsenic in the drinking water is carcinogenic to the urinary bladder of humans. The highly reactive trivalent organic arsenicals dimethylarsinous acid (DMA(III)) and monomethylarsonous acid (MMA(III)) are formed during the metabolism of inorganic arsenic in vivo in addition to the corresponding mono-, di- and trimethylated pentavalent arsenicals. The objective of this study was to determine if combining arsenicals was additive or synergistic toward inducing cytotoxicity in a rat urothelial cell line. The MYP3 cell line, an immortalized but not transformed rat urinary bladder epithelial cell line, was seeded into appropriate culture wells. Treatment with the arsenicals was begun 24 h after seeding and continued for 3 days. Combinations of arsenicals used were DMA(III) with arsenite, dimethylarsinic acid (DMA(V)) or trimethylarsine oxide (TMAO). Combinations of concentrations used were the LC50, one-quarter or one-half the LC50 of one arsenical with one-half or one-quarter the LC50 of the other arsenical. To determine if MYP3 cells metabolize arsenicals, cells were treated with arsenate, arsenite and MMA(V) as described above and the medium was analyzed by HPLC-ICPMS to determine species and quantity of arsenicals present. When cells were treated with one-quarter or one-half the LC50 concentration of both arsenicals, the cytotoxicity was approximately the same as when cells were treated with half the LC50 concentration or the LC50 concentration, respectively, of either arsenical. Treatment with one-quarter the LC50 concentration of one arsenical plus the LC50 concentration of a second arsenical had similar cytotoxicity as treatment with the LC50 concentration of either of the arsenicals. Quantitation and speciation of arsenicals in the cell culture medium showed that MYP3 cells have some reductase activity but the cells do not methylate arsenicals. The effect on the cytotoxicity of arsenicals in combination was additive rather than synergistic toward a rat urothelial cell line.  相似文献   

12.
Speciation of arsenic in biological samples   总被引:13,自引:0,他引:13  
Speciation of arsenicals in biological samples is an essential tool to gain insight into its distribution in tissues and its species-specific toxicity to target organs. Biological samples (urine, hair, fingernail) examined in the present study were collected from 41 people of West Bengal, India, who were drinking arsenic (As)-contaminated water, whereas 25 blood and urine samples were collected from a population who stopped drinking As contaminated water 2 years before the blood collection. Speciation of arsenicals in urine, water-methanol extract of freeze-dried red blood cells (RBCs), trichloroacetic acid treated plasma, and water extract of hair and fingernail was carried out by high-performance liquid chromatography (HPLC)-inductively coupled argon plasma mass spectrometry (ICP MS). Urine contained arsenobetaine (AsB, 1.0%), arsenite (iAs(III), 11.3), arsenate (iAs(V), 10.1), monomethylarsonous acid (MMA(III), 6.6), monomethylarsonic acid (MMA(V), 10.5), dimethylarsinous acid (DMA(III), 13.0), and dimethylarsinic acid (DMA(V), 47.5); fingernail contained iAs(III) (62.4%), iAs(V) (20.2), MMA(V) (5.7), DMA(III) (8.9), and DMA(V) (2.8); hair contained iAs(III) (58.9%), iAs(V) (34.8), MMA(V) (2.9), and DMA(V) (3.4); RBCs contained AsB (22.5%) and DMA(V) (77.5); and blood plasma contained AsB (16.7%), iAs(III) (21.1), MMA(V) (27.1), and DMA(V) (35.1). MMA(III), DMA(III), and iAs(V) were not found in any plasma and RBCs samples, but urine contained all of them. Arsenic in urine, fingernails, and hair are positively correlated with water As, suggesting that any of these measurements could be considered as a biomarker to As exposure. Status of urine and exogenous contamination of hair urgently need speciation of As in these samples, but speciation of As in nail is related to its total As (tAs) concentration. Therefore, total As concentrations of nails could be considered as biomarker to As exposure in the endemic areas.  相似文献   

13.
Exposure to the human carcinogen inorganic arsenic (iAs) occurs daily. However, the disposition of arsenic after repeated exposure is not well known. This study examined the disposition of arsenic after repeated po administration of arsenate. Whole-body radioassay of adult female B6C3F1 mice was used to estimate the terminal elimination half-life of arsenic after a single po dose of [(73)As]arsenate (0.5 mg As/kg). From these data, it was estimated that steady-state levels of whole-body arsenic could be attained after nine repeated daily doses of [(73)As]arsenate (0.5 mg As/kg). The mice were whole-body radioassayed immediately before and after the repeated dosing. Excreta were collected daily and analyzed for arsenic-derived radioactivity and arsenicals. Whole-body radioactivity was determined 24 h after the last repeated dose, and five mice were then euthanized and tissues analyzed for radioactivity. The remaining mice were whole-body radioassayed for 8 more days, and then their tissues were analyzed for radioactivity. Other mice were administered either a single or nine repeated po doses of non-radioactive arsenate (0.5 mg As/kg). Twenty-four hours after the last dose, the mice were euthanized, and tissues were analyzed for arsenic by atomic absorption spectrometry (AAS). Whole-body radioactivity was rapidly eliminated from mice after repeated [(73)As]arsenate exposure, primarily by urinary excretion in the form of dimethylarsinic acid (DMA(V)). Accumulation of radioactivity was highest in bladder, kidney, and skin. Loss of radioactivity was most rapid in the lung and slowest in the skin. There was an organ-specific distribution of arsenic as determined by AAS. Monomethylarsonic acid was detected in all tissues except the bladder. Bladder and lung had the highest percentage of DMA(V) after a single exposure to arsenate, and it increased with repeated exposure. In kidney, iAs was predominant. There was a higher percentage of DMA(V) in the liver than the other arsenicals after a single exposure to arsenate. The percentage of hepatic DMA(V) decreased and that of iAs increased with repeated exposure. A trimethylated metabolite was also detected in the liver. Tissue accumulation of arsenic after repeated po exposure to arsenate in the mouse corresponds to the known human target organs for iAs-induced carcinogenicity.  相似文献   

14.
Cellular glutathione prevents cytolethality of monomethylarsonic acid   总被引:5,自引:0,他引:5  
Inorganic arsenicals are clearly toxicants and carcinogens in humans. In mammals, including humans, inorganic arsenic often undergoes methylation, forming compounds such as monomethylarsonic acid (MMAs(V)) and dimethylarsinic acid (DMAs(V)). However, much less information is available on the in vitro toxic potential or mechanisms of these methylated arsenicals, especially MMAs(V). We studied the molecular mechanisms of in vitro cytolethality of MMAs(V) using a rat liver epithelial cell line (TRL 1215). MMAs(V) was not cytotoxic in TRL 1215 cells even at concentrations exceeding 10 mM, but it became weakly cytotoxic and induced both necrotic and apoptotic cell death when cellular reduced glutathione (GSH) was depleted with the glutathione synthase inhibitor, l-buthionine-[S,R]-sulfoximine (BSO), or the glutathione reductase inhibitor, carmustine. Similar results were observed in the other mammalian cells, such as human skin TIG-112 cells, chimpanzee skin CRT-1609 cells, and mouse metallothionein (MT) positive and MT negative embryonic cells. Ethacrynic acid (EA), an inhibitor of glutathione S-transferase (GST) that catalyses GSH-substrate conjugation, also enhanced the cytolethality of MMAs(V), but aminooxyacetic acid (AOAA), an inhibitor of beta-lyase that catalyses the final breakdown of GSH-substrate conjugates, had no effect. Both the cellular GSH levels and the cellular GST activity were increased by the exposure to MMAs(V) in TRL 1215 cells. On the other hand, the addition of exogenous extracellular GSH enhanced the cytolethality of MMAs(V), although cellular GSH levels actually prevented the cytolethality of combined MMAs(V) and exogenous GSH. These findings indicate that human arsenic metabolite MMAs(V) is not a highly toxic compound in mammalian cells, and the level of cellular GSH is critical to its eventual toxic effects.  相似文献   

15.
Inorganic arsenic (iAs) and its metabolites are transferred to the foetus through the placental barrier and this exposure can compromise the normal development of the unborn. For this reason, we assessed the toxicity of sodium arsenite (iAs(III)) and its metabolites dimethylarsinic acid (DMA(V)), monomethylarsonic acid (MMA(V)) and monomethylarsonous acid (MMA(III)) on human haematopoietic cord blood cells and murine bone marrow progenitors in vitro, looking at the effects induced at different concentrations in the two genders. The expression of two enzymes responsible for arsenic biotransformation arsenic methyltranferase (AS3MT) and glutathione S-transferase omega 1 (GSTO1) was evaluated in human cord blood cells. Cord blood and bone marrow cells were exposed in vitro to iAs(III) at a wide range of concentrations: from 0.0001 microM to 10 microM. The methylated arsenic metabolites were tested only on human cord blood cells at concentrations ranging from 0.00064 microM to 50 microM. The results showed that iAs(III) was toxic on male and female colony forming units to about the same extent both in human and in mouse. Surprisingly, very low concentrations of iAs(III) increased the proliferation rate of both human and murine female cells, while male cells showed no significant modulation. MMA(V) and DMA(V) did not exert detectable toxicity on the cord blood cells, while MMA(III) had a marked toxic effect both in male and female human progenitors. AS3MT mRNA expression was not induced in human cord blood cells after iAs(III) exposure. GSTO1 expression decreased after MMA(III) treatment. This study provides evidence that exposure to iAs(III) and MMA(III) at muM concentrations is associated with immunosuppression in vitro.  相似文献   

16.
Role of glutathione in dimethylarsinic acid-induced apoptosis   总被引:3,自引:0,他引:3  
Inorganic arsenicals are clearly toxicants and carcinogens in humans. In mammals, including humans, inorganic arsenicals often undergo methylation, forming compounds such as dimethylarsinic acid (DMAs(V)). Recent evidence indicates that DMAs(V) is a complete carcinogen in rodents although evidence for inorganic arsenicals as carcinogens in rodents remains equivocal. Thus, we studied the molecular mechanisms of in vitro cytolethality of DMAs(V) using a rat liver epithelial cell line (TRL 1215). DMAs(V) selectively induced apoptosis in TRL 1215 cells; its LC(50) value after 48 h exposure was 4.5 mM. The addition of a glutathione synthase inhibitor, L-buthionine-[S,R]-sulfoximine (BSO), actually decreased DMAs(V)-induced apoptosis. DMAs(V) exposure temporarily decreased cellular reduced glutathione (GSH) levels and enhanced cellular glutathione S-transferase (GST) activity from 6 h after the exposure when the cells were still alive. Also, DMAs(V) exposure activated cellular caspase 3 activity with a peak at 18 h after the exposure when apoptosis began, and BSO treatment completely inhibited this enzyme activity. The additions of inhibitors of caspase 3, caspase 8, and caspase 9 significantly reduced DMAs(V)-induced apoptosis. Taken together, these data indicate that cellular GSH was required for DMAs(V)-induced apoptosis to occur, and activation of cellular caspases after conjugation of DMAs(V) with cellular GSH appears to be of mechanistic significance. Further research will be required to determine the role of intracellular GSH and methylation in the toxicity of arsenicals in chronic arsenic poisoning or in cases where arsenicals are used as chemotherapeutics.  相似文献   

17.
18.
Wang JP  Qi L  Moore MR  Ng JC 《Toxicology letters》2002,133(1):17-31
As inorganic arsenic is a proven human carcinogen, significant effort has been made in recent decades in an attempt to understand arsenic carcinogenesis using animal models, including rodents (rats and mice) and larger mammals such as beagles and monkeys. Transgenic animals were also used to test the carcinogenic effect of arsenicals, but until recently all models had failed to mimic satisfactorily the actual mechanism of arsenic carcinogenicity. However, within the past decade successful animal models have been developed using the most common strains of mice or rats. Thus dimethylarsinic acid (DMA), an organic arsenic compound which is the major metabolite of inorganic arsenicals in mammals, has been proven to be tumorigenic in such animals. Reports of successful cancer induction in animals by inorganic arsenic (arsenite and arsenate) have been rare, and most carcinogenetic studies have used organic arsenicals such as DMA combined with other tumor initiators. Although such experiments used high concentrations of arsenicals for the promotion of tumors, animal models using doses of arsenicals species closed to the exposure level of humans in endemic areas are obviously the most significant. Almost all researchers have used drinking water or food as the pathway for the development of animal model test systems in order to mimic chronic arsenic poisoning in humans; such pathways seem more likely to achieve desirable results.  相似文献   

19.
Chronic exposures to inorganic arsenic (iAs) have been associated with increased incidence of noninsulin (type-2)-dependent diabetes mellitus. Although mechanisms by which iAs induces diabetes have not been identified, the clinical symptoms of the disease indicate that iAs or its metabolites interfere with insulin-stimulated signal transduction pathway or with critical steps in glucose metabolism. We have examined effects of iAs and methylated arsenicals that contain trivalent or pentavalent arsenic on glucose uptake by 3T3-L1 adipocytes. Treatment with inorganic and methylated pentavalent arsenicals (up to 1 mM) had little or no effect on either basal or insulin-stimulated glucose uptake. In contrast, trivalent arsenicals, arsenite (iAs(III)), methylarsine oxide (MAs(III)O), and iododimethylarsine (DMAs(III)O) inhibited insulin-stimulated glucose uptake in a concentration-dependent manner. Subtoxic concentrations of iAs(III) (20 microM), MAs(III)O (1 microM), or DMAs(III)I (2 microM) decreased insulin-stimulated glucose uptake by 35-45%. Basal glucose uptake was significantly inhibited only by cytotoxic concentrations of iAs(III) or MAs(III)O. Examination of the components of the insulin-stimulated signal transduction pathway showed that all trivalent arsenicals suppressed expression and possibly phosphorylation of protein kinase B (PKB/Akt). The concentration of an insulin-responsive glucose transporter (GLUT4) was significantly lower in the membrane region of 3T3-L1 adipocytes treated with trivalent arsenicals as compared with untreated cells. These results suggest that trivalent arsenicals inhibit insulin-stimulated glucose uptake by interfering with the PKB/Akt-dependent mobilization of GLUT4 transporters in adipocytes. This mechanism may be, in part, responsible for the development of type-2 diabetes in individuals chronically exposed to iAs.  相似文献   

20.
Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. With ascorbic acid the rate of iron release from HLF by DMA(V) was intermediate (3.37 nM/min, P<0.05) and by DMA(III) was much higher (16.3 nM/min, P<0.001). No pBR322 plasmid DNA damage was observed from in vitro exposure to arsenate (iAs(V)), arsenite (iAs(III)), monomethylarsonic acid (MMA(V)), monomethylarsonous acid (MMA(III)) or DMA(V) alone. DNA damage was observed following DMA(III) exposure; coexposure to DMA(III) and HLF caused more DNA damage; considerably higher amounts of DNA damage was caused by coexposure of DMA(III), HLF and ascorbic acid. Diethylenetriaminepentaacetic acid (an iron chelator), significantly inhibited DNA damage. Addition of catalase (which can increase Fe(2+) concentrations) further increased the plasmid DNA damage. Iron-dependent DNA damage could be a mechanism of action of human arsenic carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号