首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X X Chi  Z C Xu 《Neuroscience》2001,108(4):535-540
Selective neuronal injury in the CA1 zone of hippocampus following transient cerebral ischemia has been well documented. Extracellular potassium concentration markedly increases during ischemia/hypoxia. Accumulating evidence has indicated that the outward potassium currents, including delayed rectifier potassium current, not only influence membrane excitability but also mediate apoptosis. It has been shown that the amplitude of delayed rectifier potassium current in CA1 neurons significantly increased after cerebral ischemia. To elucidate the mechanisms underlying the changes of potassium currents following ischemia, single potassium channel activities of rat CA1 neurons were compared before and after transient forebrain ischemia. Using cell-attached configuration, depolarizing voltage steps activated outward single channel events. The channel properties, the kinetics and pharmacology of these events resemble the delayed rectifier potassium current. After ischemia, the unitary amplitude of single channels significantly increased, the open probability, mean open time and open time constant also significantly increased while the conductance remained unchanged. These data indicate that the increase of single channel activity is responsible, at least in part, for the increase of delayed rectifier potassium current in CA1 neurons after cerebral ischemia.  相似文献   

2.
Deng P  Pang ZP  Zhang Y  Xu ZC 《Neuroscience》2005,131(1):135-146
Large aspiny (LA) neurons in the neostriatum are resistant to cerebral ischemia whereas spiny neurons are highly vulnerable to the same insult. Excitotoxicity has been implicated as the major cause of neuronal damage after ischemia. Voltage-dependent potassium currents play important roles in controlling neuronal excitability and therefore influence the ischemic outcome. To reveal the ionic mechanisms underlying the ischemia-resistance, the delayed rectifier potassium currents (Ik) in LA neurons were studied before and at different intervals after transient forebrain ischemia using brain slices and acute dissociation preparations. The current density of Ik increased significantly 24 h after ischemia and returned to control levels 72 h following reperfusion. Among currents contributing to Ik, the margatoxin-sensitive currents increased 24 h after ischemia while the KCNQ/M current remained unchanged after ischemia. Activation of protein kinase A (PKA) down-regulated Ik in both control and ischemic LA neurons, whereas inhibition of PKA only up-regulated Ik and margatoxin-sensitive currents 72 h after ischemia, indicating an active PKA regulation on Ik at this time. Protein tyrosine kinases had a tonic inhibition on Ik to a similar extent before and after ischemia. Compared with that of control neurons, the spike width was significantly shortened 24 h after ischemia due to facilitated repolarization, which could be reversed by blocking margatoxin-sensitive currents. The increase of Ik in LA neurons might be one of the protective mechanisms against ischemic insult.  相似文献   

3.
脑缺血在在体大鼠海马CA1锥体神经元上诱发出一种NMDA受体介导的新突触后电位高天明(GaoTianming)徐造成(XuZaocheng)(田纳西大学医学院神经病学系,盂菲斯,田纳西38104美国;第一军医大学生理学教研室,广州510515)海马C...  相似文献   

4.
目的:探讨脑缺血再灌注后海马CA1区诱发群峰电位的变化与形态学改变的关系及中药9602的影响。方法:在整体脑缺血再灌注后不同时间制备的海马脑片上,记录CA1区诱发群峰电位(PS)的变化。采用TUNEL,Nissl染色法进行形态学检测。结果:脑缺血再灌组诱发PS的阈强度明显大于假手术组,波幅显著减小;加条件刺激后PS增幅显著低于假手术组,持续时间缩短。上述变化始于脑缺血再灌后8h,随再灌时间的延长而加重。海马CA1区再灌后8h起TUNEL阳性细胞明显增多,24h达高峰,异常细胞8h最多,随后降低并在低水平持续到7d,细胞总数随再灌时间的延长逐渐减少。中药9602明显降低缺血再灌脑片PS阈强度,增大PS波幅;加大条件刺激后PS增幅并延长持续时间;明显减少海马CA1区的TUNEL阳性细胞数,阻止CA1区细胞数的减少。结论:脑缺血再灌后海马CA1区神经细胞兴奋性和反应性降低,与脑缺血再灌后迟发性神经元死亡(DND)有关,细胞凋亡起重要作用。9602明显改善CA1区神经细胞的兴奋性和反应性,可能与其抑制脑缺血再灌诱导的细胞凋亡,减轻DND的发生有关。  相似文献   

5.
Morphological changes of CA1 and CA3 pyramidal neurons in rat hippocampus at different intervals following transient forebrain ischemia were examined to determine the nature of post-ischemic cell death in these regions. In the CA1 region, swelling of small dendrites occurred at approximately 24 h reperfusion. At approximately 48 h reperfusion, swelling was found in large dendrites of many CA1 neurons and the mitochondria and endoplasmic reticulum (ER) were dilated. A small portion of neurons showed chromatin aggregation and nuclear indentation without swelling signs. At approximately 60 h reperfusion, swelling of somata was evident in many neurons. Large dense chromatin clumps with round or ovoid contour were found in other neurons. At 72 and 96 h after ischemia, many large vacuoles and glias with active phagocytosis were observed. At 7 days after ischemia, the tissue was compact and many glias were found in the region. Most of the CA3 neurons had normal appearance after ischemia. A total of 5-10% CA3 neurons exhibited shrinking nuclei and chromatin aggregation at approximately 24 h reperfusion. The number of these neurons decreased overtime and disappeared at 72 h after ischemia. These results demonstrate the co-existence of necrosis and apoptosis in the CA1 region after transient forebrain ischemia. Most CA3 neurons remained intact after ischemia while a small portion of them showed apoptotic cell death.  相似文献   

6.
Pyramidal neurons in hippocampal CA1 regions are highly sensitive to cerebral ischemia. Alterations of excitatory and inhibitory synaptic transmission may contribute to the ischemia-induced neuronal degeneration. However, little is known about the changes of GABAergic synaptic transmission in the hippocampus following reperfusion. We examined the GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) in CA1 pyramidal neurons 12 and 24 h after transient forebrain ischemia in rats. The amplitudes of evoked inhibitory postsynaptic currents (eIPSCs) were increased significantly 12 h after ischemia and returned to control levels 24 h following reperfusion. The potentiation of eIPSCs was accompanied by an increase of miniature inhibitory postsynaptic current (mIPSC) amplitude, and an enhanced response to exogenous application of GABA, indicating the involvement of postsynaptic mechanisms. Furthermore, there was no obvious change of the paired-pulse ratio (PPR) of eIPSCs and the frequency of mIPSCs, suggesting that the potentiation of eIPSCs might not be due to the increased presynaptic release. Blockade of adenosine A1 receptors led to a decrease of eIPSCs amplitude in post-ischemic neurons but not in control neurons, without affecting the frequency of mIPSCs and the PPR of eIPSCs. Thus, tonic activation of adenosine A1 receptors might, at least in part, contribute to the enhancement of inhibitory synaptic transmission in CA1 neurons after forebrain ischemia. The transient enhancement of inhibitory neurotransmission might temporarily protect CA1 pyramidal neurons, and delay the process of neuronal death after cerebral ischemia.  相似文献   

7.
Gao TM  Pulsinelli WA  Xu ZC 《Neuroscience》1999,90(3):771-780
We have previously identified three distinct populations of CA1 pyramidal neurons after reperfusion based on differences in synaptic response, and named these late depolarizing postsynaptic potential neurons (enhanced synaptic transmission), non-late depolarizing postsynaptic potential and small excitatory postsynaptic neurons (depressed synaptic transmission). In the present study, spontaneous activity and membrane properties of CA1 neurons were examined up to 48 h following approximately 14 min ischemic depolarization using intracellular recording and staining techniques in vivo. In comparison with preischemic properties, the spontaneous firing rate and the spontaneous synaptic activity of CA1 neurons decreased significantly during reperfusion; spontaneous synaptic activity ceased completely 36-48 h after reperfusion, except for a low level of activity which persisted in non-late depolarizing postsynaptic potential neurons. Neuronal hyperactivity as indicated by increasing firing rate was never observed in the present study. The membrane input resistance and time constant decreased significantly in late depolarizing postsynaptic potential neurons at 24-48 h reperfusion. In contrast, similar changes were not observed in non-late depolarizing postsynaptic potential neurons. The rheobase, spike threshold and spike frequency adaptation in late depolarizing postsynaptic potential neurons increased progressively following reperfusion. Only a transient increase in rheobase and spike threshold was detected in non-late depolarizing postsynaptic potential neurons and spike frequency adaptation remained unchanged in these neurons. The amplitude of fast afterhyperpolarization increased in all neurons after reperfusion, with the smallest increment in non-late depolarizing postsynaptic potential neurons. Small excitatory postsynaptic potential neurons shared similar changes to those of late depolarizing postsynaptic potential neurons. These results suggest that the enhancement and depression of synaptic transmission following ischemia are probably due to changes in synaptic efficacy rather than changes in intrinsic membrane properties. The neurons with enhanced synaptic transmission following ischemia are probably the degenerating neurons, while the neurons with depressed synaptic transmission may survive the ischemic insult.  相似文献   

8.
Gajendiran M  Ling GY  Pang Z  Xu ZC 《Neuroscience》2001,105(1):139-152
Spiny neurons in neostriatum are vulnerable to cerebral ischemia. To reveal the mechanisms underlying the postischemic neuronal damage, the spontaneous activities, evoked postsynaptic potentials and membrane properties of spiny neurons in rat neostriatum were compared before and after transient forebrain ischemia using intracellular recording and staining techniques in vivo. In control animals the membrane properties of spiny neurons were about the same between the left and right neostriatum but the inhibitory synaptic transmission was stronger in the left striatum. After severe ischemia, the spontaneous firing and membrane potential fluctuation of spiny neurons dramatically reduced. The cortically evoked initial excitatory postsynaptic potentials were suppressed after ischemia indicated by the increase of stimulus threshold and the rise time of these components. The paired-pulse facilitation test indicated that such suppression might involve presynaptic mechanisms. The inhibitory postsynaptic potentials in spiny neurons were completely abolished after ischemia and never returned to the control levels. A late depolarizing postsynaptic potential that was elicited from approximately 5% of the control neurons by cortical stimulation could be evoked from approximately 30% of the neurons in the left striatum and approximately 50% in the right striatum after ischemia. The late depolarizing postsynaptic potential could not be induced after acute thalamic transection. The intrinsic excitability of spiny neurons was suppressed after ischemia evidenced by the significant increase of spike threshold and rheobase as well as the decrease of repetitive firing rate following ischemia. The membrane input resistance and time constant increased within 6 h following ischemia and the amplitude of fast afterhyperpolarization significantly increased after ischemia. These results indicate the depression of excitatory monosynaptic transmission, inhibitory synaptic transmission and excitability of spiny neurons after transient forebrain ischemia whereas the excitatory polysynaptic transmission in neostriatum was potentiated. The facilitation of excitatory polysynaptic transmission is stronger in the right neostriatum than in the left neostriatum after ischemia. The suppression of inhibitory component and the facilitation of excitatory polysynaptic transmission may contribute to the pathogenesis of neuronal injury in neostriatum after transient cerebral ischemia.  相似文献   

9.
Liu C  Hu B 《Neuroscience》2004,128(4):767-774
Neuronal repair following injury requires recruitment of large amounts of membranous proteins into synaptic and other cell membranes, which is carried out by the fusion of transport vesicles to their target membranes. A critical molecule responsible for assemblage of membranous proteins is N-ethylmaleimide-sensitive factor (NSF) which is an ATPase. To study whether NSF is involved in ischemic neurological deficits and delayed neuronal death, we investigated alterations of NSF after transient cerebral ischemia by means of biochemical methods, as well as confocal and electron microscopy. We found that transient cerebral ischemia induced depletion of free NSF and concomitantly relocalization of NSF into the Triton X-100-insoluble fraction including postsynaptic densities in CA1 neurons during the postischemic period. The NSF alterations are accompanied by accumulation of large quantities of intracellular vesicles in CA1 neurons that are undergoing delayed neuronal death after transient cerebral ischemia. Therefore, permanent depletion of free NSF and relocalization of NSF into the Triton X-100-insoluble fraction may disable the vesicle fusion machinery necessary for repair of synaptic injury, and ultimately leads to synaptic dysfunction and delayed neuronal death in CA1 neurons after transient cerebral ischemia.  相似文献   

10.
目的: 过氧亚硝酸阴离子(ONOO-)是一种性质活泼的自由基,可引起强的氧化性损伤,介导了一氧化氮(NO)的大部分毒性作用。本研究探讨ONOO-对脑片海马神经元延迟整流钾电流(IK)和动作电位时程(APD)的影响及其作用机制。方法: 应用全细胞脑片膜片钳技术记录IK和动作电位。结果: ONOO-供体SIN-1可抑制IK电流峰值,使其激活曲线向超极化方向移动,并可延长APD。脑片预处理PKC抑制剂chelerythrine (2.5 μmol/L)可抑制SIN-1对IK的作用。PKC激动剂PDBu (6 μmol/L)不仅加强而且模拟SIN-1对IK的影响。然而,鸟苷酸环化酶(GC)抑制剂ODQ对SIN-1的作用无影响。结论: ONOO-可能通过PKC-IK-动作电位信号级联反应作用于海马神经元,并不依赖环磷鸟苷(cGMP)通路,这可能是ONOO-神经毒性的机制之一。  相似文献   

11.
The whole-cell voltage clamp technique was used to record potassium currents in mouse fetal hypothalamic neurons developing in culture medium from days 1 to 17. The neurons were derived from fetuses of IOPS/OF1 mice on the 14th day of gestation. The mature neurons (greater than six days in culture) showed both a transient potassium current and a non-inactivating delayed rectifier potassium current. These were identified pharmacologically by using the potassium channel blockers tetraethyl ammonium chloride and 4-aminopyridine, and on the basis of their kinetics and voltage sensitivities. The delayed rectifier potassium current had a threshold of-20 mV, a slow time-course of activation, and was sustained during the voltage pulse. The 4-aminopyridine-sensitive current was transient, and was activated from a holding potential more negative (-80 mV) than that required for evoking the delayed rectifier potassium current (-40 mV). The delayed rectifier potassium current was detectable from day 1 onwards, while the transient potassium current showed a distinct developmental trend. The time-constant of inactivation became faster with age in culture. The half steady-state inactivation potential showed a shift towards less negative membrane potentials with age, and the relationship was best described by a logarithmic regression equation. The developmental trend of the transient potassium current may relate functionally to the progressive morphological changes, and the appearance of synaptic connections during ontogenesis.  相似文献   

12.
13.
14.
In addition to their role in signaling, Ca2+ ions in the endoplasmic reticulum also regulate important steps in protein processing and trafficking that are critical for normal cell function. Chronic depletion of Ca2+ in the endoplasmic reticulum has been shown to lead to cell degeneration and has been proposed as a mechanism underlying delayed neuronal death following ischemic insults to the CNS. Experiments here have assessed the relative content of ryanodine receptor-gated stores in CA1 neurons by measuring cytoplasmic Ca2+ increases induced by caffeine. These measurements were performed on CA1 neurons, in slice, from normal gerbils, and compared with responses from this same population of neurons 54-60 h after animals had undergone a standard ischemic insult: 5-min bilateral occlusion of the carotid arteries. The mean amplitude of responses in the postischemic population were less than one-third of those in control or sham-operated animals, and 35% of the neurons from postischemic animals showed very small responses that were approximately 10% of the control population mean. Refilling of these stores after caffeine challenges was also impaired in postischemic neurons. These observations are consistent with our earlier finding that voltage-gated influx is sharply reduced in postischemic in CA1 neurons and the hypothesis that the resulting depletion in endosomal Ca2+ is an important cause of delayed neuronal death.  相似文献   

15.
Liu C  Chen S  Kamme F  Hu BR 《Neuroscience》2005,134(1):69-80
Transient cerebral ischemia leads to protein aggregation mainly in neurons destined to undergo delayed neuronal death after ischemia. This study utilized a rat transient cerebral ischemia model to investigate whether ischemic preconditioning is able to alleviate neuronal protein aggregation, thereby protecting neurons from ischemic neuronal damage. Ischemic preconditioning was introduced by a sublethal 3 min period of ischemia followed by 48 h of recovery. Brains from rats with either ischemic preconditioning or sham-surgery were then subjected to a subsequent 7 min period of ischemia followed by 30 min, 4, 24, 48 and 72 h of reperfusion. Protein aggregation and neuronal death were studied by electron and confocal microscopy, as well as by biochemical analyses. Seven minutes of cerebral ischemia alone induced severe protein aggregation after 4 h of reperfusion mainly in CA1 neurons destined to undergo delayed neuronal death (which took place after 72 h of reperfusion). Ischemic preconditioning reduced significantly protein aggregation and virtually eliminated neuronal death in CA1 neurons. Biochemical analyses revealed that ischemic preconditioning decreased accumulation of ubiquitin-conjugated proteins (ubi-proteins) and reduced free ubiquitin depletion after brain ischemia. Furthermore, ischemic preconditioning also reduced redistribution of heat shock cognate protein 70 and Hdj1 from cytosolic fraction to protein aggregate-containing fraction after brain ischemia. These results suggest that ischemic preconditioning decreases protein aggregation after brain ischemia.  相似文献   

16.
17.
Calbindin D(28K) (CB) expression was analyzed in the rat hippocampus following 10-min-cardiac arrest-induced ischemia within a year after reperfusion. In rats examined 3 days after ischemia, CB immunoreactivity disappeared completely from CA1 pyramidal neurons and from most CA2 pyramids. In the stratum granulosum of the dentate gyrus, mossy fibers, and hippocampal interneurons, CB immunoreactivity was preserved, although staining was somewhat paler than that in control rats. A similar pattern of CB immunoreactivity was found in rats sacrificed 14 days and 1 month after cardiac arrest. From the 14th postischemic day, neuronal loss in the stratum pyramidale of CA1 but not in that of CA2 became apparent. The reappearance of CB immunoreactivity in CA1 and CA2 pyramidal neurons was noticed 6 months after ischemia, and the pattern was identical to that observed in animals sacrificed 12 months after the ictus. The prolonged loss and delayed reappearance of CB immunoreactivity in the hippocampus demonstrate that ischemia may induce long-term disturbances of protein expression, which may in turn result in impairment of hippocampal functioning.  相似文献   

18.
Serotonin (5-HT) has both direct and modulatory actions on central neurons contributing to behavioral arousal and cellular-synaptic plasticity in diverse species. In Hermissenda, 5-HT produces changes in intrinsic excitability of different types of identified interneurons in the circumesophageal nervous system. Using whole cell patch-clamp techniques we have examined membrane conductance changes produced by 5-HT that contribute to intrinsic excitability in two identified classes of interneurons, types I(i) and I(eA). Whole cell currents were examined before and after 5-HT application to the isolated nervous system. A 4-aminopyridine-sensitive transient outward K(+) current [I(K(A))], a tetraethylammonium-sensitive delayed rectifier K(+) current [I(K(V))], an inward rectifier K(+) current [I(K(IR))], and a hyperpolarization-activated current (I(h)) were characterized. 5-HT decreased the amplitude of I(K(A)) and I(K(V)) in both type I(i) and I(eA) interneurons. However, differences in 5-HT's effects on the activation-inactivation kinetics were observed in different types of interneurons. 5-HT produced a depolarizing shift in the activation curve of I(K(V)) and a hyperpolarizing shift in the inactivation curve of I(K(A)) in type I(i) interneurons. In contrast, 5-HT produced a depolarizing shift in the activation curve and a hyperpolarizing shift in the inactivation curve of both I(K(V)) and I(K(A)) in type I(eA) interneurons. In addition, 5-HT decreased the amplitude of I(K(IR)) in type I(i) interneurons and increased the amplitude of I(h) in type I(eA) interneurons. These results indicate that 5-HT-dependent changes in I(K(A)), I(K(V)), I(K(IR)), and I(h) contribute to multiple mechanisms that synergistically support modulation of increased intrinsic excitability associated with different functional classes of identified type I interneurons.  相似文献   

19.
Okada M  Matsuda H 《Neuroscience》2008,156(2):289-297
Strongly inwardly rectifying K+ (Kir2) channels are endogenously expressed in rat brains and have recently been used as a tool to reduce the neuronal activity. But little is known about the role of Kir2 channels and the chronic effect of the reduced activity on the intrinsic excitability of neurons. Here we constructed a lentiviral vector that coexpressed Kir2.1 and GFP (LvKir2.1) and infected the vector to the hippocampal slice cultures. The LvKir2.1-infected CA1 neurons showed clear inwardly rectifying K+ currents for more than 15 days. The resting membrane potential was more negative by approximately 10 mV than those uninfected or infected with the lentiviral vector expressing GFP alone. The infection of LvKir2.1 reduced the voltage change in response to current injections and the amplitude of mEPSPs with a shunting effect. The LvKir2.1 infection significantly reduced the firings evoked by depolarizing currents in the CA1 neurons. The reduction of the firing was attributed to the hyperpolarized potential rather than to the shunting effect. These reductions were limited to modest current injections, suggesting that the overexpressed Kir2.1 plays the role of a noise-filter. Moreover, the chronic overexpression of Kir2.1 downregulated the expression of the delayed rectifier potassium current in a homeostatic manner, indicating a usefulness of this viral vector to study the activity-dependent neuronal development.  相似文献   

20.
1. The effects of brief exposures to hypoxia on the membrane currents of isolated hippocampal CA1 neurons were studied with the use of the whole-cell variation of the patch-clamp technique. Neurons were acutely dissociated from immature (day 2-7) and mature (day 21-43) rats. 2. In the current-clamp mode, Na-cyanide (CN) hyperpolarized both mature and immature neurons. In the voltage-clamp mode, CN decreased the magnitude of the hyperpolarizing holding current in both age groups. 3. CN did not have a consistent effect on the voltage-dependent calcium and potassium currents of immature and mature CA1 neurons but decreased the voltage-dependent inward current of neurons at both ages. This effect was age dependent: the inward current of immature neurons decreased by only 10%, but that of mature neurons decreased by approximately 40%. 4. The decrease in the magnitude of the hyperpolarizing holding current and the depression of the voltage-dependent inward current of mature neurons were observed during brief exposure to N2 (PO2 = 0), indicating that the electroresponses observed with CN were the result of blocking oxidative respiration. 5. The hypoxia-sensitive inward current was blocked by tetrodotoxin (TTX) but was not blocked by cadmium or cesium + tetraethylammonium (TEA). Therefore this current was identified as the voltage-dependent, fast-inactivating sodium current (INa). 6. The isolated sodium current was studied with the use of cadmium to block calcium and TEA + cesium to block potassium currents. In mature neurons, CN left-shifted the steady-state inactivation curve for INa and slowed the deactivation kinetics of INa. CN caused little or no change in INa activation, fast inactivation, recovery from inactivation, or current-voltage (I-V) relationship. 7. We conclude that brief exposures to CN and hypoxia alter the intrinsic excitability of CA1 neurons by at least two mechanisms: 1) alterations in leakage currents and 2) alterations in the fast Na+ conductance that are maturationally dependent. We propose that the alterations in the Na+ conductance may play an adaptive role by reducing O2 demands and thus possibly delaying neuronal injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号