首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The connections of the olfactory bulbs of Podarcis hispanica were studied by tract-tracing of injected horseradish peroxidase. Restricted injections into the main olfactory bulb (MOB) resulted in bilateral terminallike labeling in the medial part of the anterior olfactory nucleus (AON) and in the rostral septum, lateral cortex, nucleus of the lateral olfactory tract, and ventrolateral amygdaloid nucleus. Bilateral retrograde labeling was found in the rostral lateral cortex and in the medial and dorsolateral AON. Ipsilaterally the dorsal cortex, nucleus of the diagonal band, lateral preoptic area, and dorsolateral amygdala showed labeled cell bodies. Retrogradely labeled cells were also found in the midbrain raphe nucleus. Results from injections into the rostral lateral cortex and lateral olfactory tract indicate that the mitral cells are the origin of the centripetal projections of the MOB. Injections in the accessory olfactory bulb (AOB) produced ipsilateral terminallike labeling of the ventral AON, bed nucleus of the accessory olfactory tract, central and ventromedial amygdaloid nuclei, medial part of the bed nucleus of the stria terminalis, and nucleus sphericus. Retrograde labeling of neurons was observed ipsilaterally in the bed nucleus of the accessory olfactory tract and stria terminalis, in the central amygdaloid nucleus, dorsal cortex, and nucleus of the diagonal band. Bilateral labeling of somata was found in the ventral AON, the nucleus sphericus (hilus), and in the mesencephalic raphe nucleus and locus coeruleus. Injections into the dorsal amygdala showed that the mitral neurons are the cells of origin of the AOB centripetal projections. Reciprocal connections are present between AOB and MOB. To our knowledge, this is the first study to address the afferent connections of the olfactory bulbs in a reptile. On the basis of the available data, a discussion is provided of the similarities and differences between the reptilian and mammalian olfactory systems, as well as of the possible functional role of the main olfactory connections in reptiles.  相似文献   

2.
After an injection of [3H]d-aspartate into the olfactory bulb of the rat, retrogradely labeled cells were detected bilaterally in the anterior olfactory nucleus (AON), and ipsilaterally in the pyriform cortex (PC) and nucleus of the lateral olfactory tract (NLOT). These results suggest a certain selective retrograde transport of this amino acid, and are discussed in relation to transmitter candidates in the olfactory bulb.  相似文献   

3.
Pheromonal stimuli elicit rapid behavioral and reproductive endocrine changes in the ewe. The neural pathways responsible for these effects in sheep are unknown, in part, because the olfactory bulb projections have not been examined in this species. Using the anterograde and retrograde neuronal tracer, wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP), we describe the afferent and efferent olfactory bulb connections of the Suffolk ewe. Injections of WGA-HRP limited to the main olfactory bulb resulted in retrograde labeling of cells in numerous telencephalic, diencephalic, and metencephalic regions. Terminal labeling was limited to layer Ia of ipsilateral cortical structures extending rostrally from the anterior olfactory nucleus (AON), piriform cortex, anterior-, and posterolateral-cortical amygdaloid nuclei to lateral entorhinal cortex caudally. Injections involving the accessory olfactory bulb and AON produced additional labeling of cells within the bed nucleus of the stria terminalis (BNST), medial nucleus of the amygdala, and a few cells in the posteromedial cortical nucleus of the amygdala. Terminal labeling included a small dorsomedial quadrant of BNST and also extended to the far lateral portions of the supraoptic nucleus. A clearly defined accessory olfactory tract and nucleus was not evident, perhaps due to limitations in the sensitivity of the method. With this possible exception, the afferent and efferent olfactory connections in the sheep appear similar to those reported for other species.  相似文献   

4.
The development, distribution and olfactory bulb projections of neurons immunoreactive for the enzyme adenosine deaminase (ADA) were studied in olfactory systems of embryonic, early postnatal and young adult rats. On embryonic day (E) 12, ADA-immunoreactivity first appeared in the placode of the olfactory epithelium. On E15, ADA-immunoreactive olfactory receptor and precursor cells gave rise to immunostained axons projecting to the olfactory bulb. Numerous immunostained glomeruli were observed on postnatal day (P) 1. After P25, immunoreactivity within receptor cells and glomeruli decreased. In prenatal and early postnatal animals, ADA-immunoreactive neurons were observed in the anterior olfactory nucleus (AON), dorsal transition area, ventral taenia tecta, primary olfactory cortex (POC), entorhinal cortex and ventral agranular insular cortex. After P25 to P30, these neurons lost their immunoreactivity, except those in the medial AON where light immunostaining persisted. In contrast, ADA-immunostaining of neurons in the horizontal limb of the diagonal band (HDB) and olfactory tubercle increased throughout development. About 70 to 75% of the ADA-immunoreactive neurons in the AON, a small number of those in the POC and about 75% of the ADA-immunoreactive non-cholinergic neurons in the HDB were found to project to the olfactory bulb. The functions of ADA in the olfactory system may be related to the precocious development of, and/or purinergic neurotransmission within, this system.  相似文献   

5.
The efferents and centrifugal afferents of the hamster olfactory bulbs were studied using orthograde and retrograde tracing techniques. Following injections of tritiated amino acids which were restricted to the main olfactory bulb (MOB), autoradiographic grains were observed ipsilaterally over layer IA of the entire anterior olfactory nucleus (AON), the ventral portion of the hippocampal rudiment (HR), the entire prepyriform cortex and olfactory tubercle, the anterior and posterolateral cortical amygdaloid nuclei and the lateral entorhinal cortex. An ipsilateral projection to the nucleus of the lateral olfactory tract (nLOT) was also indicated. No subcortical or contralateral projections were observed. Amino acid injections into the accessory olfactory bulb (AOB) revealed ipsilateral projections to the superficial plexiform layer of the medial and posteromedial cortical amygdaloid nuclei and to the bed nucleus of the accessory olfactory tract (nAOT) and the bed nucleus of the stria terminalis (nST). Following injections of HRP which were restricted to the MOB, contralateral HRP-positive neurons were found predominantly in pars externa and to a lesser extent in the other subdivisions of the AON. Centrifugal projections to the MOB were identified ipsilaterally from the entire AON, the ventral portion of the HR, the anterior portion of the prepyriform cortex, and the nLOT. No labelled neurons were found in the olfactory tubercle, the anterior and posterolateral cortical amygdaloid nuclei or the entorhinal cortex. Centrifugal projections to the MOB were also identified from subcortical structures of the ipsilateral basal forebrain and from midline structures of the midbrain. Labelling occurred in the fusiform neurons of the diagonal band near the medial base of the forebrain at the level of caudal olfactory tubercle. Heavy labelling was seen in a distinct group of large, predominantly multipolar neurons (magnocellular preoptic area) that continued from the level of caudal olfactory tubercle to the level of the nLOT. This band of HRP-positive neurons could be followed more caudally to a position dorsal and medial to the nLOT near the lateral margin of the lateral anterior hypothalamic area. The midbrain projections to the MOB originated in the dorsal and median raphe nuclei. After injections of HRP into the AOB, centrifugal projections were identified from the nAOT and the posteromedial cortical amygdaloid nucleus. In addition, isolated neurons were labelled in the medial cortical amygdaloid nucleus but no labelled neurons were found in the nST. These results support the notion of two anatomically distinct olfactory systems and demonstrate two previously unreported pathways through which the limbic system may modulate sensory processing in the olfactory bulb.  相似文献   

6.
Zinc ions seem to be important to several neurological functions and have been connected to the pathophysiology of epilepsy, neuronal cell death after seizure or stroke, and Alzheimer's disease. Both epilepsy and Alzheimer's disease are clinical conditions believed to involve the olfactory bulb. The mammalian olfactory bulb is densely innervated by zinc-enriched (ZEN) neurons, and the distribution of the ZEN terminals in the mouse olfactory bulb has previously been described. The aim of this study was to describe the origins of ZEN terminals projecting into the main olfactory bulb of the rat. Selective labeling of ZEN terminals was accomplished by intracerebral infusion of sodium selenide, whereby zinc selenium clusters are created in the ZEN terminals. Some of these clusters move by retrograde axonal transport to the somata where they can be silver-enhanced by autometallography (AMG). After infusion of sodium selenide into the main olfactory bulb, retrogradely labeled ZEN somata were found (1) ipsilaterally in all anterior olfactory nuclei, taenia tecta, piriform cortex and lateral entorhinal cortex, and (2) contralaterally in anterior olfactory nuclei except the external division. The ipsilateral anterior olfactory nucleus had the densest population of ZEN somata, and it was found that these somata originated mainly from pyramidal neurons in layers II and III of each area. The olfactory-related centrifugal afferents to the main olfactory bulb are discussed.  相似文献   

7.
A series of neuroanatomical, biochemical, and histochemical studies have been conducted to determine the sources of cholinergic afferents to the main olfactory bulb (MOB) in the hamster. Following horseradish peroxidase (HRP) injections that are restricted to the MOB, retrograde neuronal labeling is observed bilaterally in the anterior olfactory nucleus, locus coeruleus, and raphe nuclei, and ipsilaterally in the ventral hippocampal rudiment, dorsal peduncular cortex, piriform cortex, nucleus of the lateral olfactory tract, anterior pole of the medial septal area and vertical limb of the diagonal band, nucleus of the horizontal limb of the diagonal band (HDB), and hypothalamus. Spread of HRP into the accessory olfactory bulb results in additional neuronal labeling ipsilaterally in the bed nucleus of the accessory olfactory tract, medial amygdaloid nucleus, and bed nucleus of the stria terminalis, and bilaterally in the posteromedial cortical amygdaloid nucleus. Retrograde tracing studies also have been conducted in cases with lesions in the basal forebrain or hypothalamus to assess the extent to which such lesions interrupt fibers of passage from other sources of centrifugal afferents, and the effects of such lesions on choline acetyltransferase (CAT) activity and catecholamine content in the MOB and on acetylcholinesterase (AChE) activity in the forebrain have been evaluated. Lesions in the basal forebrain reduce or eliminate CAT and AChE activity in the MOB in direct relationship to the extent of damage to the HDB. Norepinephrine (NE) content in the MOB also is reduced by basal forebrain lesions, but in relationship to damage of the medial forebrain bundle (MFB). The hypothalamic lesions have no effect on AChE activity in the forebrain or on CAT activity in the MOB, but they eliminate retrograde labeling in the locus coeruleus and raphe nuclei and reduce the NE content of the MOB to undetectable levels. The dopamine content of the MOB is not reduced by any of the lesions. Anterograde tracing studies have been conducted to compare the rostral projection patterns of the HDB with the distribution of AChE activity. Most of the rostrally directed axons travel in association with the MFB. A small component of axons travels in association with the lateral olfactory tract. Within the MOB, the axons terminate predominantly in the glomerular layer and in the vicinity of the internal plexiform layer. The projection and termination patterns of the HDB correspond well with the distribution of AChE activity. These various results indicate that the HDB is the major source of cholinergic afferents to the MOB.  相似文献   

8.
The structure and connections of areas within the olfactory peduncle (anterior olfactory nucleus and tenia tecta) have been examined. The anterior olfactory nucleus has been divided into external, lateral, dorsal, medial, and ventro-posterior parts. In spite of the term nucleus which is applied to these areas, all of them contain pyramidal-type cells with apical and basal dendrites oriented normal to the surface, and are essentially cortical in organization. Experiments utilizing retrograde and anterograde axonal transport of horseradish peroxidase (HRP) have demonstrated that each of these parts of the anterior olfactory nucleus possesses a unique pattern of afferent and efferent connections with other olfactory areas. All subdivisions have projections to both the ipsilateral and contralateral sides, although the ipsilateral projection of the pars externa (to the olfactory bulb) is extremely light. Interestingly, crossed projections are in each case directed predominantly to areas adjacent to the homotopic areas. Two primary subdivisions may also be distinguished in the tenia tecta: a dorsal part composed largely of tightly packed neurons which closely resemble the granule cells of the dentate gyrus (bushy apical but no basal dendrites) and a ventral part which contains predominantly pyramidal-type cells. The connections of these two parts are also very different. The ventral tenia tecta receives substantial projections from the olfactory bulb, pars lateralis of the anterior olfactory nucleus, piriform cortex and lateral entorhinal area. It gives off a heavy return projection to the pars lateralis and lighter projections to the olfactory bulb, piriform cortex and olfactory tubercle. The dorsal tenia tecta receives a heavy projection from the piriform cortex, but none from the olfactory bulb. A few cells in the dorsal tenia tecta are retrogradely labeled from HRP injections into the medial aspect of the olfactory peduncle (involving the ventral tenia tecta and adjacent areas), but none are labeled from the other olfactory areas that have been injected. An area on the dorsal aspect of the olfactory peduncle that differs significantly from the anterior olfactory nucleus, tenia tecta and piriform cortex in terms of its connections and cytoarchitecture has been termed the dorsal peduncular cortex. The most striking feature of this area is its very heavy reciprocal connection with the entorhinal cortex, although it is also reciprocally connected with the olfactory bulb and piriform cortex and projects to the olfactory tubercle. Cells in layer I of the medial and ventral aspects of the olfactory peduncle have been retrogradely labeled from HRP injections into the olfactory tubercle and lateral hypothalamic area. These cells overlie the ventral tenia tecta, medial part of the anterior piriform cortex and pars ventro-posterior and pars lateralis of the anterior olfactory nucleus, but do not appear to be distributed in relation to the cytoarchitectonic boundaries. Possible functional roles of the areas within the olfactory peduncle have been discussed.  相似文献   

9.
The olfactory system of the frog Rana esculenta was studied by using horseradish peroxidase (HRP) tracing of axonal pathways. Injections of HRP were made in the main olfactory bulb (MOB), accessory olfactory bulb (AOB), anterior olfactory nucleus (AON), the amygdala (AMY), and in a zone of the leteral wall of the telencephalic hemisphere immediately posterior to the AOB. Projections from these sites are described and are generally similar to those obtained by degeneration methods. However, HRP reveals more extensive olfactory connections than previously reported. Ipsilateral, contralateral, and bilateral projections are described. The MOB, AOB, and AON have ipsilateral connections to each other. The MOB and AOB have very different projections. The MOB and AON project via the habenular commissure (HC) to the contralateral medial wall of the telencephalon. Ipsilateral MOB fibers also terminate in this cell-free zone where the medial forebrain bundle (MFB) originates. The AOB projects to the lateral cortex of the contralateral telencephalic hemisphere via the HC and also to the ipsilateral AMY and lateral forebrain bundle (LFB) from where some fibers project contralaterally. HRP injections in the AMY retrogradely fill cells in the ipsilateral AOB, two nuclei of the ipsilateral hypothalamus and a nucleus of cells caudal to the ipsilateral nucleus isthmi. Fibers are also labeled that project to the contralateral AMY. Few fibers were observed to decussate in the interpeduncular nucleus or optic chiasma. No olfactory fibers were found to project to the habenular nuclei, and no labeled neurons were found to project to the olfactory bulbs. No morphological asymmetry was observed qualitatively in the distribution of olfactory fibers in the two halves of the brain.  相似文献   

10.
The afferent connections of the main and accessory olfactory bulbs in the rat were examined by injecting horseradish peroxidase (HRP) into one or the other of these structures either by microelectrophoresis or by hydraulic pressure. Alternate sections were stained with newly developed HRP-procedures using either benzidine dihydrochloride (de Olmos and Heimer, '77) or tetramethyl-benzidine. Eighteen to twenty-four hours after unilateral HRP injections confined to the main olfactory bulb, a large number of HRP-labeled perikaria appeared in the following telencephalic structures on the ipsilateral side: All portions of the anterior olfactory nucleus (AON) except its external part, the lateral transitional field (LT) between AON and the paleocortex, the whole extent of the primary olfactory cortex (POC); the medial forebrain bundle area deep to the olfactory tubercle, the nucleus of the horizontal limb of the diagonal band (NHDB) and the nucleus of the lateral olfactory tract (NLOT). A moderate to small number of labeled cells, furthermore, were seen in the dorsal (DT) and medial (MT) transition fields, the ventral praecommissural hippocampus (tt2), the ventral superficial part of the nucleus of the vertical limb of the diagonal band (NVDB), the sublenticular part of the substantia innominata (SI), the anterior amygdaloid area, the posterolateral cortical amygdaloid nucleus (C2) and the transition region (28 L') between the olfactory cortex and the lateral entorhinal area proper. On the contralateral side a large number of labeled cells were found in all parts of the AON, with especially heavy labeling in its external part. A moderate number of labeled cells could also be detected in the lateral transition field (LT) and the NLOT. In the diencephalon and the brain stem a moderate number of HRP-labeled perikaria were observed in the dorsal, perifornical, and lateral hypothalamus, as well as in locus coeruleus and the dorsal and medial raphae nuclei. Following large HRP injections in the main olfactory bulb a moderate to small number of labeled cells were seen also in the posterior and premammillary hypothalamus and in field CA1 of the retrocommissural hippocampus on the ipsilateral side, as well as in POC on the contralateral side. It is possible, however, that the uptake of label took place in an undetected pool of HRP in the very rostal part of AON rather than in the olfactory bulb. HRP injections in the accessory olfactory bulb resulted in labeled neurons in the posterior ventro-lateral part of the bed nucleus of the stria terminalis, the nucleus of the accessory olfactory tract, the rostrodorsal portions of the medial amygdaloid nucleus, and the whole extent of the posteromedial cortical amygdaloid nucleus (C3) on the ipsilateral side. A few lightly labeled cells were seen also in the contralateral C3.  相似文献   

11.
The efferent connections of the anterior olfactory nucleus in the female albino rabbit have been studied using the autoradiographic and horseradish peroxidase methods for tracing axonal pathways. Following a unilateral injection of 3H-leucine into the olfactory peduncle, radioactively labeled efferent projections from the anterior olfactory nucleus were traced into all layers of the ipsilateral main olfactory bulb beneath the olfactory nerve layer and through the ipsilateral anterior limb of the anterior commissure and plexiform layer of the medial side of the cerebral hemisphere to the deep half of the plexiform (IB) and pyramidal cell (II) layers of the prepyriform cortex, the tenia tecta, and the entire surface of the olfactory tubercle. Labeled projections crossing the midline within the anterior commissure were followed to the layers IB and II of the contralateral anterior prepyriform cortex and pars externa, pars lateralis, and pars dorsalis of the anterior olfactory nucleus, and through the periventricular layer of the olfactory peduncle to all layers of the main olfactory bulb beneath the olfactory nerve layer. No well-defined labeled projection was traced to the contralateral accessory olfactory bulb. Evidence for possible anterior olfactory nucleus and/or prepyriform cortical projections to the ipsilateral paleocortical half of the claustrum, horizontal limb of the nucleus of the diagonal band, the posterior lateral hypothalamus at the level of the mammillary complex, and to the bed nucleus of the stria terminalis is discussed. Intra-axonal retrograde transport of horseradish peroxidase from axon terminals to parent cell bodies after unilateral injection of the protein into the main olfactory bulb or anterior olfactory nucleus revealed that anterior olfactory nucleus projections to the olfactory bulbs and the contralateral anterior olfactory nucleus arise predominately from the pars externa. The autoradiographic data indicate that the anterior olfactory nucleus projects to olfactory cortical structures which also receive afferent input from the olfactory bulb and that the termination of these projections is complementary to those from the olfactory bulb.  相似文献   

12.
A field guide to the anterior olfactory nucleus (cortex)   总被引:2,自引:0,他引:2  
While portions of the mammalian olfactory system have been studied extensively, the anterior olfactory nucleus (AON) has been relatively ignored. Furthermore, the existing research is dispersed and obscured by many different nomenclatures and approaches. The present review collects and assembles the relatively sparse literature regarding the portion of the brain situated between the olfactory bulb and primary olfactory (piriform) cortex. Included is an overview of the area's organization, the functional, morphological and neurochemical characteristics of its cells and a comprehensive appraisal of its efferent and afferent fiber systems. Available evidence suggests the existence of subdivisions within the AON and demonstrates that the structure influences ongoing activity in many other olfactory areas. We conclude with a discussion of the AON's mysterious but complex role in olfactory information processing.  相似文献   

13.
The bilateral projections of the rat anterior olfactory nucleus (AON) were evaluated using retrograde fluorescent tracers. Competitive effects of these tracers led to severe underestimation of bilaterally projecting neurons, when double-labeled cells were counted. The underestimate was corrected using a numerical approach, which is of general utility for problems in double labeling and requires only a single tracer. With this method we estimated that approximately 63% of AON neurons project bilaterally to the olfactory bulbs, except for the external part which projects exclusively to the contralateral olfactory bulb. No other AON neurons project only to the contralateral bulb.  相似文献   

14.
15.
The projections of the main olfactory bulbs (MOBs) and the dorsal part of the anterior olfactory nucleus (NOA) in the hedgehog (Erinaceus europaeus) have been studied by fluorescent tracers and the horseradish peroxidase method (HRP), respectively, to reveal the pattern of labeling from these structures. After different dye injections in both MOBs, labeled cells were present in the following structures: tenia tecta, vertical limb of the diagonal band of Broca, and medial septal nucleus in the ipsilateral injection site; and the NOA, piriform cortex, nucleus of the lateral olfactory tract, horizontal limb of the diagonal band of Broca, posterolateral cortical amygdaloid nucleus, anterior amygdaloid area, and dorsal raphe nucleus in both hemispheres. Structures showing double-labeled cells were the NOA, horizontal limb of the diagonal band of Broca, nucleus of the lateral olfactory tract, anterior amygdaloid area, and posterolateral cortical amygdaloid nucleus. After HRP injections in the dorsal part of the NOA, labeled cells were distributed in the NOA, nucleus of the lateral olfactory tract, posterolateral cortical amygdaloid nucleus, piriform cortex, horizontal and vertical limbs of the diagonal band of Broca, mitral cell layer of the MOB, tenia tecta, anterior amygdaloid area, and the contralateral NOA. We suggest that the contralateral projection nuclei to the MOB of the hedgehog, unusual in other mammals, and the large number of cells with axonal collaterals projecting to both hemispheres, may be a strategy in these animals to bilaterally integrate brain functions at the expense of its reduced corpus callosum.  相似文献   

16.
Horseradish peroxidase conjugated to wheat germ agglutinin was used as the tracer to demonstrate the cells of origin of the main olfactory bulb (MOB) afferent fibers in the mouse. The neurons projecting to the olfactory bulb were counted by area to show the contribution of each brain area to the system of MOB afferents. The majority of neurons projecting to the MOB were found in the nucleus olfactorius anterior and the cortex cerebri, area pyriformis, being respectively 53.8% and 35.7% of the total number of labeled neurons counted. The average total number of neurons per mouse brain projecting to the MOB was about 146,600.  相似文献   

17.
Circuit operations of the olfactory bulb are modulated by higher order projections from multiple regions, many of which are themselves targets of bulbar output. Multiple glutamatergic regions project to the olfactory bulb, including the anterior olfactory nucleus (AON), prefrontal cortex (PFC), piriform cortex (PC), entorhinal cortex (EC), and tenia tecta (TT). In contrast, only one region provides GABAergic projections to the bulb. These GABA neurons are located in the horizontal limb of the diagonal band of Broca extending posteriorly through the magnocellular preoptic nucleus to the nucleus of the lateral olfactory bulb. However, it was unclear whether bulbar projecting GABAergic neurons collaterallize projecting to other brain regions. To address this, we mapped collateral projections from bulbar projecting GABAergic neurons using intersectional strategies of viral and traditional tract tracers. This approach revealed bulbar projecting GABAergic neurons show remarkable specificity targeting other primary olfactory cortical regions exhibiting abundant collateral projections into the accessory olfactory bulb, AON, PFC, PC, and TT. The only "nonolfactory" region receiving collateral projections was sparse connectivity to the medial prefrontal orbital cortex. This suggests that basal forebrain inhibitory feedback also modulates glutamatergic feedback areas that are themselves prominent bulbar projection regions. Thus, inhibitory feedback may be simultaneously modulating both synaptic processing of olfactory information in the bulb and associational processing of olfactory information from primary olfactory cortex. We hypothesize that these olfactory GABAergic feedback neurons are a regulator of the entire olfactory system.  相似文献   

18.
Transneuronal anterograde labeling with the conjugate wheat germ agglutinin-horseradish peroxidase (WGA-HRP) has been documented in the mammalian and immature avian visual system [6,14]. Transneuronal retrograde labeling was significant only in the chick [6]. The present study was performed to determine whether transneuronal labeling could be shown in the mammalian olfactory system, whether the phenomenon was robust in adults, and whether transneuronal retrograde transport could label several transmitter-specific centrifugal afferent projections to the olfactory bulb. In addition we wished to learn whether molecules that enter the nasal cavity can undergo transport to brain neurons. Gelfoam implants soaked with 1% WGA-HRP, surgically implanted into the nasal cavity, produced transneuronal labeling patterns that affirmed all of these questions. Transneuronal anterograde transport labeled the appropriate zones in the olfactory bulb and in all second order olfactory targets. In addition, there was transneuronal retrograde labeling of neurons in the olfactory bulb, anterior olfactory nucleus and in transmitter-specific projection neurons from the diagonal band (cholinergic), raphe (serotonergic) and locus coeruleus (noradrenergic). Transneuronal labeling was robust and consistent. The patterns of labeling indicated that transneuronal anterograde and retrograde transport occurred along known, specific circuits in the olfactory system. The present results suggest that nasal epithelial application of WGA-HRP may be a useful tool for assessing regeneration of primary olfactory neurons and the status of central circuitry following regeneration. The method should also facilitate the study of central olfactory connections after surgical or genetic lesions of the olfactory bulb. Finally, these experiments suggest the possibility that inhaled molecules including, possibly substances of abuse, may be transported to, and, possibly, influence the function of neurons in the brain, including some (diagonal band, raphe, locus coeruleus) which have extensive projections to wide areas of the CNS.  相似文献   

19.
Sensory processing is strongly modulated by different brain and behavioral states,and this is based on the top-down modulation.In the olfactory system,local neural circuits in the olfactory bulb(OB)are innervated by centrifugal afferents in order to regulate the processing of olfactory information in the OB under different behavioral states.The purpose of the present study was to explore the organization of neural networks in olfactory-related cortices and modulatory nuclei that give rise to direct and indirect innervations to the glomerular layer(GL)of the OB at the whole-brain scale.Injection of different recombinant attenuated neurotropic viruses into the GL showed that it received direct inputs from each layer in the OB,centrifugal inputs from the ipsilateralanterior olfactory nucleus(AON),anterior piriform cortex(Pir),and horizontal limb of diagonal band of Broca(HDB),and various indirect inputs from bilateral cortical neurons in the AON,Pir,amygdala,entorhinal cortex,hippocampus,HDB,dorsal raphe,median raphe and locus coeruleus.These results provide a circuitry basis that will help further understand the mechanism by which olfactory informationprocessing in the OB is regulated.  相似文献   

20.
The efferent connections of the main and accessory olfactory bulbs in the female albino rabbit have been studied using the autoradiographic method for tracing axonal pathways. Following unilateral injections of 3H-proline or 3H-leucine into the main olfactory bulb, radioactively labeled material transported intraaxonally by axoplasmic flow in an anterograde direction from soma to axon terminal is present ipsilaterally in the superficial half of the plexiform layer (IA) of: the entire circumference of the olfactory peduncle, the tenia tecta, the full mediolateral extent of the olfactory tubercle, the entire length of the prepyriform cortex, a transition area between the prepyriform cortex and the horizontal limb of the nucleus of the diagonal band, the nucleus of the lateral olfactory tract, the anterior cortical and posterolateral cortical amygdaloid nuclei (periamygdaloid areas 1, rostral half of 2, 5 of Rose, '31), and the ventrolateral entorhinal cortex (entorhinal areas 1, 2, 4, 5, 7 of Rose, '31). No subcortical or contralateral projection of main bulb efferents was found. After a unilateral injection of 3H-leucine into the accessory olfactory bulb, transported material could be followed caudally along the dorsal surface of the ipsilateral lateral olfactory tract. This heavily labeled projection is distinct from the unlabeled lateral olfactory tract and has been termed the accessory olfactory tract. Beginning at the level of the caudal third of the olfactory tubercle and extending caudally to the nucleus of the lateral olfactory tract is a group of small neurons intimately associated with the accessory olfactory tract. This cell group is referred to as the bed nucleus of the accessory olfactory tract. Projection sites of the accessory bulb include the bed nucleus of the accessory olfactory tract and layer IA of the medial nucleus and the posteromedial cortical nucleus of the amygdala (periamygdaloid areas 3, 4, PAM, caudal half of 2, 6 of Rose, '31). An additional accessory bulb efferent projection was found to enter the stria terminalis at the level of the medial amygdaloid nucleus and could be traced to a posterior segment of the bed nucleus of the stria terminalis. The autoradiographic findings indicate that the accessory olfactory bulb connects with portions of the amygdala that do not receive afferent input from the main olfactory bulb and provide evidence for the existence of two distinct and separate olfactory systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号