首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Delta (Δ) efficiency is defined as the ratio of an increment in the external mechanical power output to the increase in metabolic power required to produce it. The purpose of the present study was to investigate whether differences in leg muscle activity between running and cycling can explain the observed difference in Δ efficiency between the two activities. A group of 11 subjects performed incremental submaximal running and cycling tests on successive days. The Δ efficiencies during running and cycling were based on five exercise stages. Electromyograph (EMG) measurements were made of three leg muscles (gastrocnemius, vastus lateralis and biceps femoris). Kendall's correlation coefficients between the mean EMG activity and the load applied were calculated for each muscle, for both running and cycling. As expected, the mean Δ efficiency during running (42%) was significantly greater than that during cycling (25%). For cycling, all muscles showed a significant correlation between mean EMG activity and the load applied. For running, however, only the gastrocnemius muscle showed a significant, but low correlation (r=0.33). The correlation coefficients of the vastus lateralis and biceps femoris muscles were not significantly different from 0. The results were interpreted as follows. In contrast to cycling, which includes only concentric contractions, during running up inclines eccentric muscle actions play an important role. With steeper inclines, more concentric contractions must be produced to overcome the external force, whereas the amount of eccentric muscle actions decreases. This change in the relative contribution of concentric and eccentric muscle actions, in combination with the fact that eccentric muscle actions require much less metabolic energy than concentric contractions, can explain the difference between the running and cycling Δ efficiency. Electronic Publication  相似文献   

2.
3.
Summary Electromyographic activity of erector spinae, external oblique, and rectus abdominis muscles was studied during relaxed standing compared to lying down. Activity in the forearm extensors and forearm flexors was also studied. Surface electrodes were used.Each of the torso muscles exhibited 0.2 V of activity and the forearm muscles 0.1 V while subjects were relaxed and lying down. During quiet standing the erector spinae, external oblique, and rectus abdominis muscles showed a median activity of 1.0 V, 2.5 V, and 0.7 V respectively (for a minimum of ten 10-sec samples per subject). Examination of the integrated records during standing revealed no periods without increased muscle activity in the torso muscles. By contrast, activity in the forearm muscles did not increase during standing.The major superficial muscles of posture in the torso appear to act as guy wires, being continually active during standing. There is no support for hypotheses of passive support for the torso, nor do torso muscles act in either/or fashion; both anterior and posterior muscles are active at once. There is no sign of generally increased muscle tone in all muscles or in extensors; only the postural muscles are continuously active.  相似文献   

4.
The purpose of this study was to determine whether the metabolic response and running performance during intermittent graded sprint running were affected by moderate hypobaric hypoxia (H; 2,500 m above sea level) in competitive middle-distance runners. Nine male runners performed intermittent graded sprint running until exhaustion, to evaluate the metabolic response and running performance in H and normobaric normoxia (N). The test constructed of incremental (25 m min−1) 20 s running bouts (4° inclination) interspaced with 100 s recovery periods. Maximal running speed was not different between conditions [453 (7) m min−1 vs. 458 (4) m min−1 in N vs. H]. at each speed was lower in H than N (ANOVA; P < 0.05). Although, oxygen deficit at each speed was not different between N and H (ANOVA; P = 0.1), total accumulated in all bouts was significantly higher in H than N [165 (10) ml kg−1 in N and 173 (10) ml kg−1 in H]. The ratio of was similar in all bouts, but higher in H than N. These results suggest that intermittent graded sprint running performance is not affected by moderate hypobaria despite a reduction in the energy supplied by aerobic metabolism due to a compensatory increase in the energy supplied by the anaerobic metabolism in competitive middle-distance runners.  相似文献   

5.
The preferential use of dominant over non-dominant limbs produces muscle hypertrophy in the dominant limb. The purpose of this study was to investigate the architectural characteristics of the muscle that are associated with dominant leg use in junior soccer players. Fascicle length, pennation angle and muscle thickness of the medial gastrocnemius (MG) were measured by B-mode ultrasound in 26 junior soccer players [mean (SD) age: 16.5 (0.6) years] and 20 control college students [age: 18.5 (0.5) years]. Lower leg circumference and MG muscle thickness were significantly (P<0.05) greater in the soccer players than in the controls. The percent difference (dominant minus non-dominant legs) in muscle thickness and fascicle length were significantly (P<0.01) larger in the soccer players than in the controls, but the percent difference in pennation angle was similar between groups. The difference (dominant leg minus non-dominant leg) in muscle thickness was significantly correlated (r=0.55; P<0.05) with the difference in muscle fascicle length in the soccer players, but not in the controls (r=0.18). In conclusion, the preferential use of one limb over another, as seen in junior soccer players, results in a greater difference in muscle thickness between the dominant and non-dominant legs. This difference in muscle size was associated with longer fascicle lengths of the dominant leg. Thus, it appears possible that fascicle length may be further influenced by physical training in dominant legs. Electronic Publication  相似文献   

6.
Summary The authors have shown, with the help of electromyography, the functional relationship which exists between the muscles of mastication and certain muscles of the leg after artificially creating interdental occlusal dysfonction. While the activity of the tibialis anterior was not affected by the alteration in occlusion, that of the peroneus longus and gastrocnemius was markedly changed. This is due to the activation of long muscle chains as a consequence of the activation of complex nervous reflexes.
Rapports fonctionnels entre muscles masticateurs et muscles de la jambe : une étude EMG
Résumé Les auteurs ont mis en évidence à l'aide d'électromyogrammes le rapport fonctionnel qui existe entre les muscles masticateurs et certains muscles de la jambe, après avoir créé artificiellement un dysfonctionnement occlusal interdental. Alors que l'activité du m. tibial antérieur n'a pas été affectée par l'altération du plan occlusal interdental, celle du m. long fibulaire et du m. gastrocnémien a été sensiblement touchée. Ceci est dû à l'activation de longues chaînes musculaires et, par conséquent, à la réalisation de réflexes nerveux complexes.
  相似文献   

7.
Summary Contraction work (CW) was recorded for each of 200 repetitive isokinetic plantar flexions (1.05 rad · s–1) and knee extensions (1.57 rad · s–1) in 14 elite male orienteers. Simultaneous recordings of integrated electromyograms (iEMG) were obtained from the 3 parts of triceps surae and from 3 superficial portions of quadriceps femoris. CW in both muscle groups decreased significantly during the first 30 contractions (the fatigue phase), followed by a steady state level. The relative steady state level was higher for the plantar flexors (70±17%) than for the knee extensors (56±12%). For quadriceps a significant increase in iEMG occurred during the first 10 contractions followed by a decrease, whereas the iEMG of the plantar flexors showed a gradual decrease to the steady state level, which was similar for the two muscle groups (71–72%). The chosen expression of output/input balance (CW/iEMG) was constant throughout the plantarflexion test but decreased during the initial 20 knee extensions down to 82%. Thus, the fatigue phase of the knee extensions appeared to be divided into two; the first part had decreases in both CW and CW/iEMG and the second part with a decrease in CW alone. In contrast the plantar flexors only showed the characteristics of the second part.  相似文献   

8.
目的从动作控制角度出发,探讨运动控制对提高短跑运动成绩以及预防运动损伤的可能影响。方法研究对象为8名国家级优秀短跑运动员(最好成绩:10.27s~10.80s),利用8台红外高速摄像系统(采样频率300Hz)与测力台系统(1200Hz)同步记录受试者在短跑最大速度阶段的运动学与动力学地面反作用力资料。根据逆动力学理论建立下肢多环节互动动力学模型,对短跑一个步幅的各种力矩进行量化分析。结果短跑支撑阶段地面反作用力矩是下肢各关节处的主要被动力矩,它在着地初期对膝关节产生一个较大的伸膝作用,腿后肌为抵抗此力矩的  相似文献   

9.
The possible influence of increased eccentric mechanical work on the increase in oxygen uptake (O2) after 3 min of running (O2) was investigated through forward pulled running. Ten subjects ran at individually predetermined constant velocity on a treadmill, while being pulled forward. Ground reaction forces, expired gas and EMGs from leg muscles were collected after 3 min and at the end of the run. O2 and mechanical work were then calculated. The amplitude of O2 was 138 (139) ml·min–1 [mean (SD)]. Increased ventilation explained only 8% of O2. Stride frequency slightly decreased, inducing a similar decrease in internal work and total mechanical work (all P<0.01), while integrated EMG showed no modifications. It was concluded that O2 does not come from either an increase in mechanical work production or an increase in muscular activity. O2 could come from a lower muscle efficiency that could be due to a modification of fibre type recruitment.  相似文献   

10.
The relationships between anaerobic glycolysis and average velocity () sustained during sprint running were studied in 12 national level male sprinters. A blood sample was obtained within 3 min of the completion of semi-finals and finals in the 100-m and 200-m Cameroon national championships and blood lactate concentration ([la]b) was measured. The 35-m times were video-recorded. The 100-m and 200-m [la]b were 8.5 (SD 0.8) and 10.3 (SD 0.8) mmol·l–1, respectively. These were not correlated with the performances. Over 200 m [la]b was correlated with the sustained over the last 165 m (r=0.65,P<0.05). In the 9 athletes who participated in both the 100-m and 200-m races, the difference between the [la]b measured at the end of the two races was negatively correlated to the difference in v sustained over the two races (r=0.76,P>0.02). Energy expenditure during sprint running was estimated from the [la]b values. This estimate was mainly based on the assumption that a 1 mmol·l–1 increase in [la]b corresponds to the energy produced by the utilization of 3.30 ml O2·kg–1. The energy cost of running was estimated at 0.275 (SD 0.02) ml O2·kg–1·m–1 over 200-m and 0.433 (SD 0.03) ml O2·kg–1·m–1 over 100-m races. These results would suggest that at the velocities studied anaerobic glycolysis contributes to at least 55% of the energy expenditure related to sprint running. However, the influence of both mechanical factors and the contribution of other energy processes obscure the relationship between [la]b and performance.  相似文献   

11.
Summary Twenty-eight adult female and male subjects performed recreational skiing, which took place in terrain with short and long slopes. Muscle biopsies were obtained before and after the skiing from the lateral portion of the quadriceps femoris for histochemical evaluation of glycogen depletion in individual fibres and biochemical analysis of glycogen and lactate content. Blood lactate was also determined. After a day of skiing the decline in muscle glycogen averaged 33 mM/kg in both short and long slope terrain. Technically advanced skiers had a reduction of 38 mM/kg and less advanced skiers had a reduction of 28 mM/kg (p<0.05). In most subjects there was a predominant loss of glycogen from the slow-twitch fibres (ST). In the most talented skiers glycogen depletion was also observed in the fast-twitch a fibres (FTa). In contrast a pronounced depletion of the fast-twitch b fibres (FTb) was observed in the technically unskilled skier.Muscle lactate concentrations ranged 2–8 mM/kg, the higher values observed in the technically better skiers. Blood lactate values reflected muscle lactate at a 1–2 mM/l lower level.The obtained results suggest that recreational downhill skiing performed by experienced skiers can be characterized as dynamic exercise and that glycogen depleted muscle fibres may contribute to the fatigue experienced after a day of skiing.  相似文献   

12.
Electromechanical delay (EMD) of knee extensors in isometric contraction was investigated in six healthy men before and after four periods of 30-s all-out sprint cycling exercise, conducted pre and post a 7-week sprint cycling training programme. The EMD was lengthened from 40.4 (SEM 3.46) ms at rest to 63.4 (SEM 7.80) ms after the fatiguing exercise (P 0.05) in the pre-training test. During maximal voluntary contractions (MVC) conducted after the fatiguing exercise, the peak contraction force (F peak) and peak rate of force development (RFDpeak) were reduced by 51%–56% and 38%–50%, respectively (both P 0.05). The mechanisms of EMD lengthening during fatigue could have been due to the deterioration in muscle conductive, contractile or elastic properties and require further study. The training programme increased the total work performed during the four periods of sprint exercise (P 0.05). However, no significant training effects were found in the resting or postexercise EMD, F peak and RFDpeak during isometric MVC. These unchanged isometric contraction variables but enhanced dynamic performance suggest that isometric tests of muscle are insensitive to the neuromuscular adaptations to sprint training.  相似文献   

13.
14.
Summary Lengths of muscle tendon complexes of the quadriceps femoris muscle and some of its heads, biceps femoris and gastrocnemius muscles, were measured for six limbs of human cadavers as a function of knee and hip-joint angles. Length-angle curves were fitted using second degree polynomials. Using these polynomials the relationships between knee and hip-joint angles and moment arms were calculated. The effect of changing the hip angle on the biceps femoris muscle length is much larger than that of changing the knee angle. For the rectus femoris muscle the reverse was found. The moment arm of the biceps femoris muscle was found to remain constant throughout the whole range of knee flexion as was the case for the medial part of the vastus medialis muscle. Changes in the length of the lateral part of the vastus medialis muscle as well as the medial part of the vastus lateralis muscle are very similar to those of vastus intermedius muscle to which they are adjacent, while those changes in the length of the medial part of the vastus medialis muscle and the lateral part of the vastus lateralis muscle, which are similar to each other, differ substantially from those of the vastus intermedius muscle. Application of the results to jumping showed that bi-articular rectus femoris and biceps femoris muscles, which are antagonists, both contract eccentrically early in the push off phase and concentrically in last part of this phase.  相似文献   

15.
Lung ventilation is a mechanical process in which the respiratory muscles are acting in concert to remove air in and out of the lungs. Any alteration in the performance of the respiratory muscle may reduce the effectiveness of ventilation. Thus, early diagnosis of their weakness is vital for treatment and rehabilitation. Different techniques, which are based on different measurement protocols, can be utilized for evaluation of respiratory muscle strength. Respiratory muscle strength can be assessed using pressure measurement either from the mouth or from the nostril during quasi-static breathing. However, it estimates only global performance of respiratory muscles. Techniques that are based on electromyography measurements during muscle contraction (EMG) enable the differentiation between the different respiratory muscles. Along with the above clinical and physiological techniques for assessment of respiratory muscle strength and endurance, mechanical and mathematical models of the chest wall were developed in the last few decades for analysis of chest wall movements and the contribution of its components to respiration. In this review, the different methods and the models utilized for evaluation of respiratory muscles function will be discussed.  相似文献   

16.
While surface electromyography (SEMG) can accurately register electrical activity of muscles during gait, there are no methods to estimate muscular force non-invasively. To better understand the mechanical behavior of muscle, we evaluated surface muscle pressure (SMP) in conjunction with SEMG. Changes in anterior thigh radial pressure during isometric contractions and gait were registered by pressure sensors on the limb. During isometric knee extensions by a single subject, SMP waveforms correlated well with SEMG (r=0.97), and SEMG onsets preceded those of SMP by 35-40 ms. SMP and SEMG signals were simultaneously recorded from the quadriceps of 10 healthy subjects during gait at speeds of 0.4, 0.8, 1.1, 1.4 and 2.2m/s. Muscle activity onset and cessation times were objectively determined for both modalities, and results showed high intra-class correlations. SMP waveforms were highly consistent from stride to stride, while SEMG waveforms varied widely. SEMG waveforms were typically brief, while SMP waveforms tended to be biphasic and outlasted the SEMG by approximately 40% of gait cycle at all speeds. These results are consistent with mechanical models of muscle, and demonstrate the use of SMP to estimate the timing of knee extensor muscle stiffness during gait.  相似文献   

17.
This study investigated acute changes in muscle activation and muscular power performance after three different running exercises in elite long-distance runners. Twenty-two nationally and internationally ranked long-distance runners performed first an incremental treadmill running test until exhaustion (MR) and then 40 min continuous (TR) and intermittent (2 min run/2 min rest) (IR) running exercises at an intensity of 80 and 100% of the velocity associated with VO2max, respectively. Muscle activation and muscular power performance tests (counter-movement jumps, CMJ, and a set of ten maximal half squats from the static starting position with an extra load of 35% of the subjects,′ one repetition maximum) were performed before and immediately after the runs. The average mechanical power (P) of the half squats was calculated and the root mean square electromyogram (EMGrms) from the vastus lateralis, vastus medialis, gastrocnemius and biceps femoris muscles was recorded simultaneously during the half squat performances. The results showed an acute exercise–induced increase in P (ANOVA time effect, P=0.000) together with a reduction in EMGrms of the knee extensor muscles (ANOVA time effect, P=0.000). However, mechanical P expressed as a relative change within the set decreased after MR. In TR the improvement in P correlated positively with the maximal running performance of the runners (P<0.05), while in IR it correlated negatively (P<0.05). Jumping performance was significantly enhanced after each run (P<0.001, for all) and the improvement correlated negatively with the maximal sprinting speed and maximal jumping height of the runners (P<0.01, for all). It is concluded that in elite long distance runners an intensive prolonged running exercise reduces the surface EMG of the knee extensor muscles, and may lead to a different coordination strategy in leg extension exercises performed into the vertical direction. After continuous type of running the power improvement correlates positively with maximal endurance running capacity, whereas after intermittent type of running it correlates negatively.  相似文献   

18.
The influence of prestretch amplitude on the mechanical efficiency was examined with 5 subjects, who performed 5 different series of vertical jumps, each of which differed with respect to the mechanics of the knee joint action during the prestretch (eccentric) phase of the contact on the floor. Electromyographic activity was recorded from the major extensor muscles during the entire work period of 1 min per series. In addition, expired air was collected during the test and recovery for determination of energy expenditure. Mechanical work was calculated from the vertical displacement of the body during the jumps. The results indicated that high net efficiency of 38.7% was observed in condition where amplitude of knee bending in eccentric phase was small. In large range motion the corresponding net efficiency was 30.1%. In jumps where no prestretching of extensor muscles ocurred the net efficiency was 19.7%. The high efficiency of small amplitude jumps was characterized by low myoelectrical activity of the leg extensor muscles during the positive (concentric) work phase. In addition, the small amplitude jumps had shorter transition time in the stretch-shortening cycle, high average eccentric force and high stretching speed. Therefore the results suggest that the restitution of elastic energy, which was also related to the length change and stiffness of the muscles during stretch, plays an important role in regulating the mechanical efficiency of work.  相似文献   

19.
Human gait patterns differ considerably between the sexes. Therefore sex specific trunk muscle activation patterns can be expected. Healthy volunteers of both sexes (51 women, 55 men) walked on a treadmill at speeds from 2 to 6 km/h. Surface electormyography was recorded from five pairs of trunk muscles. Grand averaged root mean square (rms) curves and amplitude normalised curves were calculated. Mean amplitudes and relative amplitudes were calculated as well. Mean amplitudes as well as relative amplitude levels were not generally sex specific, but differed for single muscles. Grand averaged rms curves of all investigated muscles differed between sexes. At low walking speeds, differences mostly originated from mean amplitude level differences, alternating between sexes. At higher walking speeds, amplitude curves became more phasic, differences again alternated between sexes. Therefore, trunk muscle co-ordination during gait is sex-specific. Any interpretation of trunk muscle co-ordination patterns during gait requires sex specific normatives.  相似文献   

20.
Delayed onset of muscle soreness (DOMS) is a common response to exercise involving significant eccentric loading. Symptoms of DOMS vary widely and may include reduced force generating capacity, significant alterations in biochemical indices of muscle and connective tissue health, alteration of neuromuscular function, and changes in mechanical performance. The purpose of the investigation was to examine the effects of downhill running and ensuing DOMS on running economy and stride mechanics. Nine, well-trained distance runners and triathletes participated in the study. Running economy was measured at three relative intensities [65, 75, and 85% of maximal aerobic capacity (O2peak)] before (RE1) and 48 h after (RE2) a 30-min downhill run (−10%) at 70%O2peak. Dependent variables included leg muscle soreness, rate of oxygen consumption (O2), minute ventilation, respiratory exchange ratio, lactate, heart rate, and stride length. These measurements were entered into a two-factor multivariate analysis of variance (MANOVA). The analysis revealed a significant time effect for all variables and a significant interaction (time × intensity) for lactate. The energy cost of locomotion was elevated at RE2 by an average of 3.2%. This was coupled with a significant reduction in stride length. The change inO2 was inversely correlated with the change in stride length (r= −0.535). Lactate was significantly elevated at RE2 for each run intensity, with a mean increase of 0.61 mmol l−1. Based on these findings, it is suggested that muscle damage led to changes in stride mechanics and a greater reliance on anaerobic methods of energy production, contributing to the change in running economy during DOMS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号