首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteogenesis imperfecta (OI) is a rare hereditary bone fragility disorder, caused by collagen I mutations in 90% of cases. There are no comprehensive genotype–phenotype studies on >100 families outside North America, and no population-based studies determining the genetic epidemiology of OI. Here, detailed clinical phenotypes were recorded, and the COL1A1 and COL1A2 genes were analyzed in 164 Swedish OI families (223 individuals). Averages for bone mineral density (BMD), height and yearly fracture rate were calculated and related to OI and mutation type. N-terminal helical mutations in both the α1- and α2-chains were associated with the absence of dentinogenesis imperfecta (P<0.0001 vs 0.0049), while only those in the α1-chain were associated with blue sclera (P=0.0110). Comparing glycine with serine substitutions, α1-alterations were associated with more severe phenotype (P=0.0031). Individuals with type I OI caused by qualitative vs quantitative mutations were shorter (P<0.0001), but did not differ considering fractures or BMD. The children in this cohort were estimated to represent >95% of the complete Swedish pediatric OI population. The prevalence of OI types I, III, and IV was 5.16, 0.89, and 1.35/100 000, respectively (7.40/100 000 overall), corresponding to what has been estimated but not unequivocally proven in any population. Collagen I mutation analysis was performed in the family of 97% of known cases, with causative mutations found in 87%. Qualitative mutations caused 32% of OI type I. The data reported here may be helpful to predict phenotype, and describes for the first time the genetic epidemiology in >95% of an entire OI population.  相似文献   

2.
The most common form of Dopa-responsive dystonia (DRD) is caused by heterozygous mutations in the GTP cyclohydrolase I (GCH1) gene. We screened two unrelated, DRD-symptomatic Chinese Han individuals, for GCH1 gene mutations by direct sequencing. As the clinical manifestations of DRD are highly variable, we also explored the association between genotype and phenotype in all Chinese DRD patients reported so far in the literature, comprising 62 DRD-affected patients from 36 Chinese families. Two novel missense mutations (T94M, L145F) and a novel variant (c. 453+6 G>T) were identified in our two new patients. None of these variants was detected in 200 healthy controls. On the basis of this and other reports, heterozygous mutations were detected in 90.3% of Chinese Han subjects with DRD. Seeming the age of onset for males and females, the mean age was 13 years older in males than in females (P=0.006). Different mutation types did not show any significant differences in age of onset, gender composition, initial symptoms, or the ℒ-dopa dose that abolished the symptoms. Among DRD patients lacking missense or exon–intron boundary mutations, 68.4% were found to possess a large deletion in GCH1, which were detected by multiplex ligation-dependent probe amplification. Most GCH1 mutations were found to cluster in two regions of the coding sequence, suggesting the probable existence of mutation hotspot for the first time. The genotype–phenotype correlation described here may improve our understanding of DRD in Chinese individuals.  相似文献   

3.
Osteogenesis imperfecta (OI) is a heritable disorder with bone fragility that is often associated with short stature, tooth abnormalities (dentinogenesis imperfecta), and blue sclera. The most common mutations associated with OI result from the substitution for glycine by another amino acid in the triple helical domain of either the α1 or the α2 chain of collagen type I. In this study, we compared the results of genotype analysis and clinical examination in 161 OI patients (median age: 13 years) who had glycine mutations in the triple helical domain of α1(I) (n=67) or α2(I) (n=94). Serine substitutions were the most frequently encountered type of mutation in both chains. Compared with patients with serine substitutions in α2(I) (n=40), patients with serine substitutions in α1(I) (n=42) on average were shorter (median height z-score −6.0 vs −3.4; P=0.005), indicating that α1(I) mutations cause a more severe phenotype. Height correlated with the location of the mutation in the α2(I) chain but not in the α1(I) chain. Patients with mutations affecting the first 120 amino acids at the amino-terminal end of the collagen type I triple helix had blue sclera but did not have dentinogenesis imperfecta. Among patients from different families sharing the same mutation, about 90 and 75% were concordant for dentinogenesis imperfecta and blue sclera, respectively. These data should be useful to predict disease phenotype in newly diagnosed OI patients.  相似文献   

4.
《Genetics in medicine》2017,19(7):772-777
BackgroundGenetic FBN1 testing is pivotal for confirming the clinical diagnosis of Marfan syndrome. In an effort to evaluate variant causality, FBN1 databases are often used. We evaluated the current databases regarding FBN1 variants and validated associated phenotype records with a new Marfan syndrome geno-phenotyping tool called the Marfan score.Methods and resultsWe evaluated four databases (UMD-FBN1, ClinVar, the Human Gene Mutation Database (HGMD), and Uniprot) containing 2,250 FBN1 variants supported by 4,904 records presented in 307 references. The Marfan score calculated for phenotype data from the records quantified variant associations with Marfan syndrome phenotype. We calculated a Marfan score for 1,283 variants, of which we confirmed the database diagnosis of Marfan syndrome in 77.1%. This represented only 35.8% of the total registered variants; 18.5–33.3% (UMD-FBN1 versus HGMD) of variants associated with Marfan syndrome in the databases could not be confirmed by the recorded phenotype.ConclusionFBN1 databases can be imprecise and incomplete. Data should be used with caution when evaluating FBN1 variants. At present, the UMD-FBN1 database seems to be the biggest and best curated; therefore, it is the most comprehensive database. However, the need for better genotype–phenotype curated databases is evident, and we hereby present such a database.Genet Med advance online publication 01 December 2016  相似文献   

5.
The autosomal dominant macrothrombocytopenia with leukocyte inclusions, May-Hegglin anomaly (MHA), Sebastian syndrome (SBS), and Fechtner syndrome (FTNS), are rare platelet disorders characterized by a triad of giant platelets, thrombocytopenia, and characteristic Döhle body-like leukocyte inclusions. The locus for these disorders was previously mapped on chromosome 22q12.3–q13.2 and the disease gene was recently identified as MYH9, the gene encoding the nonmuscle myosin heavy chain-A. To elucidate the spectrum of MYH9 mutations responsible for the disorders and to investigate genotype–phenotype correlation, we examined MYH9 mutations in an additional 11 families and 3 sporadic patients with the disorders from Japan, Korea, and China. All 14 patients had heterozygous MYH9 mutations, including three known mutations and six novel mutations (three missense and three deletion mutations). Two cases had Alport manifestations including deafness, nephritis, and cataracts and had R1165C and E1841K mutations, respectively. However, taken together with three previous reports, including ours, the data do not show clear phenotype–genotype relationships. Thus, MHA, SBS, and FTNS appear to represent a class of allelic disorders with variable phenotypic diversity.  相似文献   

6.
The aims of our research were to define the genotype–phenotype correlations of mutations in the phenylalanine hydroxylase (PAH) gene that cause phenylketonuria (PKU) among the Israeli population. The mutation spectrum of the PAH gene in PKU patients in Israel is described, along with a discussion on genotype–phenotype correlations. By using polymerase chain reaction/denaturing high-performance liquid chromatography (PCR/dHPLC) and DNA sequencing, we screened all exons of the PAH gene in 180 unrelated patients with four different PKU phenotypes [classic PKU, moderate PKU, mild PKU, and mild hyperphenylalaninemia (MHP)]. In 63.2% of patient genotypes, the metabolic phenotype could be predicted, though evidence is also found for both phenotypic inconsistencies among subjects with more than one type of mutation in the PAH gene. Data analysis revealed that about 25% of patients could participate in the future in (6R)-l-erythro-5, 6, 7, 8-tetrahydrobiopterin (BH4) treatment trials according to their mutation genotypes. This study enables us to construct a national database in Israel that will serve as a valuable tool for genetic counseling and a prognostic evaluation of future cases of PKU.  相似文献   

7.
Krabbe disease is an autosomal recessive leukodystrophy. It is pathologically characterized by demyelination of the central and peripheral nervous systems and the accumulation of globoid cells in brain white matter. It is caused by a deficiency of galactocerebrosidase (GALC) activity. We investigated mutations of the GALC gene in 17 Japanese patients with Krabbe disease, the largest subject number of Japanese patients to date, and found 27 mutations. Of these mutations, six were novel, including two nonsense mutations, W115X and R204X, two missense mutations, S257F and L364R, a small deletion, 393delT, and a small insertion, 1719-1720insT. Our findings, taken with the reported mutations in Japanese patients, confirm several mutations common to Japanese patients, the two most frequent being 12Del3Ins and I66M+I289V, which account for 37% of all mutant alleles. With two additional mutations, G270D and T652P, these account for up to 57% of genetic mutations in Japanese patients. Distribution of the mutations within the GALC gene indicated some genotype–phenotype correlation. I66M+I289M, G270D, and L618S contributed to a mild phenotype. Screening for these mutations may provide an effective method with which to predict the clinical phenotype.  相似文献   

8.
Brachydactyly type C (BDC), a well-recognized autosomal dominant hand malformation, displays brachymesophalangy of the second, third, and fifth fingers, a short first metacarpal, hyperphalangy, and ulnar deviation of the index finger. An “angel-shaped phalanx” is a distinctive radiological sign that can be found in BDC and other skeletal dysplasias, such as angel-shaped phalango-epiphyseal dysplasia (ASPED), an autosomal dominant skeletal abnormality characterized by a typical angel-shaped phalanx, brachydactyly, specific radiological findings, abnormal dentition, hip dysplasia, and delayed bone age. BDC and ASPED result from mutations in the CDMP1 gene. We report here a Mexican patient with BDC and clinical features of ASPED who carries a novel mutation in CDMP1, confirming that BDC and ASPED are part of the CDMP1 mutational spectrum. Based on the large number of clinical features in common, we suggest that both anomalies are part of the same clinical spectrum. Supported by an extensive review of the literature, a possible genotype–phenotype correlation in the mutational spectrum of this gene is proposed.  相似文献   

9.
《Genetics in medicine》2017,19(8):909-917
PurposePseudoxanthoma elasticum (PXE) is an autosomal recessive disorder caused by variants in the ABCC6 gene. Ectopic mineralization of connective tissues leads to skin, eye, and cardiovascular manifestations with considerable phenotypic variability of unknown cause. We aimed to identify genotype–phenotype correlations in PXE.MethodsA molecular analysis was performed on 458 French PXE probands clinically evaluated using the Phenodex score (PS). Variant topographic analysis and genotype–phenotype correlation analysis were performed according to the number and type of identified variants.ResultsComplete molecular analysis of 306 cases allowed the identification of 538 mutational events (88% detection rate) with 142 distinct variants, of which 66 were novel. Missense variant distribution was specific to some regions and residues of ABCC6. For the 220 cases with a complete PS, there was a higher prevalence of eye features in Caucasian patients (P = 0.03) and more severe eye and vascular phenotype in patients with loss-of-function variants (P = 0.02 and 0.05, respectively). Nephrolithiases and strokes, absent from the PS, were prevalent features of the disorder (11 and 10%, respectively).ConclusionWe propose an updated PS including renal and neurological features and adaptation of follow-up according to the genetic and ethnic status of PXE-affected patients.Genet Med advance online publication 19 January 2017  相似文献   

10.
Meckel-Gruber syndrome (MKS) is a lethal fetal disorder characterized by diffuse renal cystic dysplasia, polydactyly, a brain malformation that is usually occipital encephalocele, and/or vermian agenesis, with intrahepatic biliary duct proliferation. Joubert syndrome (JBS) is a viable neurological disorder with a characteristic “molar tooth sign” (MTS) on axial images reflecting cerebellar vermian hypoplasia/dysplasia. Both conditions are classified as ciliopathies with an autosomal recessive mode of inheritance. Allelism of MKS and JBS has been reported for TMEM67/MKS3, CEP290/MKS4, and RPGRIP1L/MKS5. Recently, one homozygous splice mutation with a founder effect was reported in the CC2D2A gene in Finnish fetuses with MKS, defining the 6th locus for MKS. Shortly thereafter, CC2D2A mutations were also reported in JBS. The analysis of the CC2D2A gene in our series of MKS fetuses, identified 14 novel truncating mutations in 11 cases. These results confirm the involvement of CC2D2A in MKS and reveal a major contribution of CC2D2A to the disease. We also identified three missense CC2D2A mutations in two JBS cases. Therefore, and in accordance with the data reported regarding RPGRIP1L, our results indicate phenotype–genotype correlations, as missense and presumably hypomorphic mutations lead to JBS while all null alleles lead to MKS. Hum Mutat 30:1–9, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

11.
12.
To optimize care for children with Marfan syndrome (MFS) in the Netherlands, Dutch MFS growth charts were constructed. Additionally, we aimed to investigate the effect of FBN1 variant type (haploinsufficiency [HI]/dominant negative [DN]) on growth, and compare MFS-related height increase across populations. Height and weight data of individuals with MFS aged 0–21 years were retrospectively collected. Generalized Additive Models for Location, Scale and Shape (GAMLSS) was used for growth chart modeling. To investigate genotype–phenotype relationships, FBN1 variant type was included as an independent variable in height-for-age and BMI-for-age models. MFS-related height increase was compared with that of previous MFS growth studies from the United States, Korea, and France. Height and weight data of 389 individuals with MFS were included (210 males). Height-for-age, BMI-for-age, and weight-for-height charts reflected the tall and slender MFS habitus throughout childhood. Mean increase in height of individuals with MFS compared with the general Dutch population was significantly lower than in the other three MFS populations compared to their reference populations. FBN1-HI variants were associated with taller height in both sexes, and decreased BMI in females (p-values <0.05). This Dutch MFS growth study broadens the notion that genetic background and MFS variant type (HI/DN) influence tall and slender stature in MFS.  相似文献   

13.
Loeys–Dietz syndrome (LDS) is a connective tissue disorder caused by monoallelic mutations in TGFBR1 and TGFBR2, which encode for subunits of the transforming growth factor beta (TGFβ) receptor. Affected patients are identified by vascular aneurysms with tortuosity and distinct morphological presentations similar to Marfan syndrome; however, an additional predisposition towards asthma and allergy has recently been found. We describe two patients with a novel missense mutation in TGFBR1 presenting with highly elevated levels of IgE and severe eczema similar to autosomal-dominant Hyper-IgE syndrome (HIES). Mild allergic manifestations with normal up to moderately increased IgE were observed in 3 out of 6 additional LDS patients. A comparison of this cohort with 4 HIES patients illustrates the significant overlap of both syndromes including eczema and elevated IgE as well as skeletal and connective tissue manifestations.  相似文献   

14.
Stickler syndrome is an autosomal dominant connective tissue disorder caused by mutations in different collagen genes. The aim of our study was to define more precisely the phenotype and genotype of Stickler syndrome type 1 by investigating a large series of patients with a heterozygous mutation in COL2A1. In 188 probands with the clinical diagnosis of Stickler syndrome, the COL2A1 gene was analyzed by either a mutation scanning technique or bidirectional fluorescent DNA sequencing. The effect of splice site alterations was investigated by analyzing mRNA. Multiplex ligation-dependent amplification analysis was used for the detection of intragenic deletions. We identified 77 different COL2A1 mutations in 100 affected individuals. Analysis of the splice site mutations showed unusual RNA isoforms, most of which contained a premature stop codon. Vitreous anomalies and retinal detachments were found more frequently in patients with a COL2A1 mutation compared with the mutation-negative group (P<0.01). Overall, 20 of 23 sporadic patients with a COL2A1 mutation had either a cleft palate or retinal detachment with vitreous anomalies. The presence of vitreous anomalies, retinal tears or detachments, cleft palate and a positive family history were shown to be good indicators for a COL2A1 defect. In conclusion, we confirm that Stickler syndrome type 1 is predominantly caused by loss-of-function mutations in the COL2A1 gene as >90% of the mutations were predicted to result in nonsense-mediated decay. On the basis of binary regression analysis, we developed a scoring system that may be useful when evaluating patients with Stickler syndrome.  相似文献   

15.
We aimed to characterize the vancomycin genotype/phenotype, carriage of putative virulence genes, and genetic relatedness of Enterococcus faecium isolates in Saudi Arabia. E. faecium isolated from inpatients at our medical center were studied. Sensitivity to ampicillin, linezolid, teicoplanin, quinupristin/dalfopristin, tetracycline, and ciprofloxacin was determined. The presence of van genes and virulence genes for aggregation substance (Asa-1), enterococcal surface proteins (esp), cytolysin (cylA, cylL, cylM), gelatinase (gelE), E. faecium endocarditis antigen (EfaA fm ), hyaluronidase (hyl), and collagen adhesion (Ace) was assessed. Genetic relatedness was determined by pulsed-field gel electrophoresis (PFGE). Twenty-nine E. faecium isolates were obtained and the majority of isolates (n/N?=?22/29) were from stool specimens. PFGE analysis identified eight pulsotypes (A–H) based on 80?% similarities. Isolates were represented in five major pulsotypes: type A (n?=?5), type B (n?=?3), type D (n?=?6), type E (n?=?5), and type F (n?=?7). All isolates were vanA gene-positive. Thirteen isolates had vanA+/vanB+ genotype. Of these, ten exhibited a vanB phenotype and three had a vanA phenotype. Eight isolates with vanA+/vanB? genotype exhibited vanB phenotype. Six of these eight isolates belonged to the same pulsotype. All isolates were positive for gelE, esp, and EfaA fm genes. Five were CylA-positive and 24 had the hyl genes. Of the eight isolates harboring a combination of gelE, esp, EfaA fm , and hyl genes, five showed vanB phenotype–vanA genotype incongruence. This is the first report of vanB phenotype–vanA genotype incongruent E. faecium in the Middle East region. Molecular typing indicates clonal spread and high occurrence of virulence genes, especially esp genes, associated with epidemic clones.  相似文献   

16.
《Genetics in medicine》2020,22(2):389-397
PurposeSifrim–Hitz–Weiss syndrome (SIHIWES) is a recently described multisystemic neurodevelopmental disorder caused by de novo variants inCHD4. In this study, we investigated the clinical spectrum of the disorder, genotype–phenotype correlations, and the effect of different missense variants on CHD4 function.MethodsWe collected clinical and molecular data from 32 individuals with mostly de novo variants in CHD4, identified through next-generation sequencing. We performed adenosine triphosphate (ATP) hydrolysis and nucleosome remodeling assays on variants from five different CHD4 domains.ResultsThe majority of participants had global developmental delay, mild to moderate intellectual disability, brain anomalies, congenital heart defects, and dysmorphic features. Macrocephaly was a frequent but not universal finding. Additional common abnormalities included hypogonadism in males, skeletal and limb anomalies, hearing impairment, and ophthalmic abnormalities. The majority of variants were nontruncating and affected the SNF2-like region of the protein. We did not identify genotype–phenotype correlations based on the type or location of variants. Alterations in ATP hydrolysis and chromatin remodeling activities were observed in variants from different domains.ConclusionThe CHD4-related syndrome is a multisystemic neurodevelopmental disorder. Missense substitutions in different protein domains alter CHD4 function in a variant-specific manner, but result in a similar phenotype in humans.  相似文献   

17.
Autosomal-dominant, nonsyndromic hearing impairment is clinically and genetically heterogeneous. We encountered a large Japanese pedigree in which nonsyndromic hearing loss was inherited in an autosomal-dominant fashion. A genome-wide linkage study indicated linkage to the DFNA2 locus on chromosome 1p34. Mutational analysis of KCNQ4 encoding a potassium channel revealed a novel one-base deletion in exon 1, c.211delC, which generated a profoundly truncated protein without transmembrane domains (p.Q71fsX138). Previously, six missense mutations and one 13-base deletion, c.211_223del, had been reported in KCNQ4. Patients with the KCNQ4 missense mutations had younger-onset and more profound hearing loss than patients with the 211_223del mutation. In our current study, 12 individuals with the c.211delC mutation manifested late-onset and pure high-frequency hearing loss. Our results support the genotype–phenotype correlation that the KCNQ4 deletions are associated with later-onset and milder hearing impairment than the missense mutations. The phenotypic difference may be caused by the difference in pathogenic mechanisms: haploinsufficiency in deletions and dominant-negative effect in missense mutations.  相似文献   

18.
19.
20.
The majority of insects possess symbiotic bacteria. Since symbiont titers can affect host phenotypes of biological importance, host insects are expected to evolve some mechanisms for regulating symbiont population. Here we report that, in the RiptortusBurkholderia gut symbiosis, titers of the beneficial symbiont transiently decrease at the pre-molt stages in host development. This molting-associated suppression of the symbiont population is coincident with the increase of antimicrobial activity in the symbiotic midgut, which is observed in both symbiotic and aposymbiotic insects. Two genes, pyrrhocoricin-like antimicrobial peptide and c-type lysozyme, exhibit significantly increased expression in the symbiotic midgut at the pre-molt stages. These results suggest that the molting-associated up-regulation of antimicrobial activity in the symbiotic midgut represents a physiological mechanism of the host insect to regulate symbiosis, which is presumably for defending molting insects against injury and infection and/or for allocating symbiont-derived energy and resources to host molting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号